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Physical attacks on cryptographic circuits were first identified in the late 1990s. These types of attacks, which are still considered very powerful, are generally classified into two main categories: "fault attacks" and "side-channel attacks." To secure circuits against such attacks, it is crucial to develop appropriate methods and tools that enable accurate estimates of the protection mechanism's effectiveness. Numerous studies have described such methods and tools but, to the best of our knowledge, these previous investigations have considered side-channel attacks or fault attacks but not the combination of the two types. The present article proposes a combined investigation of both main types of attack by describing them with the same terminology and the same algorithm. This approach is made possible by introducing the concept of "physical functions" as an extension of the concept of "leakage functions," which are widely used in the side-channel community. The paper represents a first step toward applying the strong theoretical background developed for side-channel attacks to the investigation of fault attacks. Besides, the proposed approach could potentially make it easier to combine side-channel attacks with fault attacks, which could certainly facilitate the discovery of new attack paths.

Introduction

Integrated circuits (ICs), which are used in a wide variety of electronic devices, play a key role in securing information and communications technologies. Because certain types of ICs (such as smart cards) may easily fall into the hands of people with malicious intentions, such devices are particularly vulnerable to "physical attacks." In general, the distinctive feature of these attacks is the use of experimental techniques. The first such technique, called "side-channel analysis," is based on observing certain physical characteristics of the targeted device (such as power consumption, electromagnetic radiation, response time, etc.) that vary during the circuit's computation. The second technique, called "fault analysis," is based on disturbing the circuit's behavior through laser beams, voltage or clock glitches, electromagnetic pulses, etc. An attacker can use these techniques to bypass security functions, retrieve design details, or obtain and manipulate data (cryptographic material, PIN codes, personal data, etc.). Techniques in which the attacker targets exclusively cryptographic material are often referred to as "physical cryptanalysis" or "key recovery" algorithms. Various physical cryptanalysis methods have been proposed: for example, differential power analysis [START_REF] Paul | Differential power analysis[END_REF][START_REF] Oswald | Power Analysis Attacks -Revealing the Secrets of Smart Cards[END_REF], stochastic attacks [START_REF] Schindler | A stochastic model for differential side channel cryptanalysis[END_REF], template attacks [START_REF] Chari | Template attacks[END_REF][START_REF] Standaert | Using subspace-based template attacks to compare and combine power and electromagnetic information leakages[END_REF], collision attacks [START_REF] Blömer | Fault based collision attacks on AES[END_REF][START_REF] Moradi | Statistical tools flavor side-channel collision attacks[END_REF], differential fault attacks [START_REF] Boneh | On the importance of checking cryptographic protocols for faults[END_REF][START_REF] Biham | Differential fault analysis of secret key cryptosystems[END_REF][START_REF] Ali | Differential fault analysis of aes: towards reaching its limits[END_REF][START_REF] Barthe | Synthesis of fault attacks on cryptographic implementations[END_REF], and safe-error attacks [START_REF] Yen | Checking before output may not be enough against fault-based cryptanalysis[END_REF][START_REF] Robisson | Differential behavioral analysis[END_REF][START_REF] Li | Fault sensitivity analysis[END_REF]. Although these methods may seem initially unrelated because they require different experimental methods and different algorithms, several studies have investigated a common framework to describe side-channel attacks [START_REF] Micali | Physically observable cryptography[END_REF][START_REF] Standaert | A unified framework for the analysis of side-channel key recovery attacks[END_REF][START_REF] Durvaux | How to certify the leakage of a chip?[END_REF]. In addition, a recent article has proposed another framework to describe all differential fault-attack schemes [START_REF] Guo | Security analysis of concurrent error detection against differential fault analysis[END_REF]. By providing a strong theoretical basis, such frameworks aim to enable the development of practical tools that make it possible to estimate the amount of information leaked by circuits, thereby increasing the level of trust in such devices. This paper describes concepts and algorithms that are common to a wide set of key recovery methods, regardless of whether they are based on using fault or side-channel experimental setups. The AES 128 cryptographic algorithm is used to demonstrate these concepts and algorithms [START_REF] Johansson | Announcing the Advanced Encryption Standard (AES)[END_REF].

The paper first describes a general model for the functioning of integrated circuits in the context of physical attacks. "Physical functions" that formalize the relationships between data computed inside the circuit (and considered secret) and certain variables that may be measured externally by the attacker seem to be at the core of such attacks. Several examples of such functions are provided in Section 2. The principles of fault and side-channel attacks that are based on physical functions are described in Section 3. Several illustrations, extracted from the literature, are included.

2 Model of the integrated circuit

Observables versus internal variables

Physical attacks are based on experiments involving cryptographic operations that act on the circuit with or without a modification of its behavior. During these experiments, the attacker is able to directly measure data (also called "observables") such as -Electromagnetic emissions (EM), power consumption traces (power), or signals provided by particular sensors called µ-probes. -Plaintext or ciphertext obtained without or with perturbations (called "faulty" ciphertext). -The circuit behavior (i.e., normal or abnormal functioning) in case of fault. This behavior may be determined, for example, by comparing correct and faulty ciphering, by detecting an alarm signal, or by detecting a more or less premature stop in computation. -The time needed to execute the cryptographic operations. One way, among others, to measure this computation time is to reduce the clock period step by step (on a specific clock cycle) and analyze the circuit's behavior. The step in which the behavior of the circuit switches from normal to abnormal is considered an indicator of the computation time. This particular step is also referred to as "fault intensity" in [START_REF] Li | Fault sensitivity analysis[END_REF].

Note that the term "observable" may refer to any combination of observables or any observable obtained by applying a signal processing technique or a mathematical transformation (such as filtering, temporal to frequency transformation, etc.).

In contrast to the observables, the execution of a cryptographic algorithm involves data that cannot be measured directly by the attacker. In the following paragraphs, the terms "internal" or "intermediate" are used interchangeably to refer to this type of data. The attacker looks for certain such internal variables that are called "target" or "secret" data.

Relationships

Variables are related to each other because they are computed by, or originate from, the same circuit (i.e., internal data and observables). Hardware and/or software descriptions generally define the links that exist between pieces of internal data during the normal functioning of the circuit (i.e., without perturbations created by the attacker). These links are also known as "algorithmic" relationships. The possible connections between internal data and observables are referred to as "physical" relationships.

Algorithmic relationships

The present investigation used the 128-bit version of the AES standard (denoted by AES 128 ), which is a specification for symmetric key cryptography established by the U.S. NIST [START_REF] Johansson | Announcing the Advanced Encryption Standard (AES)[END_REF]. It ciphers a 128-bit piece of data called "plaintext" (or "input") by using a 128-bit key, producing a 128-bit piece of data called "ciphertext" (or "output"). The encryption process consists in first transforming the input data into a two-dimensional array of bytes, known as a "state." Then, following a preliminary bitwise XOR operation between the input and the key, AES 128 executes 10 instances (also called "rounds") of a function that operates on the state. The following operations are used during these rounds:

-SubBytes (SB) is a non-linear transformation that works independently of the individual bytes of a state. AES rounds are identical, except for the final round, which skips the MixColumns operation. At the end of the ciphering operations, the state is copied to the output.

Physical relations

For side-channel attacks, the connection between internal data and observables is referred to as a"leakage function" [START_REF] Standaert | A unified framework for the analysis of side-channel key recovery attacks[END_REF]. To extend this notion to fault attacks, the present investigation also considered "error functions," which are used to model the effect of a fault injection on a piece of internal data. Leakage and error functions are referred to as "physical functions" because they are both at the heart of any physical attack. These functions are detailed in the following section.

Models of physical functions

Models of physical functions proposed in the literature can be divided into 1)"real" functions (i.e., each input corresponds to exactly one output) and 2) functions in which inputs and outputs are considered random variables; these two categories are respectively known as "deterministic" and "probabilistic" physical functions.

A nonexhaustive list of typical physical functions is proposed in the following. 

Bit level functions

The logical operators AND (symbol ∧), OR (symbol ∨), and XOR (symbol ⊕) defined for a byte are considered bitwise.

Subsets of bits

Let B be a set of N bits {b N -1 , . 

Subset of bits equal to

Let Ω and B be two sets of N bits. Let M be the number of bits of the subset R Ω (B) and α be a set of M bits. The function denoted by R Ω (B) == α d returns 1 when, for all bits i ∈ {0, . . . , M -1} in R Ω (B) and in α, we have R Ω (B) i == α i and returns 0 otherwise. For example, as explained above, R 36 (B) contains two bits which may take on four different values. R 36 (B) == 0 is equal to 1 for any B such that B = {b 

Deterministic physical functions

Deterministic leakage functions

The simplest model proposed for power consumption is based on considering the value of a single bit. In this case, the leakage function is R i with i ∈ {1, 2, . . . , 128}.

In general, side-channel functions are typically chosen as a combination of subsets and weighted sums. For example, the number of 1's in a binary number B is called the Hamming weight and is denoted by HW (B). A variation considers the number of transitions between two binary values B and C. This function, called the Hamming distance, is denoted by HD(B, C) = HW (B ⊕C).

Deterministic error functions

Bit flip A fault may invert a set of bits. The function that models the bit flip is the bitwise XOR between B and Ω with Ω d ∈ [0, . . . , 255]. If all bits in Ω are equal to 1, then all bits are inverted; if all bits in Ω are equal to 0, then all bits remain unchanged.

Set and reset A fault that forces bits to take on the value 0 is generally called a reset. The function that models such a reset is the bitwise AND between B and Behavior In a generalization of the set and reset models, a fault may force a set of bits R Ω (B) in B to take on some value α. In such a case, the circuit behavior is normal only when the perturbed result is expected to be equal to α and is abnormal otherwise. This behavior can be described by using the function R Ω (B) == α.

Ω with Ω d ∈ [0, . . . , 255 

Running time (or 'fault intensity')

Faults that are produced by violating the latch setup times may either affect only one bit or affect initially bytes with a higher Hamming weight [START_REF] Michel Agoyan | When clocks fail: On critical paths and clock faults[END_REF][START_REF] Li | Fault sensitivity analysis[END_REF]. In the first case, the chip's behavior can be described according to the function that selects one bit R i with i ∈ {1, 2, 4, . . . , 128}; in the second case it is described according to the Hamming weight.

Probabilistic physical functions

In the probabilistic case, the input X and output Y of the physical functions are considered discrete random variables. X and Y have sample spaces of S X = {0; 2 M -1} and S Y = {0; 2 N -1}, respectively. In accordance with [START_REF] Moradi | Statistical tools flavor side-channel collision attacks[END_REF][START_REF] Li | Exploring the relations between fault sensitivity and power consumption[END_REF], the probabilistic relationship is modeled with a joint probability mass function (joint pmf ). The joint pmf of the discrete variables X and Y (used to model a physical function f with domain X and co-domain

Y ) is denoted by f X,Y (x, y) = P r(X = x, Y = y), irrespective of x ∈ S X and y ∈ S Y .
Examples of joint pmf are described in the following sections.

Probabilistic leakage functions

Consider a physical relationship that links the integer values of an 8-bit piece of data to the measured current consumed by the circuit handling these values. A classic probabilistic leakage function considers that the current consumption of the data x is the sum of the Hamming weight of x and a Gaussian noise [START_REF] Chari | Template attacks[END_REF]. This assumption holds, for example, when the data switches from the all-zero value to the value x. This switch occurs, for example, during the transfer of data between the memory and the pipeline of a microprocessor on a pre-charged bus. In such a case, we have f (x) = a * HW (x) + e, where e models the "noise" as a normal random variable with a mean 0 and a given standard deviation. Figure 1 (left) describes the corresponding pmf (the values of a = 6 and a noise with a standard deviation of 2 were chosen arbitrarily to illustrate the example). Integer values for 8-bit data are reported in abscissa; the corresponding current consumption is given in ordinates. The grayscale illustration (Fig. 1, left) represents probabilities: the darker the shade, the higher the probability that the circuit consumes a current of value y when the manipulated data has the value x (shorter x "consumes" y). Figure 1 (right) illustrates the same pmf measured for a real component. Measurements were obtained with a 32-bit software implementation of AES 128 running on a 32-bit unsecured up-to-date microcontroller. This particular case shows a remarkably good fit of the theoretical and practical relationships.

Probabilistic error functions

Consider a physical relationship that, for an 8-bit register, links the integer values to the values that were modified through some type of fault injection. One widely used model is based on the assumption that any one of the register's 8 bits will flip, with equal probabilities for each of these bit flips (i.e., equal likelihood hypothesis). Here, this model, denoted by f (x) = x ⊕ Ω with Ω ∈ {1, 2, 4, . . . , 128} in decimal value and (P r(Ω) = 1/8)∀Ω, is referred to as the "random monobit fault model." This type of theoretical model was, for example, used in [START_REF] Giraud | DFA on AES[END_REF]. Figure 2 (left) illustrates the corresponding pmf. The integer values of the 8-bit register are reported in abscissa; the corresponding faulted value is given in ordinates. The grayscale illustration (Fig. 2, left) represents probabilities: the darker the shade, the higher the probability that x is changed into y. Figure 2 (right) shows the same pmf measured experimentally, obtained with a hardware implementation of the AES 128 , which was faulted by reducing the clock period that feeds the circuit (in accordance with [START_REF] Michel Agoyan | When clocks fail: On critical paths and clock faults[END_REF]). To avoid creating faults on several bits instead of on only one bit, this clock period was deliberately reduced by only a small amount. The faulted bit was dependent on the plaintext value.

In this example, there is a clear distinction between the theoretical and the experimental pmf. In fact, although monobit faults are identifiable in the experimental setup, some bits seem to be more easily modifiable than others. In this case, the equal likelihood hypothesis does not hold.

Physical functions for physical cryptanalysis

The scenario of a physical cryptanalysis (i.e., targeting cryptographic material only) is exemplified by numerous attacks that have been proposed in the literature: µ-probing attacks, differential power analysis (with or without a profiling phase), differential fault analysis, and safe-error attacks (e.g., differential behavioral analysis and fault sensitivity analysis). The key retrieval algorithm described in the following applies to all of these physical attacks. 

Definition

An attack path is a relationship between observables that involves the secret (or only part of the secret) and that enables the recovery of information about it. In the following paragraphs, P = REL(C, F, O) denotes the attack path that links the observables O to P according to the (unknown) value of the internal variables C (among them, the secret) and according to a set of (un-known) physical functions F . Although the relationship between P and O is not necessarily causal, the observables O are also known as "stimuli" and the observables P are referred to as "reactions" or "responses".

Examples of attack paths

The attack path used in [START_REF] Paul | Differential power analysis[END_REF] and denoted by REL power links the j th plaintext byte (denoted by plain j ) to the j th byte of the first round key (denoted by k sch[0] j ) and to the power consumption that is measured dur-ing the computation of the j th SubBytes of the first round. The algorithmic functions involved in this relationship are the SubBytes and the bitwise XOR of the AES 128 . The physical functions involved in this relationship create a link between the value of the output of the j th SubByte in the first round and the power consumption of the circuit when this value is computed. The associated physical function, denoted by f power , has no analytical expression. The secret variable here is {k sch[0] j }. With -O = {plain j }, -P = {power}, -C = {k sch[0] j }, and -F = {f power }, the relationship REL power may be written as power = f power (SB(ARK(plain j , k sch[0] j )).

Several variants of this relationship may be used interchangeably for either side-channel or fault attacks. In the first case, the attacker might take measurements of the electromagnetic radiation or of a signal recovered by a µ-probe. In the second case, the observables, such as the behavior or the running time, are obtained by modifying the circuit's functioning. In either case, to obtain the corresponding relationship, it is sufficient to replace the physical function f power with either f EM , f µ-probe , f behaviour , or f time .

This relation and other examples of relations that are commonly used to break the AES 128 with physical attacks are reported in Table 1. In these relations, k denotes the index of a byte of the AES 128 state (thus, 0 ≤ k < 16) before the Shif tRow operation, and j is the index of the same byte after this operation (thus, 0 ≤ j < 16). According to the notation used in the standard, k = r + 4 * c, with 0 ≤ r < 4, 0 ≤ c < 4, and j = r + 4 * c ′ , where c ′ = (r -c)M odulo(4). In these relations, the functions f , g, and h are leakage or error functions.

In Table 1, REL 2 is identical to REL 1 (described above) except it pertains to the end of the AES execution. The relation links two measured observables to perform, for example, a differential behavioral analysis [START_REF] Robisson | Differential behavioral analysis[END_REF]: the first observable (denoted by O) is the value of the ciphertext obtained without error; the second observable (denoted by P ) is the behavior of the chip measured when the state is disturbed by means of a fault injection at the beginning of the final round. In this case, the relation involves the value of the key of the final round as well as an error function that models the impact of the fault injection on the state at the beginning of the final round. Several variants of this relation have been used. For example, one variant measures the sensitivity of the fault instead of the behavior of the circuit to perform a fault sensitivity analysis [START_REF] Li | Fault sensitivity analysis[END_REF].

REL 3 links two observables measured with a differential fault analysis [START_REF] Giraud | DFA on AES[END_REF]: the first observable (denoted by O) is the value of the ciphertext obtained without any perturbation; the second observable (denoted by P ) is the value of the ciphertext obtained with perturbations. This relation involves the value of the key of the final round as well as an error function. This error function models the impact of the fault setup on the state at the beginning of the final round.

REL 4 links two observables measured to mount, for example, a combined attack, as proposed by Roche et al. in [START_REF] Roche | Combined fault and side-channel attack on protected implementations of AES[END_REF]. The first observable (denoted by O) is the ciphertext value obtained without any perturbation; the second observable (denoted by P ) is the power consumption of the ciphertext value that contains an error. This relation involves the value of the key of the final round, two error functions, and a leakage function. The first error function models the impact of the fault setup on the last round key. The second error function models the impact of the fault setup on the second to last round key. The leakage function models the power consumption of the ciphertext containing an error. Some of the attacks that use these relations are detailed in Section 4.3.

Key retrieval algorithm

Step 0: Notations Let A be a set of n variables denoted by {a 1 , a 2 , . . . , a n }. Assume that each variable a i is discrete and has its own finite set of definitions, denoted by A i with cardinal |A i |. If a variable a i takes a particular value, denoted by a i (j), with 0 ≤ j < |A i |, then this variable is considered "instantiated." By extension, Ã denotes the set of all possible values of A. Thus, there are

| Ã| = |A 1 | * |A 2 | * . . . * |A n | distinct possible instances.
Each of these instances is denoted by Ã(j).

Step 1: Choosing the attack path Among the different relationships described in Table 1 and depending on the experimental setup, the attacker chooses a relation P = REL(C, F, O), for which C and F are unknown and O and P are known to the attacker.

Step 2: Defining the search space The attacker chooses hypotheses for the values of C and F . The set of hypotheses for the physical functions is denoted by F ; the set of hypotheses for the internal variables is denoted by C. The set C * F is called the search space and has | C| * | F | elements. These sets are chosen such that C contains C and such that at least one physical function of F "approximates" the function F . Because it is impossible to test all possible physical functions (the set [START_REF] Michel Agoyan | When clocks fail: On critical paths and clock faults[END_REF].start j ) with rnd [START_REF] Michel Agoyan | When clocks fail: On critical paths and clock faults[END_REF].start j = SB(ARK(plain j , k sch[0] j )) Var.

REL 0 O = {plain} P = {cipher} C = {k sch[0]} cipher = AES(plain, f (k sch[0])) REL 1 O = {plain j } P = {power} C = {k sch[0] j } power = f (rnd
P = {EM } or P = {µ probe} or P = {behaviour} or P = {time} REL 2 O = {cipher j } P = {power} C = {k sch[10] j } power = f (rnd [START_REF] Durvaux | How to certify the leakage of a chip?[END_REF].start k ) with rnd [START_REF] Durvaux | How to certify the leakage of a chip?[END_REF]. [START_REF] Chari | Template attacks[END_REF].m col j } f aulted j = h(ARK(rnd [START_REF] Durvaux | How to certify the leakage of a chip?[END_REF].s row j ′ , f (k sch[10] j ))) with rnd [START_REF] Durvaux | How to certify the leakage of a chip?[END_REF].s row j ′ = SR(SB(ARK(k sch [START_REF] Chari | Template attacks[END_REF] k ′ , rnd [START_REF] Chari | Template attacks[END_REF].m col k ))) k sch [START_REF] Chari | Template attacks[END_REF] k ′ = g(ARK(rnd [START_REF] Durvaux | How to certify the leakage of a chip?[END_REF].start k , rnd [START_REF] Chari | Template attacks[END_REF].m col k )) rnd [START_REF] Durvaux | How to certify the leakage of a chip?[END_REF].start k = SB -1 (SR -1 (ARK(cipher j , k sch[10] j ))) Var.

start k = SB -1 (SR -1 (ARK(cipher j , k sch[10] j ))) Var. P = {EM } or P = {µ probe} or P = {behaviour} or P = {time} REL 3 O = {cipher j } P = {f aulted j } C = {k sch[10] j } f aulted j = ARK(SR(SB(f (rnd[10].start k ))), k sch[10] j ) with rnd[10].start k = SB -1 (SR -1 (ARK(cipher j , k sch[10] j ))) REL 4 O = {cipher j } P = {f aulted j } C = {k sch[10] j , rnd

P = {power}

Table 1 Relationships used to break the AES 128 with physical cryptanalysis of leakage functions is infinite, and the set of all error functions for an octet is composed of 256 256 = 2 2048 elements), heuristics must be used. These heuristics are based on the attacker's knowledge of the circuit and on the chosen experimental setup. However, in some scenarios, the attacker may take advantage of a "profiling" phase on a circuit identical to the circuit under attack.

During such an optional phase, the attacker is then able to estimate the leakage functions (and thus to refine the hypotheses). In all other cases, the attacker models the physical functions with the functions described in Section 3.

Step 3: Experiments The attacker performs a set of experiments to measure and record the circuit's reactions P to different stimuli O. The stimulus used for the experiment e is denoted by O(e); the measured reaction for this experiment is denoted by P (e). Based on the set of all measurements, the attacker is able to compute P r(P, O).

Step 4: Predictions The attacker builds a set of relationship hypotheses by replacing all elements of C in REL with the values C(i) ∈ C of the internal variables and replacing all elements of F with the physical functions F (j) ∈ F . Each element in this set of relationships is called a "model" parametrized by C(i) and F (j) and denoted by M od(i, j). Thus, depending on the type of physical function chosen (deterministic or probabilistic), two cases are possible:

-The deterministic case: For all models and for each experiment e performed during the previous step, the attacker predicts the reactions denoted by

P ′ Mod(i,j) (e) = REL( C(i), F (j), O(e)).
-The probabilistic case: For all models, the attacker estimates the reaction probability and the stimuli P r(P ′ Mod(i,j) , O) from the set of all experiments. Note that the joint probability P r(P ′ Mod(i,j) , O) may also be calculated in the first case (i.e., when the physical functions are deterministic). Further note that in the second case, the stimuli used to compute the joint probability do not have to be strictly identical to those used during the measurement step. They are merely required to have the same probability distribution.

Step 5: Comparing predictions with measurements The attacker then compares the predictions with the measurements. Depending on the values of the hypothesis, two cases are possible if the relation REL has certain "good" statistical properties (which is the case for the relations reported in Table 1).

1. Correct hypothesis: If a fair approximation of the physical function F can be obtained through a function in F , then there exists an index j 0 such that F (j 0 ) ≃ F . In this case, for i = i 0 , where i 0 is the index of C in C, the predicted reactions are "quasiidentical" to the measured reactions for all experiments. Thus, we have P ′ Mod(i0,j0) (e) ≃ P (e)∀e for deterministic physical functions and P r(P ′ Mod(i0,j0) , O) ≃ P r(P, O) for probabilistic physical functions. In this case, the model parametrized by the key C(i 0 ) and the function F (j 0 ) "explains the data". 2. Incorrect hypothesis: In contrast, if either i = i 0 or j = j 0 , then P (e) and P ′ Mod(i,j) (e) are not identical for all experiments in the deterministic case, and P r(P ′ Mod(i0,j0) , O) and P r(P, O) are distinct in the probabilistic case.

Other algorithms may be used to implement the comparator ≃ cited above (also called a "distinguisher"). For the deterministic case, ad-hoc algorithms, such as the following three examples, have been proposed:

-The "sieve" algorithm returns a binary value equal to 1 if and only if P ′ Mod(i,j) (e) = P (e) for all experiments. The model explains the data if and only if the return value is 1.

-The "count" algorithm returns the number of times that P ′ Mod(i,j) (e) = P (e). The higher this number, the better the model M od(i, j) explains the data.

-For predictions whose possible values are restricted to the set {0, 1}, Kocher et al. calculated the difference of means (DoM) for the set of measurements corresponding to a prediction of 1 and the mean of the set of measurements corresponding to a prediction of 0 [START_REF] Paul | Differential power analysis[END_REF].

The higher the difference of means, the better the model M od(i, j) explains the data.

Additionally, more general algorithms based on information theory or on statistical operators have been proposed. For deterministic cases, testing the statement P ′ Mod(i0,j0) (e) ≃ P (e)∀e is equivalent to comparing the pmf of P r(P ′ Mod(i0,j0) ) and P r(P ). For probabilistic cases, determining whether the joint pmf P r(P ′ Mod(i0,j0) , O) and P r(P, O) are identical is equivalent to comparing the pmf of P ′ Mod(i0,j0) and P r(P ). Thus, the two cases (i.e., probabilistic and deterministic) collapse. For comparison, a survey of operators available in [START_REF] Cha | Comprehensive survey on distance/similarity measures between probability density functions[END_REF]. Two of these operators are described below.

-Based on the expected similarity of predictions and measurements, the Pearson coefficient is used to test the linearity between P ′ Mod(i,j) and P . This coefficient returns a value between 1 and -1. The higher this absolute value, the better the model explains the data.

-Because predictions and measurements are expected to have information in common, a method based on mutual information (MI) between the random variables P ′ Mod(i,j) and P has also been proposed. The MI returns a value between 0 and 1. The higher the value, the better the model explains the data.

Note that, when cases of correct and incorrect hypotheses are distinguishable, the attacker obtains information concerning internal data (value of C) as well as concerning the physical functions associated with the circuit and with the experimental setup. Examples of key retrieval algorithms, extracted from the literature, are described in the following section.

Illustrations

Table 2 presents the various parameters defined in the framework proposed above for some well-known attacks on the AES. For the 128-bit version of this algorithm, the attacker must perform an elementary attack 16 times (enabling the attacker to retrieve the octet j of the key).

Semi-exhaustive This rather theoretical attack is based on using any means of fault injection to force 15 bytes of the key to 0 while leaving the value of the byte j unchanged. The attacker records a plaintext and a ciphertext obtained under such conditions. In the prediction step, the attacker generates the set of 256 keys such that all the bytes of these keys are equal to 0, except the j th byte, which takes on a value of i in {0, . . . , 255}. Using the AES algorithm, the attacker computes the ciphertext obtained for each value of this set of key hypotheses. Only one of these values, for example i 0 , explains the ciphertext through the plaintext. The attacker concludes that the byte j of the key is equal to i 0 . µ-probing Suppose, for example, that the attacker targets a software implementation of the AES on an 8-bit microcontroller, knowing exactly when the S-Box output of the first round for one byte of the state is moved from the processor to memory. Further suppose that the attacker is able to measure the signal of one (and only one) wire of the data bus, but that the index of the corresponding bit is unknown. As a result, the attacker must test 8 different physical functions, each of them a monobit subset that corresponds to an index of the bit in the byte. Various kinds of distinguishers could be used to retrieve the value of the key hypothesis.

DPA In DPA (differential power analysis), the physical function used to model the power consumption is a monobit subset. Thus, the attacker must test 8 possible physical functions (one for each bit) for each of the 256 values of the key hypothesis. The attacker could use either the difference of means or the Pearson correlation coefficient to discriminate between the correct key and the false key.

CPA In CPA (correlation power analysis), the attacker assumes that the power consumption depends on the SubByte output and on an additional value (which could be the previous value in the register that stores the Sub-Byte outputs). Because this value is unknown, it may be considered a parameter of the leakage function. Thus, the attacker must test all 256 values of the secret key for each of the 256 leakage functions. In CPA, the Pearson correlation coefficient is the distinguisher. 

(x) = x if x is the j th octet Determ. Sieve exhaustive O = {plain} (on octet j) P = {cipher} else f (x) = 0 C = {k sch[0]} µ-probing R 1 f (x) = R Ω (x) with Determ. All O = {plain j } Ω ∈ {1, 2, 4, . . . , 128} P = {µ -probe} C = {k sch[0] j } DPA [13] R 2 f (x) = R Ω (x) with Determ. DoM O = {cipher j } Ω ∈ {1, 2, 4, . . . , 128} or P = {P ower} Pearson C = {k sch[10] j } correlation CPA [7] R 1 f (x) = HW (x ⊕ Ω) Determ. Pearson O = {plain j } with Ω ∈ [[1, 255]] correlation P = {power} C = {k sch[0] j } MIA [28] R 1 f (x) = HW (x) + N with Probab. Mutual O = {plain j } N a Gaussian noise information P = {power} C = {k sch[0] j } DFA1 [11] R 3 f (x) = x ⊕ Ω with Probab. Sieve O = {cipher j } Ω ∈ {1, 2, 4, . . . , 128} P = {f aulted j } and (P r(Ω) = 1/8) ∀Ω C = {k sch[10] j } DFA2 [23] R 4 h(x) = x and g(x, Ω) = x ⊕ Ω Determ. Count O = {cipher j } with Ω ∈ [[1, 255]] P = {f aulted j } f (y, Γ ) = y ⊕ Γ with C = {k sch[10] j , Γ ∈ [[1, 255]] rnd[9].m col j } DFA3 [23] R 4 h(x) = HW (x) Determ. Pearson O = {cipher j }
f and g as above correlation P = {power} C = {k sch[10] j , rnd [START_REF] Chari | Template attacks[END_REF].m col j } DBA

[22] R 1 f (x) = (R Ω (x) == 0) with Determ. Pearson O = {plain j } Ω ∈ [[1, 255]] correlation P = {behavior} C = {k sch[0] j } FSA [17] R 2 f (x) = HW (x) or Determ. Pearson O = {cipher j } f (x) = R Ω (x) with correlation P = {intensity j } Ω ∈ {1, 2, 4, . . . , 128} C = {k sch[10] j } Table 2
Examples of physical attacks and their corresponding parameters MIA In MIA (mutual information analysis), the attacker assumes that the power consumption depends on the SubByte output and on an additive Gaussian noise (the model is thus probabilistic). In MIA, mutual information is the distinguisher.

DFA1

The DFA (differential fault analysis) proposed in [START_REF] Giraud | DFA on AES[END_REF] used the monobit fault model described in Section 3.3.2. The distinguisher is a sieve algorithm.

DFA2

The DFA proposed in [START_REF] Roche | Combined fault and side-channel attack on protected implementations of AES[END_REF] used constant errors (or at least errors that offer "good repeatability") distributed across the key schedule. These errors create a fault on the last round key and a fault on the second to last round key; the values of these faults are unknown to the attacker. The attacker must test all possible values of these faults (in addition to testing all possible values of the key) in order to find the model that explains the data. The distinguisher used is a count algorithm.

DFA3

The third DFA is based on the DFA2 but takes advantage of side-channel leakage. In such an attack, three physical functions are used: the two error functions of DFA2 and the leakage function of the faulted ciphertext. The chosen distinguisher is the Pearson coefficient.

DBA DBA (differential behavioral analysis) explains a behavior (i.e., the circuit either functions correctly or malfunctions) based on a model that is parametrized by the value of the key and a constant (but unknown) fault model (e.g., the set or the reset of some bits of the SubByte outputs). The distinguisher is a Pearson correlation. This attack is particularly effective for circuits with embedded protections against DFA.

FSA FSA (fault sensitivity analysis) explains a fault sensitivity (i.e., the reaction of the circuit to a fault injection whose intensity is variable) based on a model parametrized by the value of the key and a constant (but unknown) fault model (e.g., a Hamming weight or set/reset of a particular bit of the SubByte input). The distinguisher is a Pearson coefficient.

Discussion

The use of physical functions for physical cryptography raises multiple questions:

-How can the error between the model and the actual physical functions be estimated? This question has been investigated for side-channel attacks in several articles such as in [START_REF] Durvaux | How to certify the leakage of a chip?[END_REF]. However, previous findings will likely have to be updated to take into account the pmf of the error functions, which, in fact, have very different statistical properties than the pmf of the leakage functions. -Do some physical functions leak more information than others? As suggested in [START_REF] Lashermes | A DFA on AES based on the entropy of error distributions[END_REF][START_REF] Li | Yet another fault-based leakage in nonuniform faulty ciphertexts[END_REF][START_REF] Guo | Security analysis of concurrent error detection against differential fault analysis[END_REF], fewer risks certainly exist if the pmf of a physical function is a uniformly random distribution than if the pmf of the function corresponds to one of those described in Section 3.3.2. It may be of interest to find mathematical criteria (likely based on the measure of randomness of the pmf ) to evaluate the intrinsic leakage of physical functions. -Following from the first two questions, how can the physical functions that leak the most be identified?

The present investigation considered that the physical functions take only one argument. Yet, theoretically, each observable is dependent on all other variables. For example, an error function could be dependent either on X, on the previous value of X, or on other observables such as the voltage, the temperature, and even (perhaps, due to cross-talk) on many other internal variables. Thus, there seems to be a tremendous number of possible physical functions. It is impossible to enumerate all of them, even for a very small circuit. It will be up to the community to define heuristics to find the most critical physical functions. However, searching for answers in such a nonexhaustive manner could result in potential undetected leakage.

Conclusion

In this article, we have shown that most side-channel and fault attacks share the same principles. This merging of shared characteristics was accomplished by extending the concept of leakage functions to the concept of error functions and by using probability mass functions to model both functions. Numerous possibilities for further research exist: First, we plan to use the presented framework to describe a wider set of attacks. In particular, it could be of interest to extend the proposed approach to asymmetrical cryptography and to include other attacks such as those described in [START_REF] Moradi | Statistical tools flavor side-channel collision attacks[END_REF][START_REF] Ali | Differential fault analysis of aes: towards reaching its limits[END_REF][START_REF] Barthe | Synthesis of fault attacks on cryptographic implementations[END_REF][START_REF] Perin | Attacking randomized exponentiations using unsupervised learning[END_REF].

Second, for a given set of models of physical functions, the attack paths could be studied formally, enabling the automatic generation of new attack paths. Third, this work may be regarded as a basis to aggregate the advantages of attack-specific protections, thereby providing a more generic set of countermeasures.

3. 1

 1 Preliminary definitions 3.1.1 Data representation A byte B is a set of 8 bits denoted by {b 7 , . . . , b 0 } and B is matched with the binary value B b = b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 ; to simplify, B and B b are used interchangeably. The decimal value associated with B is denoted by B d (for this conversion, b 0 is the less significant bit).

7 , b 6 ,

 76 0, b 4 , b 3 , 0, b 1 , b 0 }, irrespective of the values of b 7 ,b 6 ,b 4 ,b 3 ,b 1 and b 0 . Similarly, R 36 (B) == 1 is equal to 1 for any B such that B = {b 7 , b 6 , 0, b 4 , b 3 , 1, b 1 , b 0 }, irrespective of the values of b 7 ,b 6 ,b 4 ,b 3 ,b 1 and b 0 .

  ]. Conversely, a fault that forces bits to take on the value 1 is generally called a set. The function that models such a set is the bitwise OR between B and Ω with Ω d ∈ [0, . . . , 255]. A reset with Ω d = 0 returns a set of 0. A set with Ω d = 255 returns a set of 1.

Fig. 1 Fig. 2

 12 Fig. 1 Joint pmf of the leakage functions: theoretical (left) and experimental (right)

  . . , b 0 }. Let Ω be a set of N bits {ω N -1 , . . . , ω 0 }. The set of bits b i in B, such that ω i in Ω is equal to 1, is denoted by R Ω d (B). , R 2 , R 4 , R 8 , R 16 , R 32 , R 64 , R 128 .

	Note that, if B is composed of N values, there are
	2 N -1 possible subsets. Example with N = 8: let
	Ω = {0, 0, 1, 0, 0, 1, 0, 0} and B = {b 7 , . . . , b 0 } be two
	bytes. In this case, the bits ω 2 and ω 5 are equal to 1
	and the decimal value of Ω is Ω d = 2 5 + 2 2 = 36. Thus,
	the subset R 36 (B) is the set of bits {b 5 , b 2 } in B. In
	the following, a subset is referred to as monobit when
	it contains only 1 bit. The 8 monobit subsets of a byte
	B are denoted by R 1
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