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Abstract Physical attacks on cryptographic circuits

were first identified in the late 1990s. These types of

attacks, which are still considered very powerful, are
generally classified into two main categories: “fault at-

tacks” and “side-channel attacks.” To secure circuits

against such attacks, it is crucial to develop appropriate

methods and tools that enable accurate estimates of the
protection mechanism’s effectiveness. Numerous studies

have described such methods and tools but, to the best

of our knowledge, these previous investigations have

considered side-channel attacks or fault attacks but not

the combination of the two types. The present article
proposes a combined investigation of both main types

of attack by describing them with the same terminology

and the same algorithm. This approach is made possible

by introducing the concept of “physical functions” as an
extension of the concept of “leakage functions,” which

are widely used in the side-channel community. The pa-

per represents a first step toward applying the strong

theoretical background developed for side-channel at-

tacks to the investigation of fault attacks. Besides, the
proposed approach could potentially make it easier to

combine side-channel attacks with fault attacks, which

could certainly facilitate the discovery of new attack

paths.
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1 Introduction

Integrated circuits (ICs), which are used in a wide va-

riety of electronic devices, play a key role in securing
information and communications technologies. Because

certain types of ICs (such as smart cards) may easily

fall into the hands of people with malicious intentions,

such devices are particularly vulnerable to “physical at-
tacks.” In general, the distinctive feature of these at-

tacks is the use of experimental techniques. The first

such technique, called “side-channel analysis,” is based

on observing certain physical characteristics of the tar-

geted device (such as power consumption, electromag-
netic radiation, response time, etc.) that vary during

the circuit’s computation. The second technique, called

“fault analysis,” is based on disturbing the circuit’s be-

havior through laser beams, voltage or clock glitches,
electromagnetic pulses, etc. An attacker can use these

techniques to bypass security functions, retrieve design

details, or obtain and manipulate data (cryptographic

material, PIN codes, personal data, etc.). Techniques

in which the attacker targets exclusively cryptographic
material are often referred to as “physical cryptanal-

ysis” or “key recovery” algorithms. Various physical

cryptanalysis methods have been proposed: for exam-

ple, differential power analysis [13,27], stochastic at-
tacks [24], template attacks [9,25], collision attacks [5,

19], differential fault attacks [6,4,2,3], and safe-error

attacks [29,22,17]. Although these methods may seem

initially unrelated because they require different exper-

imental methods and different algorithms, several stud-
ies have investigated a common framework to describe

side-channel attacks [18,26,10]. In addition, a recent

article has proposed another framework to describe all

differential fault-attack schemes [12]. By providing a
strong theoretical basis, such frameworks aim to enable

the development of practical tools that make it possi-

ble to estimate the amount of information leaked by

circuits, thereby increasing the level of trust in such

devices. This paper describes concepts and algorithms
that are common to a wide set of key recovery methods,

regardless of whether they are based on using fault or

side-channel experimental setups. The AES128 crypto-

graphic algorithm is used to demonstrate these concepts
and algorithms [20].

The paper first describes a general model for the
functioning of integrated circuits in the context of phys-

ical attacks. “Physical functions” that formalize the re-

lationships between data computed inside the circuit

(and considered secret) and certain variables that may
be measured externally by the attacker seem to be at

the core of such attacks. Several examples of such func-

tions are provided in Section 2. The principles of fault
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and side-channel attacks that are based on physical

functions are described in Section 3. Several illustra-

tions, extracted from the literature, are included.

2 Model of the integrated circuit

2.1 Observables versus internal variables

Physical attacks are based on experiments involving

cryptographic operations that act on the circuit with
or without a modification of its behavior. During these

experiments, the attacker is able to directly measure

data (also called “observables”) such as

– Electromagnetic emissions (EM), power consump-

tion traces (power), or signals provided by particu-

lar sensors called µ-probes.
– Plaintext or ciphertext obtained without or with

perturbations (called “faulty” ciphertext).

– The circuit behavior (i.e., normal or abnormal func-

tioning) in case of fault. This behavior may be de-
termined, for example, by comparing correct and

faulty ciphering, by detecting an alarm signal, or by

detecting a more or less premature stop in compu-

tation.

– The time needed to execute the cryptographic op-
erations. One way, among others, to measure this

computation time is to reduce the clock period step

by step (on a specific clock cycle) and analyze the

circuit’s behavior. The step in which the behavior of
the circuit switches from normal to abnormal is con-

sidered an indicator of the computation time. This

particular step is also referred to as “fault intensity”

in [17].

Note that the term “observable” may refer to any com-

bination of observables or any observable obtained by
applying a signal processing technique or a mathemat-

ical transformation (such as filtering, temporal to fre-

quency transformation, etc.).

In contrast to the observables, the execution of a

cryptographic algorithm involves data that cannot be

measured directly by the attacker. In the following para-

graphs, the terms “internal” or “intermediate” are used
interchangeably to refer to this type of data. The at-

tacker looks for certain such internal variables that are

called “target” or “secret” data.

2.2 Relationships

Variables are related to each other because they are

computed by, or originate from, the same circuit (i.e.,

internal data and observables). Hardware and/or soft-

ware descriptions generally define the links that exist

between pieces of internal data during the normal func-

tioning of the circuit (i.e., without perturbations cre-

ated by the attacker). These links are also known as
“algorithmic” relationships. The possible connections

between internal data and observables are referred to

as “physical” relationships.

2.2.1 Algorithmic relationships

The present investigation used the 128-bit version of the

AES standard (denoted by AES128), which is a speci-

fication for symmetric key cryptography established by

the U.S. NIST [20]. It ciphers a 128-bit piece of data
called “plaintext” (or “input”) by using a 128-bit key,

producing a 128-bit piece of data called “ciphertext”

(or “output”). The encryption process consists in first

transforming the input data into a two-dimensional ar-

ray of bytes, known as a “state.” Then, following a
preliminary bitwise XOR operation between the input

and the key, AES128 executes 10 instances (also called

“rounds”) of a function that operates on the state. The

following operations are used during these rounds:

– SubBytes (SB) is a non-linear transformation that

works independently of the individual bytes of a

state. The result of this operation for round i is
denoted by rnd[i].s box.

– ShiftRows (SR) is a rotation operation acting on

each row of the state. The result of this operation

for round i is denoted by rnd[i].s row.
– MixColumns (MC) is a linear matrix multiplication

that acts on each column of the state. The result of

this operation for round i is denoted by rnd[i].m col.

– AddRoundKey (ARK) is a bitwise XOR operation

between the state and k sch[i]. k sch[i] is computed
according to a transformation referred to as a “key

expansion,” which is not detailed here. The result of

this operation is the start of the next round denoted

by rnd[i + 1].start.

AES rounds are identical, except for the final round,

which skips the MixColumns operation. At the end of

the ciphering operations, the state is copied to the out-
put.

2.2.2 Physical relations

For side-channel attacks, the connection between in-

ternal data and observables is referred to as a“leakage
function”[26]. To extend this notion to fault attacks, the

present investigation also considered “error functions,”

which are used to model the effect of a fault injection
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on a piece of internal data. Leakage and error functions

are referred to as “physical functions” because they are

both at the heart of any physical attack. These func-

tions are detailed in the following section.

3 Models of physical functions

Models of physical functions proposed in the literature

can be divided into 1)“real” functions (i.e., each input
corresponds to exactly one output) and 2) functions in

which inputs and outputs are considered random vari-

ables; these two categories are respectively known as

“deterministic” and “probabilistic” physical functions.

A nonexhaustive list of typical physical functions is pro-
posed in the following.

3.1 Preliminary definitions

3.1.1 Data representation

A byte B is a set of 8 bits denoted by {b7, . . . , b0} and B

is matched with the binary value Bb = b7b6b5b4b3b2b1b0;
to simplify, B and Bb are used interchangeably. The

decimal value associated with B is denoted by Bd (for

this conversion, b0 is the less significant bit).

3.1.2 Bit level functions

The logical operators AND (symbol ∧), OR (symbol ∨),

and XOR (symbol ⊕) defined for a byte are considered

bitwise.

3.1.3 Subsets of bits

Let B be a set of N bits {bN−1, . . . , b0}. Let Ω be a

set of N bits {ωN−1, . . . , ω0}. The set of bits bi in B,
such that ωi in Ω is equal to 1, is denoted by RΩd

(B).

Note that, if B is composed of N values, there are

2N − 1 possible subsets. Example with N = 8: let

Ω = {0, 0, 1, 0, 0, 1, 0, 0} and B = {b7, . . . , b0} be two
bytes. In this case, the bits ω2 and ω5 are equal to 1

and the decimal value of Ω is Ωd = 25+22 = 36. Thus,

the subset R36(B) is the set of bits {b5, b2} in B. In

the following, a subset is referred to as monobit when

it contains only 1 bit. The 8 monobit subsets of a byte
B are denoted by R1, R2, R4, R8, R16, R32, R64, R128.

3.1.4 Subset of bits equal to

Let Ω and B be two sets of N bits. Let M be the num-

ber of bits of the subsetRΩ(B) and α be a set ofM bits.

The function denoted by RΩ(B) == αd returns 1 when,

for all bits i ∈ {0, . . . ,M − 1} in RΩ(B) and in α, we

have RΩ(B)i == αi and returns 0 otherwise. For exam-

ple, as explained above, R36(B) contains two bits which

may take on four different values. R36(B) == 0 is equal

to 1 for any B such that B = {b7, b6, 0, b4, b3, 0, b1, b0},
irrespective of the values of b7,b6,b4,b3,b1 and b0. Sim-

ilarly, R36(B) == 1 is equal to 1 for any B such that

B = {b7, b6, 0, b4, b3, 1, b1, b0}, irrespective of the values

of b7,b6,b4,b3,b1 and b0.

3.2 Deterministic physical functions

3.2.1 Deterministic leakage functions

The simplest model proposed for power consumption is
based on considering the value of a single bit. In this

case, the leakage function is Ri with i ∈ {1, 2, . . . , 128}.

In general, side-channel functions are typically chosen

as a combination of subsets and weighted sums. For ex-

ample, the number of 1’s in a binary number B is called
the Hamming weight and is denoted byHW (B). A vari-

ation considers the number of transitions between two

binary values B and C. This function, called the Ham-

ming distance, is denoted by HD(B,C) = HW (B⊕C).

3.2.2 Deterministic error functions

Bit flip A fault may invert a set of bits. The function

that models the bit flip is the bitwise XOR between B

and Ω with Ωd ∈ [0, . . . , 255]. If all bits in Ω are equal

to 1, then all bits are inverted; if all bits in Ω are equal

to 0, then all bits remain unchanged.

Set and reset A fault that forces bits to take on the
value 0 is generally called a reset. The function that

models such a reset is the bitwise AND between B and

Ω with Ωd ∈ [0, . . . , 255]. Conversely, a fault that forces

bits to take on the value 1 is generally called a set.

The function that models such a set is the bitwise OR
between B and Ω with Ωd ∈ [0, . . . , 255]. A reset with

Ωd = 0 returns a set of 0. A set with Ωd = 255 returns

a set of 1.

Behavior In a generalization of the set and reset mod-

els, a fault may force a set of bits RΩ(B) in B to take

on some value α. In such a case, the circuit behavior is
normal only when the perturbed result is expected to

be equal to α and is abnormal otherwise. This behavior

can be described by using the function RΩ(B) == α.



4 Bruno Robisson, Hélène Le Bouder

Running time (or ‘fault intensity’) Faults that are pro-

duced by violating the latch setup times may either af-

fect only one bit or affect initially bytes with a higher

Hamming weight [1,17]. In the first case, the chip’s be-

havior can be described according to the function that
selects one bit Ri with i ∈ {1, 2, 4, . . . , 128}; in the

second case it is described according to the Hamming

weight.

3.3 Probabilistic physical functions

In the probabilistic case, the input X and output Y

of the physical functions are considered discrete ran-

dom variables. X and Y have sample spaces of SX =

{0; 2M − 1} and SY = {0; 2N − 1}, respectively. In ac-

cordance with [19,15], the probabilistic relationship is
modeled with a joint probability mass function (joint

pmf ). The joint pmf of the discrete variables X and Y

(used to model a physical function f with domain X

and co-domain Y ) is denoted by fX,Y (x, y) = Pr(X =
x, Y = y), irrespective of x ∈ SX and y ∈ SY . Examples

of joint pmf are described in the following sections.

3.3.1 Probabilistic leakage functions

Consider a physical relationship that links the integer

values of an 8-bit piece of data to the measured current
consumed by the circuit handling these values. A classic

probabilistic leakage function considers that the current

consumption of the data x is the sum of the Hamming

weight of x and a Gaussian noise [9]. This assumption
holds, for example, when the data switches from the

all-zero value to the value x. This switch occurs, for ex-

ample, during the transfer of data between the memory

and the pipeline of a microprocessor on a pre-charged

bus. In such a case, we have f(x) = a ∗ HW (x) + e,
where e models the “noise” as a normal random vari-

able with a mean 0 and a given standard deviation.

Figure 1 (left) describes the corresponding pmf (the

values of a = 6 and a noise with a standard devia-
tion of 2 were chosen arbitrarily to illustrate the exam-

ple). Integer values for 8-bit data are reported in ab-

scissa; the corresponding current consumption is given

in ordinates. The grayscale illustration (Fig.1, left) rep-

resents probabilities: the darker the shade, the higher
the probability that the circuit consumes a current of

value y when the manipulated data has the value x

(shorter x “consumes” y). Figure 1 (right) illustrates

the same pmf measured for a real component. Mea-
surements were obtained with a 32-bit software imple-

mentation of AES128 running on a 32-bit unsecured

up-to-date microcontroller. This particular case shows

a remarkably good fit of the theoretical and practical

relationships.

3.3.2 Probabilistic error functions

Consider a physical relationship that, for an 8-bit regis-

ter, links the integer values to the values that were mod-

ified through some type of fault injection. One widely
used model is based on the assumption that any one

of the register’s 8 bits will flip, with equal probabilities

for each of these bit flips (i.e., equal likelihood hypoth-

esis). Here, this model, denoted by f(x) = x ⊕ Ω with
Ω ∈ {1, 2, 4, . . . , 128} in decimal value and (Pr(Ω) =

1/8)∀Ω, is referred to as the “random monobit fault

model.” This type of theoretical model was, for exam-

ple, used in [11]. Figure 2 (left) illustrates the corre-

sponding pmf. The integer values of the 8-bit regis-
ter are reported in abscissa; the corresponding faulted

value is given in ordinates. The grayscale illustration

(Fig.2, left) represents probabilities: the darker the shade,

the higher the probability that x is changed into y. Fig-
ure 2 (right) shows the same pmf measured experimen-

tally, obtained with a hardware implementation of the

AES128, which was faulted by reducing the clock pe-

riod that feeds the circuit (in accordance with [1]). To

avoid creating faults on several bits instead of on only
one bit, this clock period was deliberately reduced by

only a small amount. The faulted bit was dependent on

the plaintext value.

In this example, there is a clear distinction between

the theoretical and the experimental pmf. In fact, al-

though monobit faults are identifiable in the experimen-
tal setup, some bits seem to be more easily modifiable

than others. In this case, the equal likelihood hypothe-

sis does not hold.

4 Physical functions for physical cryptanalysis

The scenario of a physical cryptanalysis (i.e., targeting

cryptographic material only) is exemplified by numer-
ous attacks that have been proposed in the literature:

µ-probing attacks, differential power analysis (with or

without a profiling phase), differential fault analysis,

and safe-error attacks (e.g., differential behavioral anal-
ysis and fault sensitivity analysis). The key retrieval al-

gorithm described in the following applies to all of these

physical attacks.



Physical functions: the common factor of side-channel and fault attacks? 5

P
ow

er

Data
0 50 100 150 200 250

0

5

10

15

20

25

30

35

40

45

50

P
ow

er

Data
0 50 100 150 200 250

0

5

10

15

20

25

30

35

40

45

50

Fig. 1 Joint pmf of the leakage functions: theoretical (left) and experimental (right)
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4.1 Attack path

4.1.1 Definition

An attack path is a relationship between observables

that involves the secret (or only part of the secret) and

that enables the recovery of information about it. In the

following paragraphs, P = REL(C,F,O) denotes the
attack path that links the observables O to P accord-

ing to the (unknown) value of the internal variables C

(among them, the secret) and according to a set of (un-

known) physical functions F . Although the relationship
between P and O is not necessarily causal, the observ-

ables O are also known as “stimuli” and the observables

P are referred to as “reactions” or “responses”.

4.1.2 Examples of attack paths

The attack path used in [13] and denoted by RELpower

links the jth plaintext byte (denoted by plainj) to the

jth byte of the first round key (denoted by k sch[0]j)

and to the power consumption that is measured dur-
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ing the computation of the jth SubBytes of the first

round. The algorithmic functions involved in this rela-

tionship are the SubBytes and the bitwise XOR of the

AES128. The physical functions involved in this rela-

tionship create a link between the value of the output of
the jth SubByte in the first round and the power con-

sumption of the circuit when this value is computed.

The associated physical function, denoted by fpower,

has no analytical expression. The secret variable here
is {k sch[0]j}. With

– O = {plainj},

– P = {power},

– C = {k sch[0]j}, and

– F = {fpower}, the relationship RELpower may be
written as

– power = fpower(SB(ARK(plainj, k sch[0]j)).

Several variants of this relationship may be used

interchangeably for either side-channel or fault attacks.

In the first case, the attacker might take measurements
of the electromagnetic radiation or of a signal recovered

by a µ-probe. In the second case, the observables, such

as the behavior or the running time, are obtained by

modifying the circuit’s functioning. In either case, to
obtain the corresponding relationship, it is sufficient to

replace the physical function fpower with either fEM ,

fµ−probe, fbehaviour , or ftime.

This relation and other examples of relations that

are commonly used to break the AES128 with physical
attacks are reported in Table 1. In these relations, k

denotes the index of a byte of the AES128 state (thus,

0 ≤ k < 16) before the ShiftRow operation, and j is

the index of the same byte after this operation (thus,
0 ≤ j < 16). According to the notation used in the

standard, k = r + 4 ∗ c, with 0 ≤ r < 4, 0 ≤ c < 4, and

j = r + 4 ∗ c′, where c′ = (r − c)Modulo(4). In these

relations, the functions f , g, and h are leakage or error

functions.
In Table 1, REL2 is identical to REL1 (described

above) except it pertains to the end of the AES exe-

cution. The relation links two measured observables to

perform, for example, a differential behavioral analysis
[22]: the first observable (denoted by O) is the value

of the ciphertext obtained without error; the second

observable (denoted by P ) is the behavior of the chip

measured when the state is disturbed by means of a

fault injection at the beginning of the final round. In
this case, the relation involves the value of the key of

the final round as well as an error function that mod-

els the impact of the fault injection on the state at the

beginning of the final round. Several variants of this
relation have been used. For example, one variant mea-

sures the sensitivity of the fault instead of the behavior

of the circuit to perform a fault sensitivity analysis [17].

REL3 links two observables measured with a differ-

ential fault analysis [11]: the first observable (denoted

by O) is the value of the ciphertext obtained without

any perturbation; the second observable (denoted by

P ) is the value of the ciphertext obtained with pertur-
bations. This relation involves the value of the key of

the final round as well as an error function. This error

function models the impact of the fault setup on the

state at the beginning of the final round.
REL4 links two observables measured to mount, for

example, a combined attack, as proposed by Roche et

al. in [23]. The first observable (denoted by O) is the ci-

phertext value obtained without any perturbation; the

second observable (denoted by P ) is the power con-
sumption of the ciphertext value that contains an error.

This relation involves the value of the key of the final

round, two error functions, and a leakage function. The

first error function models the impact of the fault setup
on the last round key. The second error function mod-

els the impact of the fault setup on the second to last

round key. The leakage function models the power con-

sumption of the ciphertext containing an error. Some

of the attacks that use these relations are detailed in
Section 4.3.

4.2 Key retrieval algorithm

Step 0: Notations Let A be a set of n variables de-

noted by {a1, a2, . . . , an}. Assume that each variable ai
is discrete and has its own finite set of definitions, de-

noted by Ai with cardinal |Ai|. If a variable ai takes a

particular value, denoted by ai(j), with 0 ≤ j < |Ai|,

then this variable is considered “instantiated.” By ex-

tension, Ã denotes the set of all possible values of A.
Thus, there are |Ã| = |A1| ∗ |A2| ∗ . . . ∗ |An| distinct

possible instances. Each of these instances is denoted

by Ã(j).

Step 1: Choosing the attack path Among the different

relationships described in Table 1 and depending on
the experimental setup, the attacker chooses a relation

P = REL(C,F,O), for which C and F are unknown

and O and P are known to the attacker.

Step 2: Defining the search space The attacker chooses

hypotheses for the values of C and F . The set of hy-
potheses for the physical functions is denoted by F̃ ; the

set of hypotheses for the internal variables is denoted

by C̃. The set C̃ ∗ F̃ is called the search space and has

|C̃| ∗ |F̃ | elements. These sets are chosen such that C̃
contains C and such that at least one physical function

of F̃ “approximates” the function F . Because it is im-

possible to test all possible physical functions (the set
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REL0 O = {plain}
P = {cipher}
C = {k sch[0]}
cipher = AES(plain, f(k sch[0]))

REL1 O = {plainj}
P = {power}
C = {k sch[0]j}
power = f(rnd[1].startj) with
rnd[1].startj = SB(ARK(plainj , k sch[0]j))

Var. P = {EM} or P = {µ probe} or P = {behaviour}
or P = {time}

REL2 O = {cipherj}
P = {power}
C = {k sch[10]j}
power = f(rnd[10].startk) with
rnd[10].startk =
SB−1(SR−1(ARK(cipherj, k sch[10]j)))

Var. P = {EM} or P = {µ probe} or P = {behaviour}
or P = {time}

REL3 O = {cipherj}
P = {faultedj}
C = {k sch[10]j}
faultedj =
ARK(SR(SB(f(rnd[10].startk))), k sch[10]j)
with rnd[10].startk =
SB−1(SR−1(ARK(cipherj, k sch[10]j)))

REL4 O = {cipherj}
P = {faultedj}
C = {k sch[10]j , rnd[9].m colj}

faultedj = h(ARK(rnd[10].s rowj′ , f(k sch[10]j)))

with rnd[10].s rowj′ =

SR(SB(ARK(k sch[9]k
′

, rnd[9].m colk)))

k sch[9]k
′

= g(ARK(rnd[10].startk , rnd[9].m colk))
rnd[10].startk =
SB−1(SR−1(ARK(cipherj, k sch[10]j)))

Var. P = {power}

Table 1 Relationships used to break the AES128 with phys-
ical cryptanalysis

of leakage functions is infinite, and the set of all error

functions for an octet is composed of 256256 = 22048 el-

ements), heuristics must be used. These heuristics are

based on the attacker’s knowledge of the circuit and on
the chosen experimental setup. However, in some sce-

narios, the attacker may take advantage of a “profiling”

phase on a circuit identical to the circuit under attack.

During such an optional phase, the attacker is then able
to estimate the leakage functions (and thus to refine the

hypotheses). In all other cases, the attacker models the

physical functions with the functions described in Sec-

tion 3.

Step 3: Experiments The attacker performs a set of ex-

periments to measure and record the circuit’s reactions

P to different stimuli O. The stimulus used for the ex-

periment e is denoted by O(e); the measured reaction
for this experiment is denoted by P (e). Based on the

set of all measurements, the attacker is able to compute

Pr(P,O).

Step 4: Predictions The attacker builds a set of rela-

tionship hypotheses by replacing all elements of C in

REL with the values C̃(i) ∈ C̃ of the internal vari-

ables and replacing all elements of F with the physical

functions F̃ (j) ∈ F̃ . Each element in this set of rela-
tionships is called a “model” parametrized by C̃(i) and

F̃ (j) and denoted by Mod(i, j). Thus, depending on

the type of physical function chosen (deterministic or

probabilistic), two cases are possible:

– The deterministic case: For all models and for each
experiment e performed during the previous step,

the attacker predicts the reactions denoted by

P ′

Mod(i,j)(e) = REL(C̃(i), F̃ (j), O(e)).

– The probabilistic case: For all models, the attacker

estimates the reaction probability and the stimuli
Pr(P ′

Mod(i,j), O) from the set of all experiments.

Note that the joint probability Pr(P ′

Mod(i,j), O) may

also be calculated in the first case (i.e., when the phys-

ical functions are deterministic). Further note that in

the second case, the stimuli used to compute the joint

probability do not have to be strictly identical to those
used during the measurement step. They are merely

required to have the same probability distribution.

Step 5: Comparing predictions with measurements The

attacker then compares the predictions with the mea-

surements. Depending on the values of the hypothesis,

two cases are possible if the relation REL has certain
“good” statistical properties (which is the case for the

relations reported in Table 1).

1. Correct hypothesis: If a fair approximation of the

physical function F can be obtained through a func-

tion in F̃ , then there exists an index j0 such that
F̃ (j0) ≃ F . In this case, for i = i0, where i0 is the

index of C in C̃, the predicted reactions are “quasi-

identical” to the measured reactions for all exper-

iments. Thus, we have P ′

Mod(i0,j0)
(e) ≃ P (e)∀e for

deterministic physical functions and
Pr(P ′

Mod(i0,j0)
, O) ≃ Pr(P,O) for probabilistic phys-

ical functions. In this case, the model parametrized

by the key C̃(i0) and the function F̃ (j0) “explains

the data”.
2. Incorrect hypothesis: In contrast, if either i 6= i0 or

j 6= j0, then P (e) and P ′

Mod(i,j)(e) are not identical

for all experiments in the deterministic case, and

Pr(P ′

Mod(i0,j0)
, O) and Pr(P,O) are distinct in the

probabilistic case.

Other algorithms may be used to implement the com-
parator ≃ cited above (also called a “distinguisher”).

For the deterministic case, ad-hoc algorithms, such as

the following three examples, have been proposed:
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– The “sieve” algorithm returns a binary value equal

to 1 if and only if P ′

Mod(i,j)(e) = P (e) for all exper-

iments. The model explains the data if and only if

the return value is 1.

– The “count” algorithm returns the number of times
that P ′

Mod(i,j)(e) = P (e). The higher this number,

the better the model Mod(i, j) explains the data.

– For predictions whose possible values are restricted

to the set {0, 1}, Kocher et al. calculated the differ-
ence of means (DoM) for the set of measurements

corresponding to a prediction of 1 and the mean of

the set of measurements corresponding to a predic-

tion of 0 [13].

The higher the difference of means, the better the
model Mod(i, j) explains the data.

Additionally, more general algorithms based on in-

formation theory or on statistical operators have been

proposed. For deterministic cases, testing the statement

P ′

Mod(i0,j0)
(e) ≃ P (e)∀e is equivalent to comparing the

pmf of Pr(P ′

Mod(i0,j0)
) and Pr(P ). For probabilistic

cases, determining whether the joint pmf

Pr(P ′

Mod(i0,j0)
, O) and Pr(P,O) are identical is equiv-

alent to comparing the pmf of P ′

Mod(i0,j0)
and Pr(P ).

Thus, the two cases (i.e., probabilistic and determinis-

tic) collapse. For comparison, a survey of operators is

available in [8]. Two of these operators are described

below.

– Based on the expected similarity of predictions and

measurements, the Pearson coefficient is used to test
the linearity between P ′

Mod(i,j) and P . This coeffi-

cient returns a value between 1 and -1. The higher

this absolute value, the better the model explains

the data.
– Because predictions and measurements are expected

to have information in common, a method based

on mutual information (MI) between the random

variables P ′

Mod(i,j) and P has also been proposed.

The MI returns a value between 0 and 1. The higher
the value, the better the model explains the data.

Note that, when cases of correct and incorrect hy-

potheses are distinguishable, the attacker obtains infor-

mation concerning internal data (value of C) as well as

concerning the physical functions associated with the
circuit and with the experimental setup. Examples of

key retrieval algorithms, extracted from the literature,

are described in the following section.

4.3 Illustrations

Table 2 presents the various parameters defined in the

framework proposed above for some well-known attacks

on the AES. For the 128-bit version of this algorithm,

the attacker must perform an elementary attack 16 times

(enabling the attacker to retrieve the octet j of the key).

Semi-exhaustive This rather theoretical attack is based

on using any means of fault injection to force 15 bytes

of the key to 0 while leaving the value of the byte j un-

changed. The attacker records a plaintext and a cipher-

text obtained under such conditions. In the prediction
step, the attacker generates the set of 256 keys such

that all the bytes of these keys are equal to 0, except

the jth byte, which takes on a value of i in {0, . . . , 255}.

Using the AES algorithm, the attacker computes the
ciphertext obtained for each value of this set of key

hypotheses. Only one of these values, for example i0,

explains the ciphertext through the plaintext. The at-

tacker concludes that the byte j of the key is equal to

i0.

µ-probing Suppose, for example, that the attacker tar-

gets a software implementation of the AES on an 8-bit
microcontroller, knowing exactly when the S-Box out-

put of the first round for one byte of the state is moved

from the processor to memory. Further suppose that

the attacker is able to measure the signal of one (and

only one) wire of the data bus, but that the index of the
corresponding bit is unknown. As a result, the attacker

must test 8 different physical functions, each of them

a monobit subset that corresponds to an index of the

bit in the byte. Various kinds of distinguishers could be
used to retrieve the value of the key hypothesis.

DPA In DPA (differential power analysis), the physi-

cal function used to model the power consumption is a
monobit subset. Thus, the attacker must test 8 possible

physical functions (one for each bit) for each of the 256

values of the key hypothesis. The attacker could use ei-

ther the difference of means or the Pearson correlation

coefficient to discriminate between the correct key and
the false key.

CPA In CPA (correlation power analysis), the attacker

assumes that the power consumption depends on the
SubByte output and on an additional value (which could

be the previous value in the register that stores the Sub-

Byte outputs). Because this value is unknown, it may be

considered a parameter of the leakage function. Thus,
the attacker must test all 256 values of the secret key for

each of the 256 leakage functions. In CPA, the Pearson

correlation coefficient is the distinguisher.
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Attack Relationships Physical function Type of physi-
cal function

Similarity and
distance tools

Semi- R0 f(x) = x if x is the jth octet Determ. Sieve
exhaustive O = {plain}
(on octet j) P = {cipher} else f(x) = 0

C = {k sch[0]}

µ-probing

R1 f(x) = RΩ(x) with Determ. All
O = {plainj} Ω ∈ {1, 2, 4, . . . , 128}
P = {µ− probe}
C = {k sch[0]j}

DPA [13]

R2 f(x) = RΩ(x) with Determ. DoM
O = {cipherj} Ω ∈ {1, 2, 4, . . . , 128} or
P = {Power} Pearson
C = {k sch[10]j} correlation

CPA [7]

R1 f(x) = HW (x⊕Ω) Determ. Pearson
O = {plainj} with Ω ∈ [[1, 255]] correlation
P = {power}

C = {k sch[0]j}

MIA [28]
R1 f(x) = HW (x) +N with Probab. Mutual
O = {plainj} N a Gaussian noise information
P = {power}
C = {k sch[0]j}

DFA1 [11]
R3 f(x) = x⊕Ω with Probab. Sieve
O = {cipherj} Ω ∈ {1, 2, 4, . . . , 128}
P = {faultedj} and (Pr(Ω) = 1/8) ∀Ω
C = {k sch[10]j}

DFA2 [23]

R4 h(x) = x and g(x,Ω) = x⊕Ω Determ. Count
O = {cipherj} with Ω ∈ [[1, 255]]
P = {faultedj} f(y, Γ ) = y ⊕ Γ with
C = {k sch[10]j , Γ ∈ [[1, 255]]
rnd[9].m colj}

DFA3 [23]
R4 h(x) = HW (x) Determ. Pearson
O = {cipherj} f and g as above correlation
P = {power}
C = {k sch[10]j ,
rnd[9].m colj}

DBA [22]
R1 f(x) = (RΩ(x) == 0) with Determ. Pearson
O = {plainj} Ω ∈ [[1, 255]] correlation
P = {behavior}
C = {k sch[0]j}

FSA [17]
R2 f(x) = HW (x) or Determ. Pearson
O = {cipherj} f(x) = RΩ(x) with correlation
P = {intensityj} Ω ∈ {1, 2, 4, . . . , 128}
C = {k sch[10]j}

Table 2 Examples of physical attacks and their corresponding parameters

MIA In MIA (mutual information analysis), the at-

tacker assumes that the power consumption depends

on the SubByte output and on an additive Gaussian
noise (the model is thus probabilistic). In MIA, mutual

information is the distinguisher.

DFA1 The DFA (differential fault analysis) proposed
in [11] used the monobit fault model described in Sec-

tion 3.3.2. The distinguisher is a sieve algorithm.

DFA2 The DFA proposed in [23] used constant errors

(or at least errors that offer “good repeatability”) dis-
tributed across the key schedule. These errors create a

fault on the last round key and a fault on the second to

last round key; the values of these faults are unknown to

the attacker. The attacker must test all possible values

of these faults (in addition to testing all possible values

of the key) in order to find the model that explains the
data. The distinguisher used is a count algorithm.

DFA3 The third DFA is based on the DFA2 but takes

advantage of side-channel leakage. In such an attack,
three physical functions are used: the two error func-

tions of DFA2 and the leakage function of the faulted

ciphertext. The chosen distinguisher is the Pearson co-

efficient.

DBA DBA (differential behavioral analysis) explains a

behavior (i.e., the circuit either functions correctly or

malfunctions) based on a model that is parametrized
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by the value of the key and a constant (but unknown)

fault model (e.g., the set or the reset of some bits of the

SubByte outputs). The distinguisher is a Pearson cor-

relation. This attack is particularly effective for circuits

with embedded protections against DFA.

FSA FSA (fault sensitivity analysis) explains a fault

sensitivity (i.e., the reaction of the circuit to a fault

injection whose intensity is variable) based on a model
parametrized by the value of the key and a constant

(but unknown) fault model (e.g., a Hamming weight or

set/reset of a particular bit of the SubByte input). The

distinguisher is a Pearson coefficient.

4.4 Discussion

The use of physical functions for physical cryptography
raises multiple questions:

– How can the error between the model and the actual

physical functions be estimated? This question has

been investigated for side-channel attacks in several

articles such as in [10]. However, previous findings
will likely have to be updated to take into account

the pmf of the error functions, which, in fact, have

very different statistical properties than the pmf of

the leakage functions.
– Do some physical functions leak more information

than others? As suggested in [14,16,12], fewer risks

certainly exist if the pmf of a physical function is

a uniformly random distribution than if the pmf of

the function corresponds to one of those described
in Section 3.3.2. It may be of interest to find mathe-

matical criteria (likely based on the measure of ran-

domness of the pmf ) to evaluate the intrinsic leak-

age of physical functions.
– Following from the first two questions, how can the

physical functions that leak the most be identified?

The present investigation considered that the phys-

ical functions take only one argument. Yet, theo-
retically, each observable is dependent on all other

variables. For example, an error function could be

dependent either on X , on the previous value of X ,

or on other observables such as the voltage, the tem-

perature, and even (perhaps, due to cross-talk) on
many other internal variables. Thus, there seems to

be a tremendous number of possible physical func-

tions. It is impossible to enumerate all of them, even

for a very small circuit. It will be up to the com-
munity to define heuristics to find the most critical

physical functions. However, searching for answers

in such a nonexhaustive manner could result in po-

tential undetected leakage.

Conclusion

In this article, we have shown that most side-channel

and fault attacks share the same principles. This merg-

ing of shared characteristics was accomplished by ex-

tending the concept of leakage functions to the concept

of error functions and by using probability mass func-
tions to model both functions. Numerous possibilities

for further research exist: First, we plan to use the pre-

sented framework to describe a wider set of attacks. In

particular, it could be of interest to extend the proposed
approach to asymmetrical cryptography and to include

other attacks such as those described in [19,2,3,21].

Second, for a given set of models of physical functions,

the attack paths could be studied formally, enabling

the automatic generation of new attack paths. Third,
this work may be regarded as a basis to aggregate the

advantages of attack-specific protections, thereby pro-

viding a more generic set of countermeasures.
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