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Introduction 
The presented work is motivated by a pharmaceutical issue. Indeed, the production of drugs involves a 

crystallization process in solution depending on several parameters and their quality is closely linked to its 

geometrical characteristics (size, shape, quantity ...). Therefore, it is necessary to control the distribution of the 

“crystal geometry” during the process. To meet this goal, an in-situ optical acquisition system provides images 

of the crystal population crystals’ population, giving access to the projected particles during the process (see 

Figure 1). These images highlight the overlapping of the crystals (caused by the 2-D projection) and it is 

consequently difficult to individualize the particles for further characterization. Therefore, after a binarization 

process [1] (see Figure 1), the objective of this work is to investigate stochastic geometrical models so as to 

represent these binary images and to get the geometrical characteristics of the crystals. 

 

Figure 1. Acquisition of an image of a crystals’ population and its segmentation. 

Modeling and objectives 
Several materials can be modeled by random sets. In fact, the heterogeneity of the materials can be 
apprehended by a probabilistic approach [2],[3]. Especially granular or fibrous media [4],[5] can be 
represented by unions of overlapping particles (the grains) centered on random positions (the germs), 
thus giving rise to the germ-grain model. 
 Ξ = ⋃𝑥𝑖∈Φ 𝑥𝑖 + Ξ𝑖 

 

                                           (1) 

Where Φ is a point process which generates the germs xi, and where the grains 𝚵𝒊 are convex random 

sets independent and identically distributed. 

Notice that this definition assumes the independence between the particles Ξ𝑖 and their positions xi 
there is a more general definition authorizing the correlation between germs and grains [6].The 
proposed approach consists in representing the population of crystals by such a germ-grain model 
(Figure 2); that is to say that the point process Φ represent the spatial distribution of the particles 
centers and the convex random sets  Ξ𝑖  the particles themselves. The goal is to adjust the model to the 
real data by matching measurements computed both on real and simulated images. The real data are 
here obtained by an imaging acquisition system, meaning that we have only realizations of Ξ ∩ 𝑊 
where 𝑊 is a bounded window, and we want to estimate the characteristics of Φ and Ξ0. 
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Figure 2. Acquisition of an image of a crystals’ population, and realization of a geometric stochastic model representing it. 

 
To meet this objective, we focus on two points: firstly, we estimate the characteristics of Ξ from a 
realization of  Ξ ∩ 𝑊 [7], secondly we establish relationships between the characteristics of Ξ and the local 
characteristics of the model (Φ and Ξ0). We also introduce an additional assumption: we assume the process 
Φ comes from a known type (Poisson process, Cox process ...). We will use the homogeneous Boolean model, a 
germ-grain model in which Φ is a homogeneous Poisson point process. This model is widely used because we 
have an analytical formula for the Choquet capacity. 
 
     𝑇Ξ (𝑋) = 1 − exp(−𝜆 𝔼[𝐴(Ξ0 ⊕ 𝐾)]) (2) 

   
Several methods have been presented in the literature so as to connect the global characteristics of the 
Boolean model to the characteristics of the primary grain. In the plane and the space, the Miles's 
formulae [8] or the minimum contrast method [9] provide theoretical relationships to estimate the 
average values of the Minkowski functionals of the primary grain from global characteristics. 
Generally, the primary grain is assumed to have a known and deterministic shape, that is to say, the 
realizations of the primary grain are homothetic. So as to estimate the variations of the scaling factor 
from the expectation of the Minkowski functionals. For example, for a disc in the plane, the moments 
of the first and second orders of the radius of the primary grain are respectively proportional to its 
average perimeter and its average area. However, if we consider that the shape of the grain can vary, 
several issues remain unresolved: firstly the Minkowski functionals of a random convex set are not 
enough to characterize its shape and also their average will not provide sufficient information to 
characterize its variations. For instance, for a Boolean model whose grains has a shape that depends on 
several parameters (rectangle, ellipse ...); the estimation of geometric variations of the grain is not 
straightforward.  
The proposed work provides estimators of the geometrical variations of the primary grain of the 
Boolean model without any assumption concerning its shape. 
 

Method and results 
It’s well known that the second order moment of the area of the primary grain can be expressed as the integral 

of the mean geometric covariogram [10]: 

             𝔼[𝐴(Ξ0)2] = ∫
ℝ2𝛾Ξ0

(𝑢)𝑑𝑢     

 

                                                   (3) 

Where 𝛾Ξ0
(𝑢) = 𝔼[𝐴(Ξ0 ∩ Ξ0 + 𝑢)] is the mean geometric covariogram of  Ξ0. Thus, under the hypothesis 

𝔼[𝐴(Ξ0)] < ∞ it is possible to obtain an estimator for 𝔼[𝐴(Ξ0)2] from an estimator of  𝛾Ξ0
(𝑢). In the special 

case of the Boolean model the mean geometric covariogram can be obtain by the covariance 𝐶Ξ(𝑢), also called 

2-points probability function by the following relation associate to Miles’s estimator of intensity. 

𝛾Ξ0
(𝑢) =  

1

𝜆
 ln (1 +

𝐶Ξ(𝑢) − 𝑝Ξ
2

(1 − 𝑝Ξ)2
 ) 

(4) 
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Where 𝑝Ξ = 𝐶Ξ(0) is the fraction area of Ξ. Let’s notice that the Boolean is stable by convex dilatation; that is 

to say, for each compact convex set 𝐾  the random set Ξ ⊕ 𝐾 is also a Boolean model of same intensity 𝜆 and 

of primary grain  Ξ0 ⊕ 𝐾 . Consequently for any compact convex set 𝐾 the quantities 𝜆, 𝔼[𝐴(Ξ0 ⊕ 𝐾)] and 

𝔼[𝐴(Ξ0 ⊕ 𝐾)2] are estimable. Especially, considering a family of homothetic convex compact sets  (𝑟𝐾)𝑟>0 the 

second order moment of the area of dilated grain  𝔼[𝐴(Ξ0 ⊕ 𝑟𝐾)2] is a polynomial function in  𝑟, and can be 

expressed by Steiner’s formula as follows: 

 𝔼[𝐴(Ξ0 ⊕ 𝑟𝐾)2] =     𝔼[𝐴(Ξ0)2] + 4𝑟𝔼[𝐴(Ξ0)𝑊0,𝐾]   + 𝑟2(4𝔼 [𝑊0,𝐾
2 ] +

   2𝐴(𝐾)𝔼[𝐴(Ξ0)])   +  4𝑟3𝐴(𝐾)𝔼[𝑊0,𝐾]  + 𝑟4𝐴(𝐾)2 

(5) 

where 𝑊0,𝐾 is the mixed area between Ξ0 and 𝐾 [11],[12]. The quantities 𝔼[𝐴(Ξ0)] and 𝔼[𝑊0,𝐾] can be 

estimated by the minimum contrast method [13] or by the Miles’s formulae [6].  Consequently the quantities 

𝔼[𝐴(Ξ0)2], 𝔼[𝐴(Ξ0)𝑊0,𝐾] and 𝔼[𝑊0,𝐾
2 ] can be estimated by a polynomial approximation of 𝔼[𝐴(Ξ0 ⊕ 𝑟𝐾)2].  

In practice the choice of the values of 𝑟 play an important role, and a precaution for the edge effect must be 

taken into account; if Ξ(𝜔) ∩ 𝑊 is a realization of Ξ in a bounded windows 𝑊, the dilated model Ξ ⊕ 𝑟𝐾 is 

only known on the eroded windows 𝑊𝑟 = 𝑊 ⊖ 𝑟𝐾  and its realization in the windows 𝑊𝑟 is (Ξ(𝜔) ∩ 𝑊) ⊕

𝑟𝐾) ∩ 𝑊𝑟. 

The choice of the convex compact set 𝐾 provides different characteristics of the primary grain; for a ball, the 

mixed area 𝑊0,𝐾 is proportional to the perimeter 𝑈(Ξ0), and for a segment oriented by  𝜃 ∈ [0,2𝜋] , it is 

proportional to the Feret’s diameter of Ξ0 in the direction 𝜃.  

This method can be generalized to obtain 𝑛𝑡ℎorder moments of (𝐴(Ξ0), 𝑊0,𝐾), using 𝑛-points probability 

functions (article in preparation).We have evaluated the performance of the proposed method for a disk and a 

segment by simulating several realizations of a test model in a squared window 500 × 500. The test model is 

isotropic model with a point process intensity 𝜆 = 100 500 × 500⁄  and with rectangular grains whose side 

lengths are independent and follow the Gaussian distributions  𝑁(40,10) and 𝑁(30,10).  The results are 

presented in Figure 3, where the relative errors on the geometrical variations of the grains are shown as a 

function of the number of realizations. 

  

 

Figure 3.  A realization of the test model (a) and the relatives errors of the second order moments of (area, perimeter) on 
(b) and of (area, Feret’s diameter) on (c). 

Conclusions and prospects 
A method has been presented so as to geometrically model and characterize a population of crystals. It 

provides estimators of the variations of the primary grain's morphological characteristics. Especially, using 

dilatation by a disk or a segment, the proposed method can be used to better characterize the geometry of a 
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primary grain whose shape depends on two parameters (rectangle, ellipse...). We emphasize that our method 

can be used for any germ-grain model in which we can estimate the mean covariogram. In the future we are 

looking for more complex germ-grain models than the Boolean model. We are also interested in the influence 

of the model parameters and the observation window on the accuracy of the estimations. The prospect of 

describing a convex random set by the characteristics of the random process associated to its Feret’s diameters 

seems to be also promising. 
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