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Abstract. In this paper we propose a method to characterize and estimate the variations of a random convex
set Ξ0 in terms of shape, size and direction. The mean n-variogram γ

(n)
Ξ0

: (u1 · · ·un) 7→ E[νd(Ξ0∩(Ξ0−u1) · · ·∩
(Ξ0 − un))] of a random convex set Ξ0 on Rd reveals information on the nth order structure of Ξ0. Especially
we will show that considering the mean n-variograms of the dilated random sets Ξ0 ⊕ rK by an homothetic
convex family rKr>0, it’s possible to estimate some characteristic of the nth order structure of Ξ0. If we make
a judicious choice of K, it provides relevant measures of Ξ0 . Fortunately the germ-grain model is stable by
convex dilatations, furthermore the mean n-variogram of the primary grain is estimable in several type of
stationary germ-grain models by the so called n-points probability function. Here we will only focus on the
Boolean model, in the planar case we will show how to estimate the nth order structure of the random vector
composed by the mixed volumes t(A(Ξ0),W (Ξ0,K)) of the primary grain, and we will describe a procedure to
do it from a realization of the Boolean model in a bounded window. We will prove that this knowledge for all
convex body K is sufficient to fully characterize the so called difference body of the grain Ξ0 ⊕ Ξ̆0. we will be
discussing the choice of the element K, by choosing a ball, the mixed volumes coincide with the Minkowski’s
functional of Ξ0 therefore we obtain the moments of the random vector composed of the area and perimeter
t(A(Ξ0), U(Ξ)) . By choosing a segment oriented by θ we obtain estimates for the moments of the random
vector composed by the area and the Ferret’s diameter in the direction θ, t((A(Ξ0), HΞ0(θ)). Finally, we will
evaluate the performance of the method on a Boolean model with rectangular grain for the estimation of the
second order moments of the random vectors t(A(Ξ0), U(Ξ0)) and t((A(Ξ0), HΞ0(θ)).

1 Introduction

A random closed set (RACS) denotes a random variable defined on a probability space (Ω,A, P ) taking values
in (F,F) the family of all closed subset of Rd provided with the σ-algebra F = σ{{F ∈ F |F ∩ X 6= ∅}X ∈ K}
where K denotes the class of compact subsets on Rd. As when we work with random vectors it is necessary to give
meaning to the concept of distribution. Choquet and Matheron have shown that a random set is fully characterized
by its probability of presence in each place of the space, thus the concept of distribution is replaced by the so called
functional capacity also called Choquet capacity TΞ : K→ [0, 1] .

TΞ(X) = P ({Ξ ∩X 6= ∅}) (1)

Several materials can be modeled by random sets. In fact, the heterogeneity of the materials can be apprehended
by a probabilistic approach [1],[2]. Especially granular or fibrous media [3],[4] can be represented by unions of
overlapping particles (the grains) centred on random positions (the germs), thus giving rise to the germ-grain
model.

Ξ =
⋃
xi∈Φ

Ξi + xi (2)

Where Φ is point process (REF) which generates the germs xi, and the grains Ξi are convex random sets
independent and identically distributed. Notice that this definition assumes the independence between the particles
Ξi and their positions xi, there is a more general definition authorizing the correlation between germs and grains
[5], for more convenience we choose to introduce the model under this hypothesis. There are two types of use of this
model. The first one is the simulation of a material, the global characteristics of the model match to the material’s
ones but the germs and grains have no physical sense: the local characteristics of the model (Φ and Ξ0) a priori



have no connection with the intrinsic structure of the material. Our approach consist in representing the people of
crystals by such a model; that is to say that the point process Φ is the repartition of the particles and the convex
random sets Ξi the particles themselves. The goal is to adjust the model to actual data from measurements acquired
by an image acquisition system. Generally, the acquisition is obtained by optical imaging, in other words, we have
realizations of Ξ ∩W where W is a bounded window and we want to estimate the characteristics of Φ and Ξ0. To
meet this objective, we focuses on two points: first, estimate the characteristics of Ξ from a realization of Ξ ∩W
[6], secondly establish relationships between characteristics of Ξ and the local characteristics of the model (Φ, Ξ0).
This second point raises the problem of non-uniqueness of the representation (2). To remedy this, we introduce an
additional assumption: we assume the process Φ comes from a known type (Poisson process, Cox process, ...). We
will use the homogeneous Boolean model, a germ-grain model in which Φ is a homogeneous Poisson point process.
This model is widely used because we have an analytical formula for the Choquet capacity.

TΞ(X) = 1− exp(−λE[νd(Ξ0 ⊕ X̆)]) ,∀X ∈ K (3)

Several methods are used to connect the global characteristics of the model to the characteristics of the primary
grain. In the plane and the space, Miles’s formulae [7] or minimum contrast method [8] can estimate the average
value of Minkowski’s functional of the primary grain. Generally, the primary grain is assumed to have a known
and deterministic shape, that is to say, the realizations of the primary grain are homothetic. So as to estimate the
variations of the scaling factor from the expectation of the Minkowski functionals. For example, for a disc in the
plane, the moments of the first and second orders of the radius of the primary grain are respectively proportional
to its average perimeter and its average area. However, if we consider that the shape of the grain can vary, several
issues remain unresolved: firstly Minkowski functionals of a random convex set are not enough to characterize its
shape and also their average will not provide a sufficient information to characterize its variations. For instance, for
a Boolean model whose grain has a shape that depends on several parameters (rectangle, ellipse ...), the estimation
of geometric variations of the grain is not direct. The aim of our work is to characterize and estimate the variations
of the primary grain of the Boolean model without any assumption concerning its shape, from a realization of the
model in a bounded window. The ideal would be to estimate the functional capacity of the primary grain TΞ0 or an
equivalent which completely characterizes the random convex Ξ0. Applying the Steiner’s formula and the linearity
of the expectation, for all convex compact set X we have:

E[νd(Ξ0 ⊕ X̆)] =

d∑
k=0

(
d

k

)
E[Wd−k(Ξ0, X̆)] (4)

Where Wd−k(Ξ0, X̆) denotes the (d − k)th mixed volume of Ξ0 and X̆. Considering the relationship (3), we un-
derstand that the functional capacity of the model evaluated on a convex K depends on the grain only by the
expectations of mixed volumes between Ξ0 and X̆. In order to reveal the variations of Ξ0 we need to consider the
functional capacity of the model on compacts that are not convex, that is why we are interested in the n-point-
probability function [5]: P({x1, · · ·xn} ⊂ Ξ). For n = 2, this quantity is known under the name of covariance and it
can be connected to the mean covariogram of the primary grain [9]. For any n ≥ 3, the n-point-probability function
can be used to estimate the mean n-variogram γ

(n)
Ξ0

: (u1 · · ·un) 7→ E[νd(Ξ0 ∩ (Ξ0 − u1) · · · ∩ (Ξ0 − un))] of Ξ0, this
quantity evaluated on the dilated grain Ξ0 ⊕K for a convex compact set K reveals the nth order structure of Ξ0,
especially some linear combinations of the expectations E[

∏d
k=0Wd,k(Ξ0,K)pk ] of order p =

∑d
k=0 pk ≤ n where

Wd,k(Ξ,K) , k = 0, · · · d, denotes the mixed volumes of Ξ0 by K. First we will discuss the properties of the mean
n-variogram of a random convex and how it describes its nth order structure. Secondly we will focus on the planar
case, we will discuss the interpretation of the nth order moments of the vector t(A(Ξ0),W (Ξ,K)), and we will show
how they can be estimated for the primary grain of a boolean model. Finally we will test the estimation method
by the simulations of a boolean model with rectangular grains.

2 From the Mean n-Variogram of a Random Convex Set to its Variations

In this section we will discuss the properties of the the mean n-variogram of a random convex and how it describes
his nth order structure.

2.1 Mean n-Variogram of Random Convex Set

In this paragraph we will define the mean n-variogram of a random convex and discuss its properties. The mean
n-variogram is a simple generalization of the concept of mean covariogram introduced by Bruno Galerne in [9] for



n = 2. The proof of the following results can be easy found by recursion on n from Bruno Galerne’s proof [9], that
is why we will omit them.

Definition 1. Let Ξ0 be a random convex set satisfying E[νd(Ξ0)] <∞ and n ≥ 1 we will call mean n-variogram
of Ξ0 the expectation of its n-variogram :

γ
(n)
Ξ0

:

∣∣∣∣ Rd×(n−1) −→ R+

(u1, · · ·un−1) 7−→ E[νd(
⋂n−1
i=1 (Ξ0 − ui) ∩Ξ0)]

Proposition 1. Let Ξ0 be a random convex set satisfying E[A(Ξ0)n] <∞ and n ≥ 3 (the cases n < 3 were treated
in [9]).Then the mean n-variogram have the following properties:

i) permutation invariant:
∀σ ∈ Sn, γ(n)Ξ0

(u1, · · ·un−1) = γ
(n)
Ξ0

(uσ(1), · · ·uσ(n−1))
ii) Reducibility:
∃i 6= j, ui = uj ⇒ γ

(n)
Ξ0

(u1, · · ·un−1) = γ
(n−1)
Ξ0

(u1, · · ·ui−1, ui+1, · · ·un−1)

and ∃i, ui = 0⇒ γ
(n)
Ξ0

(u1, · · ·un−1) = γ
(n−1)
Ξ0

(u1, · · ·ui−1, ui+1, · · ·un−1)

iii) ∀(u1, · · ·un−1) ∈ Rd×(n−1), 0 ≤ γ(n−1)Ξ0
(u1, · · ·un−1) ≤ γ(n−1)Ξ0

(u2, · · ·un−1)

iv) ∀k ≤ n− 1,
∫
Rd · · ·

∫
Rd γ

(n)
Ξ0

(u1, · · ·un−1)du1 · · · duk = ...

E[νd(Ξ0)k]γ
(n−k)
Ξ0

(uk+1, · · ·un−1)
especially for k = n we have:∫

Rd

· · ·
∫
Rd

γ
(n)
Ξ0

(u1, · · ·un−1)du1 · · · dun−1 = E[νd(Ξ0)n] (5)

v) ∀(u1, · · ·un−1) ∈ Rd×(n−1), γ(n)Ξ0
(−u1, · · · − un) = γ

(n)
−Ξ0

(u1, · · ·un)

and γ(n)Ξ0
(−u1, u2 · · ·un−1) = γ

(n)
Ξ0

(u1, u2 − u1, · · ·un−1 − u1).
vi) The partial map u→ γ

(n)
Ξ0

(u1, · · ·un−2, u) is uniformly continuous and zero limit when ‖u‖ → +∞. Furthermore
for all u ∈ Rd the map
r → γ

(n)
Ξ0

(u1, · · ·un−2, ru) is decreasing on R.
vii) γ(n)Ξ0

also has an integral formulation:

γ
(n)
Ξ0

(u1, · · ·un−1) =

∫
Rd

P({x, x+ u1, · · ·x+ un−1} ⊂ Ξ0)dx (6)

The relationship (5) has a the great advantage of giving access to the nth order moment of the volume of the
random set Ξ0. This relationship is even more important because dilating Ξ0 by a convex K, it gives access to some
linear combinations of the expectations E[

∏d
k=0Wd,k(Ξ0,K)pk ] of order p =

∑d
k=0 pk ≤ n .

2.2 Dilatation of a Random Convex Set

Let Ξ0 be a convex random set and K a convex compact set, let’s recall the Steiner’s formula:

∀r ≥ 0, νd(Ξ0 ⊕ rK) =

d∑
k=0

(
d

k

)
Wd,k(Ξ0,K)rk (7)

WhereWd,k(Ξ0,K) denote the mixed volume of k-homogeneity in its first variable (d−k)-homogeneity in its second,
that is:

∀k = 0, · · · d, ∀(α, β) ∈ R2
+, Wd,k(αΞ0, βK) = αd−kβkWd,k(Ξ0,K) (8)

Furthermore Wd,d(Ξ,K) = νd(K) and Wd,0(Ξ,K) = νd(Ξ). For r ∈ R+, n ≥ 0 and Ξ0 satisfiying E[νd(Ξ0)n] <∞
we introduce the function:

ζ
(n)
Ξ0,K

:

∣∣∣∣R+ −→ R+

r 7−→ E[νd(Ξ0 ⊕ rK)n]
(9)

The existance of ζ(n)Ξ0,K
is ensured by the existance of E[νd(Ξ0)n] and the convexity of Ξ0. Notice that for n ≥ 2 the

functional ζ(n)Ξ0,K
can be connected to the mean n-variogram of Ξ0 ⊕ rK by (5) we have:



ζ
(n)
Ξ0,K

(r) =

∫
Rd

· · ·
∫
Rd

γ
(n)
Ξ⊕rK(u1, · · ·un−1)du1 · · · dun−1 (10)

by injecting (7) in (9) we have:

ζ
(n)
Ξ0,K

(r) = E[(

d∑
k=0

(
d

k

)
Wd,k(Ξ0,K)rk)n] (11)

ζ
(n)
Ξ0,K

is therefore a polynomial function in r of degree n× d it can be expressed as:

ζ
(n)
Ξ0,K

=

nd∑
j=0

C
(K)
n,j r

j (12)

using the multinomial theorem, each of these coefficients C(K)
n,j of degree j ≤ nd, can be expressed as a linear

combination of the interactions E[
∏d
k=0Wd,k(Ξ0,K)pk ] satisfying j =

∑d
k=0 k × pk and

∑d
k=0 pk = n. Of course

we can extract all coefficients C(K)
n,j by searching a polynomial approximation of ζ(n)Ξ0,K

in a similar way to the
minimum contrast method [10]. Unfortunately in the general case it is not sufficient to obtain the interactions
E[
∏d
k=0Wd,k(Ξ0,K)pk ] from the coefficients of ζ(n)Ξ0,K

. However in the planar case, we can do this as follows.

Theorem 1. Let Ξ0 be a convex random set on the plane R2, we introduce the polynomial function η(n)Ξ0,K
as follows:

η
(n)
Ξ0,K

(r) =

n∑
j=0

(
n

j

)
(−1)jA(K)jr2jζ

(n−j)
Ξ0,K

(r) (13)

Where A(K) = ν2(K) denotes the area of K. Then η(n)Ξ0,K
is a polynomial function of degree n and if we note M (K)

n,k

its kth order coefficient for all n ∈ N and k = 1, · · ·n, we have:

M
(K)
n,k =

b k2 c∑
j=0

(−1)jA(K)j
(
n

j

)
C

(K)
2n−2j,k−2j (14)

and

E[A(Ξ)n−kW (Ξ0,K)k] =
M

(K)
n,k

2k
(
n
k

) (15)

Where W (Ξ0,K) = W2,1(K) denotes the mixed area and bk2 c denotes the floor of k2 .

Proof. First according to Steiner’s formula, A(Ξ0) + 2rW (Ξ0,K) = A(Ξ0 ⊕ rK)− r2A(K)
⇒ E[(A(Ξ0) + 2rW (Ξ0,K))n] = E[(A(Ξ0 ⊕K)− r2A(K))n] by applying the binomial theoerm on each side of the
equality and according to linearity of the expectation we have:

η
(n)
Ξ0,K

(r) =

n∑
k=0

2k
(
n

k

)
rkE[A(Ξ)n−kW (Ξ0,K)k] (16)

it follows the relationship(15). Injecting (12) in (13) we have:

η
(n)
Ξ0,K

(r) =

n∑
j=0

2(n−j)∑
p=0

(
n

j

)
(−1)jA(K)jr2j+pC

(K)
2n−2j,p

applying the change of variable z = 2j + p we have:

η
(n)
Ξ0,K

(r) =

n∑
j=0

2n∑
z=2j

(
n

j

)
(−1)jA(K)jrzC

(K)
2n−2j,z−2j

=

2n∑
z=0

{
b z2 c∑
j=0

(
n

j

)
(−1)jA(K)jC

(K)
2n−2j,z−2j}r

z

by identification with (16) it follows the relationship (14). ut



Remark 1. The Theorem 1 shows how the nth order interactions E[A(Ξ)n−kW (Ξ0,K)k], k = 0, · · ·n, can be
estimated by the knowledge of the functions ζ(j)Ξ0,K

, j = 1, · · ·n. We emphasize that for all convex compact K
the distribution of the random vector t(A(Ξ),W (Ξ0,K)) is fully characterized and can be reconstructed from its
moments: the interactions E[A(Ξ)n−kW (Ξ0,K)k], n ∈ N, k = 1, · · ·n. There is two way to estimate the nth order
interactions: make polynomials approximations of the ζ(j)Ξ0,K

, j = 1, · · ·n to get their coefficients C(K)
j,p and using

(14) or make directly a polynomial approximation of η(n)Ξ0,K
to get the coefficients M (K)

n,k and using (15).

2.3 Variation of a Random Convex Set in R2

Here we will discuss the choice of K, let Ξ0 be a convex random set of R2 satisfying E[A(Ξ0)] < ∞. Let’s note B
the unit ball of R2 and Sθ the rotation of the segment [0, 1] × {0} with angle θ ∈ [0, 2π]; in other words Sθ is the
centred segment directed by θ of length two. We have the well know result [11],[6]:

W (Ξ0, B) =
1

2
U(Ξ0) (17)

W (Ξ0, Sθ) = HΞ0(θ) (18)

Where U(Ξ0) denotes the perimeter of Ξ0 and HΞ0
(θ) denotes the Ferret’s diameter of Ξ0 in the direction θ. As a

direct result, the choice K = 2B provides estimators for all moments of the random vector t(A(Ξ0), U(Ξ0)), and by
choosing K = Sθ we obtain all moments of the random vector t(A(Ξ0), HΞ0

(θ)). Notice that the Ferret’s diameter
is π-periodic in the variable θ, if Ξ0 is supposed to be isotropic, then the random variables HΞ0(θ) for θ ∈ [0, π] are
identically distributed. Let’s remark that the random process HΞ0 = (HΞ0(θ))θ∈[0,π] fully characterize the random
set Ξ0 ⊕ Ξ̆0; in fact, for each ω ∈ Ω the Ferret’s diameter HΞ0

(ω) : [0, π]→ R+ coincide with the support function
of the convex compact set Ξ0 ⊕ Ξ̆0(ω). It is well known that the support function of the convex compact set fully
characterizes the convex compact set concerned [12]. Therefore HΞ0

fully characterizes the difference body Ξ0⊕ Ξ̆0

that leads to the following theorem.

Theorem 2 (Characterization of a random convex set by its mixed area). Let’s Ξ(1)
0 and Ξ

(2)
0 be two

convex random sets of R2 satisfying E[A(Ξ(j))] < ∞, j = 1, 2 and assume at least one of the distributions of the
random variables A(Ξ(j)) is M-determinate [13]. Then, the condition

∀n ≥ 1, ∀K ∈ Kc, ζ
(n)

Ξ
(1)
0 ,K

= ζ
(n)

Ξ
(2)
0 ,K

(19)

Implies,
Ξ

(1)
0 ⊕ Ξ̆(1)

0
L
= Ξ

(2)
0 ⊕ Ξ̆(2)

0 (20)

Where "L=" denotes the so called equality in law, and Kc denotes the class of convex compact sets on R2.

Proof. Let’s Ξ(1)
0 and Ξ

(2)
0 be two convex random sets of R2 satisfying E[A(Ξ

(j)
0 )] < ∞, j = 1, 2 and assume at

least one of the distributions of the random variables A(Ξ(j)) is M-determinate Let’s assume the condition (19),
according to the Theorem 1 and the M-determinate condition:

(19)⇒ ∀n ≥ 1, ∀K ∈ K, E[W (Ξ
(1)
0 ,K)n] = [W (Ξ

(2)
0 ,K)n]

⇒W (Ξ
(1)
0 ,K)

L
= W (Ξ

(2)
0 ,K)

For each k ≥ 1 and for each (θ1, · · · θk) ∈ [0, π]k, let V1 =t (H
Ξ

(1)
0

(θ1), · · ·H
Ξ

(1)
0

(θk)) be a random vector extract
of the random process HΞ1

and V2 =t (H
Ξ

(2)
0

(θ1), · · ·H
Ξ

(2)
0

(θk)) a random vector extract of H
Ξ

(2)
0

. We will prove

V1
L
= V2, for this, let’s consider a positive linear combination of elements of V1,

∑k
i=1 αiHΞ

(1)
0

(θi) and the convex

compact sets Z =
⊕k

i=1 αiSθi . Notice the following property:

Lemma 1. Let’s X,Y be convex sets, x ∈ R+ and β ∈ [0, π]. Using the Steiner’s formula on A(X ⊕ Y ⊕ xSβ) and
the properties of the support function, it is easy to show that:

W (X,Y ⊕ xSβ) = W (X,Y ) + xHX(β) (21)



Applaying successively this lemma on W (Ξ
(1)
0 , Z) and on W (Ξ

(2)
0 , Z) we have: W (Ξ

(1)
0 , Z) =

∑k
i=1 αiHΞ

(1)
0

(θi) and

W (Ξ
(2)
0 , Z) =

∑k
i=1 αiHΞ

(2)
0

(θi)

Thus,

∀(α1, · · ·αk) ∈ Rk+,
k∑
i=1

αiHΞ
(1)
0

(θi) =

k∑
i=1

αiHΞ
(2)
0

(θi)

which implies V1
L
= V2, we have this result for all k ≥ 1 and for all (θ1, · · · θk) ∈ [0, π]k, thus H

Ξ
(1)
0

L
= H

Ξ
(2)
0

therefore

Ξ
(1)
0 ⊕ Ξ̆(1)

0
L
= Ξ

(2)
0 ⊕ Ξ̆(2)

0 . ut
Remark 2. First note that the M-determinate condition is not realy restrictive, it can always be assumed in pratical
cases [14]. Let’s notice that the choice of the convex compact Z =

⊕k
i=1 αiSθi provide an explicit expression of the

mixed area, it can be use for estimate all characteristics of the random process HΞ0
in the following way; For each

k ≥ 1 and n ≥ 0 we define P (k,n)
Ξ0,(θ1,···θk), the polynomial function on k variables of degree n as:

P
(k,n)
Ξ0,(θ1,···θk)(α1, · · ·αk) =E[W (Ξ0,

k⊕
i=1

αiSθi)
n]

=(

k∑
i=1

αiHΞ0
(θi))

n

=
∑

j1+···jk=n

(
n

j1, · · · jk

)
E[

k∏
i=1

HΞ0(θi)
ji ]

k∏
i=1

αjii

Thus all of the expectations E[
∏k
i=1HΞ0

(θi)
ji ] can be estimate by a fit of P (k,n)

Ξ0,(θ1,···θk). However, in practice it is

difficult to compute and fit P (k,n)
Ξ0,(θ1,···θk) for large k, thus we will be more interested in the autocorrelation of the

random process HΞ0
and its marginals moments E[HΞ0

(θ)n].

3 Application to the Boolean Model

Let Ξ be a Boolean of primary grain Ξ0 and intensity λ :

Ξ =
⋃
xi∈Φ

Ξi + xi (22)

Where Φ is a homogeneous Poisson point process of intensity λ and the Ξi are random convex sets identically
distributed as Ξ0.

3.1 The Polynomial ζ(K)
Ξ0

for the Primary Grain of the Boolean Model

Let’s recall the fundamental relationship of functional capacity:

∀X ∈ K, TΞ(X) =P ({Ξ ∩X 6= ∅})
=1− exp(−λE[νd(Ξ0 ⊕ X̆)])

=1− exp(−ΨΞ(X))

Where ΨΞ(X) = − ln(1 − TΞ(X)) = λE[νd(Ξ0 ⊕ X̆)]. Let’s enunciate a useful lemma the proof is omitted since it
can be established by induction.
Lemma 2 (inclusion-exclusion principle). Let f be a C-additive sets function, and (Ai)1≤i≤n be a non degen-
erate family of subset of Rn, then:

f(

n⋂
i=1

Ai) =

n∑
k=1

(−1)k+1

k!

∑
(i1,···ik)∈Ik

f(

k⋃
j=1

Aij )

f(

n⋃
i=1

Ai) =

n∑
k=1

(−1)k+1

k!

∑
(i1,···ik)∈Ik

f(

k⋂
j=1

Aij )

Where Ik = {(i1, · · · ik) ∈ {i1, · · · ik} ⊂ {1, · · ·n}k | ∀l ≤ k,∀m ≤ k, l 6= m⇒ il 6= im}.



For n ≥ 2 let’s note un = 0, according the Lemma 2 and the expression of Ψ , the mean n-variogram can be
expressed as:

γ
(n)
Ξ0

(u1, · · ·un−1) =E[νd(

n⋂
i=1

Ξ0 − ui)]

=

n∑
k=1

(−1)k+1

k!

∑
(i(1),···i(k))∈Ik

E[νd(

k⋃
j=1

Ξ0 − ui(j))]

=

n∑
k=1

(−1)k+1

λk!

∑
(i(1),···i(k))∈Ik

ΨΞ({ui(1), · · ·ui(k)})

⇒ γ
(n)
Ξ0

(u1, · · ·un−1) =

n∑
k=1

(−1)k

λk!

∑
(i(1),···i(k))∈Ik

ln(1− TΞ({ui(1), · · ·ui(k)})) (23)

Obviously the quantities ΨΞ({ui1 , · · ·uik}) can be expressed by the n-point probability function C
(n)
Ξ (x1, · · ·xn) =

P({x1, · · ·xn} ⊂ Ξ) evaluated on the subsets of {u1, · · ·un}, we have:

ln(1− TΞ({ui1 , · · ·uik})) = ln(P(

k⋂
j=1

{uij /∈ Ξ}))

= ln(

k∑
j=1

(−1)j+1

j!

∑
(z1,···zj)∈Ij

P(

j⋃
l=1

{ui(zl) /∈ Ξ}))

= ln(

k∑
j=1

(−1)j+1

j!

∑
(z1,···zj)∈Ij

(1− C
(j)
Ξ (ui(z1), · · ·ui(zj)))

⇒ γ
(n)
Ξ0

(u1, · · ·un−1) =

n∑
k=1

∑
(i(1),···i(k))∈Ik

(−1)k

λk!
ln(

k∑
j=1

(−1)j+1

j!

∑
(z1,···zj)∈Ij

(1− C
(j)
Ξ (ui(z1), · · ·ui(zj))) (24)

The n-point-probability function C
(n)
Ξ (x1, · · ·xn) can be viewed as a volume fraction of

n⋂
i=1

(Ξ +xi), it is easy to

see that the stationary of Ξ implies P({x1, · · ·xn} ⊂ Ξ) = P({0, x1 − xn, · · ·xn−1 − xn} ⊂ Ξ),its yield an unbiased
estimator for the n-point probability function in bounded windows W :

Ĉ
(n)
Ξ,W (x1, · · ·xn) =

νd((Ξ ∩W )	 {0, x1 − xn, · · ·xn−1 − xn})
νd(W 	 {0, x1 − xn, · · ·xn−1 − xn})

(25)

Thus, an estimator γ̂(n)Ξ0,W
for the mean n-variogram of Ξ0 can be obtained by (25),(24) associated to an estimator

of λ (see [7],[5]). We emphasize that the Boolean model is stable by convex dilatation, in other words, for K ∈ Kc,
the dilated model Ξ⊕K is also a Boolean model of same intensity λ and of primary grain Ξ0⊕K. As a consequence,
for each r ≥ 0 an estimator γ̂(n)Ξ0⊕rK can be found. However a precaution must be taken to break the edge effects; if
we have a realization of Ξ∩W , the dilated model Ξ⊕rK is only known within the eroded windowWrK = W 	rK,
in fact ((Ξ ∩W )⊕ rK) ∩WrK = (Ξ ⊕ rK) ∩WrK . Therefore it follow from (10) the estimators:

ζ̂
(n)
Ξ0,K,W

(r) =

∫
Rd

· · ·
∫
Rd

γ̂
(n)
Ξ⊕rK,WrK

(u1, · · ·un−1)du1 · · · dun−1 (26)

3.2 The Case of the Planar Boolean Model

As a consequence of (26) and the Theorem 1, in the planar case we obtain an estimator for the polynomial η(n)Ξ,K :

η̂
(n)
Ξ0,K,W

(r) =

n∑
j=0

(
n

j

)
(−1)jA(K)jr2j ζ̂

(n−j)
Ξ0,K,W

(r) (27)



Therefore by fitting these quantities, we obtain estimators for the moments of t(A(Ξ0),W (Ξ0,K)). Furthermore
the polynomial approximation of η̂(n)Ξ0,K,W

can be refined by inequality constraints, some of them are probabilistic(
inequality between moments, Cauchy-Schwarz inequality). But there are also some morphological constraints like
the generalized isoperimetric inequality [15]. Furthermore, if we make additive assumptions concerning the shape
of Ξ0, other constraints can be found [16].
We have tested this method with n = 2 for a Boolean model of rectangular grains: the uncorrelated sides of the
primary grain followN (40, 10) andN (30, 10), the intensity parameter λ = 100

500×500 (see Figure 1). We have simulated
several realization of this model in a bounded window W = 500 × 500, and we studies the relative error between
the theoretical and estimated moments of t(A(Ξ0),W (Ξ0,K)) when K is a ball or a segment (see Figure 1).
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Fig. 1: A realization of the test model (a) and the relatives error of the estimation of the 2nd order moments of
t(A(Ξ0), U(Ξ0)) on (b) and of t(A(Ξ0), HΞ0(θ)) on (c).

Conclusions and Prospects

We have established analytical formulae which allow us to connect the n-variograms of the dilatations of a random
convex set with the variations of some of its morphological characteristics. For the Boolean model, we also have
shown how the n-variogram of its primary grain can be connected to its n-point probability function. Therefore, it
provides estimators of the variations of the primary grain’s morphological characteristics. Especially, using dilatation
by a disk or a segment, the proposed method can be used to characterize a primary grain whose shape depends
on two parameters (rectangle, ellipse,...). We emphasize that our method can be used for any germ-grain model in
which we can estimate the mean n-variogram.
In the future we are looking at more complex germ-grain models than the Boolean model. We are also interested in
the influence of the model parameters and the observation’s window on the accuracy of the estimates. The prospect
of describing a convex random set by the characteristics of the random process associated to its Ferret’s diameter
(see subsection 2.3), is even more relevant.
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