
HAL Id: emse-01245335
https://hal-emse.ccsd.cnrs.fr/emse-01245335

Submitted on 3 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A relax-and-repair heuristic for the Swap-Body Vehicle
Routing Problem

Nabil Absi, Diego Cattaruzza, Dominique Feillet, Sylvain Housseman

To cite this version:
Nabil Absi, Diego Cattaruzza, Dominique Feillet, Sylvain Housseman. A relax-and-repair heuristic for
the Swap-Body Vehicle Routing Problem. Annals of Operations Research, 2017, 253 (2), pp.957-978.
�10.1007/s10479-015-2098-8�. �emse-01245335�

https://hal-emse.ccsd.cnrs.fr/emse-01245335
https://hal.archives-ouvertes.fr

A relax-and-repair heuristic for the Swap-Body Vehicle Routing

Problem

Nabil Absi1, Diego Cattaruzza2,1, Dominique Feillet1, and Sylvain Housseman1

1Ecole des Mines de Saint-Etienne and LIMOS UMR CNRS 6158, CMP Georges
Charpak, F-13541 Gardanne, France

2Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - Centre de Recherche en
Informatique Signal et Automatique de Lille, F-59000 Lille, France

Abstract

In this paper we address the Swap-Body Vehicle Routing Problem, a variant of the
Truck and Trailer Routing Problem. It was introduced in the VeRoLog Challenge 2014.
We develop a solution approach that we coin Relax-and-Repair. It consists in solving a
relaxed version of the SB-VRP and deriving a feasible solution by repairing the relaxed
one. We embed this approach within a population-based heuristic. During computation
we store all feasible routes in order to derive better solutions by solving a set-partitioning
problem. In order to take advantages of nowadays multi-core machines, our algorithm
is designed as a collaborative parallel population-based heuristic. Experimental results
show that our relax-and-repair algorithm is very competitive and point the impact of
each phase on the quality of the obtained solutions. The advantage of our approach is
that it can be adapted to solve complex industrial routing problems.

Keywords: vehicle routing; swap-body; genetic algorithm; relax-and-repair.

1 Introduction

In this paper we address the so called Swap-Body Vehicle Routing Problem (SB-VRP) intro-
duced in the VeRoLog1 Challenge 2014. This problem is a variant of the classic VRP. The
goal of the challenge was to deal with realistic vehicle routing problems (VRP), and it was
proposed in collaboration with the German company PTV2.

The SB-VRP is a generalized version of the well known Truck and Trailer Routing Problem
(TTRP). In the TTRP, the capacity of trucks can be increased by attaching a trailer. Using
such configuration is however not allowed when visiting some customers. Furthermore, certain
customer locations can be used to temporarily park a trailer in order to be able to visit
customers with accessibility limitations.

In the SB-VRP the fleet is made by vehicles able to pull up to two swap-bodies. Comparing
with the TTRP, the counterpart of a truck (resp. a trailer) is a vehicle pulling one swap-body
(resp. two swap-bodies). The network includes special locations, called swap-locations, where

1EURO Working Group on Vehicle Routing and Logistics Optimization (www.verolog.eu)
2PTV is a German company operating worldwide that offers software, data, content, consulting and research

(www.ptvgroup.com)

1

swap-bodies can be parked, picked-up or where their pulling order can be changed. This
allows vehicles to leave the depot with two swap-bodies and be able to visit customers with
restricted accessibility with each swap-body while the other is parked in a swap-location. This
gives more flexibility during loading operations than in the TTRP.

We propose to tackle the SB-VRP with what we call a relax-and-repair procedure. The
principle of this approach is: a. To identify a well known academic problem sharing strong
similarities with the SB-VRP (the “relaxed problem”); b. To apply an existing solution
approach for the solution of this problem; c. To transform the most promising solutions
obtained into SB-VRP solutions by applying a repair procedure.

The motivation for this approach comes from the recent development of very efficient
solution procedures for rich VRP. With a single black-box method, it is now possible to solve
efficiently a large variety of vehicle routing problems (Cordeau et al. [3], Irnich [8], Vidal et
al. [21]). However, these methods are still limited in their scope: while all combinations of
classic components of routing problems can be considered, realistic problems like the SB-VRP
are still out of reach (without entering into the core of the black-box). Relax-and-repair is a
possible mechanism to simultaneously address difficult realistic problems and take advantage
of powerful black-box methods.

In our implementation, the “relaxed problem” is the Heterogeneous-Fleet VRP. As recent
methods able to solve efficiently this problem are not publicly available, we developed our
own solution algorithm. Furthermore, because of the context of the challenge, the method
presented subsequently is a little bit more complex than the pure relax-and-repair framework
sketched above.

The paper is organized as follows. Section 2 formally defines the SB-VRP. Section 3
reviews the related literature. Sections 4 to 7 describe the algorithm. Section 8 presents the
computational results and finally Section 9 concludes the paper.

2 Problem definition

The Swap-Body Vehicle Routing Problem (SB-VRP) can be defined on a complete directed
graph G = (X ,A), where X = {0, 1, . . . , N,N + 1, . . . , N + S} is the set of nodes. Node
0 represents the depot where the fleet is initially located. Nodes 1, . . . , N represent the
customers that require a service, and nodes N + 1, . . . , N + S represent the S swap-locations
available in the network. Swap-locations allow vehicles to perform particular operations
described in the following. Let X = N ∪S where N = {0, 1, . . . , N} and S = {N+1, . . . , N+
S}. A = {(i, j)|i, j ∈ X} is the set of arcs. It is possible to drive from one location i ∈ X to
another location j ∈ X , i 6= j incurring in a driving time Tij and covering a distance Dij .

The fleet is initially based at the depot and it is composed by an infinite number of each
of the following three elements: truck, semi-trailer and swap-body, the latter indicated by SB
from now on. Only the SB has a strictly positive capacity Q. A truck can leave the depot
carrying one SB, or can be attached to a semi-trailer and then carry two SB. In this case we
will refer to it as a train. From now on, the world truck will refer to vehicles carrying only
one SB. Figure 1 depicts these two vehicles.

Each customer i requires a quantity Qi of products that has to be delivered. Service at its
location takes STi units of time. The set of customers is partitioned in two subsets: Nt and
NT . Nt contains all the customers that can be visited only by a truck, called truck customers.
On the other side, NT contains the customers that can be visited by either a train or a truck,

2

Train

SB2SB1SB

Truck

Figure 1: The SB-VRP vehicles

called train customers. Given a customer i, we define TT (i) = 1 if i ∈ NT , 0 otherwise.
We indicate the status of a vehicle, i.e., the SB it is carrying, with a pair (·, ·). This pair

has to be red as if the vehicle was moving from right to left: the first value indicates the closest
SB with respect to the driver, the second value the farthest. A truck is then represented by
(SB, ∅), where SB is the SB it is carrying.

Let now v be a train leaving the depot with configuration (SB1, SB2), where SB1 and
SB2 are two swap-bodies. v can perform several actions at each swap-location s ∈ S, that are
reported in Table 1 and Figure 2. In particular, v arrives at s in its initial status and leaves
from s in its final status. Each action requires a manoeuvre time. As an example, the action
park allows the train to let the second SB at a swap-location s. In particular, if it arrives
at s in its status (SB1, SB2) it will leave s as (SB1, ∅). If the vehicle needs to continue its
route with only the second SB (i.e., in the status (SB2, ∅)) it needs to perform an exchange.
Note that different moves have different maneuver times which means that the sequence of
the SB matters. Moreover, no switch of SB can be performed among different vehicles and
each vehicle must carry back to the depot the SB he had when it left it.

action initial final
name status status

park (SB1, SB2) (SB1, ∅)
pick-up (SB1, ∅) (SB1, SB2)
swap (SB1, ∅) (SB2, ∅)

exchange (SB1, SB2) (SB2, ∅)

Table 1: Actions at the swap-locations

SB2

SB1 SB2

Park Pick−up

ExchangeExchange

Pick−up Park

Swap

SB2SB1 SB1

Figure 2: Actions at the swap-locations

Customers must be visited exactly once. However, the demand of a customer i can be

3

split between two different SB as long as these two SB are assigned to the same train and
the train is complete (the two SB attached) when i is visited. A time horizon TH is given
and represents the maximum time a route can last. Due to the absence of time windows, the
policy “start as soon as you can” is optimal and then TH can be viewed as a limit on the
duration of the working day.

Given a route r, let T (r) be its total time (the sum of travel time, service time and
maneuver time at swap-locations), D(r) its traveled distance, Dtrain(r) its traveled distance
with the vehicle pulling two SB. When route r is performed by a truck Dtrain(r) = 0, while
when a train does not visit swap-locations D(r) = Dtrain(r). Let δr be an indicator equal to
1 when route r is performed by a train.

The objective is to find a solution ξ that minimizes the total operational cost c(ξ):

c(ξ) =

R∑
r=1

(
ctruckfix + δrc

train
fix + ctruckhour T (r) + ctruckkm D(r) + δrc

train
km Dtrain(r)

)
. (1)

where R is the number of routes of the solution.
In particular, the cost of each route r ∈ R is the sum of three terms: a fixed cost

ctruckfix +δrc
train
fix for using the truck and possibly the trailer with the second SB, a cost ctruckhour T (r)

depending on the time needed to perform r, plus a cost ctruckkm D(r)+δrc
train
km Dtrain(r) depend-

ing on the traveled distance D(r) and the possible distance Dtrain(r) where the second SB is
pulled.

3 Literature review

The SB-VRP can be seen as a variant of the Truck and Trailer Routing Problem (TTRP)
in which the set of customers is partitioned into two subsets. A first set of customers that
can only be visited by a truck (truck customers), and a second set of customers that can be
visited by either a truck or a truck pulling a trailer (trailer customers). The capacity of each
truck and each trailer is given and the number of trucks and trailers is limited. A trailer can
be dropped-off at the depot or at a trailer customer location but should be picked-up and
returned to the depot. Maneuvering time is needed to access customers to drop-off a trailer.
The main objective of the TTRP is to find a set of routes that visits all clients, satisfies the
customers accessibility constraints and minimizes the total cost associated with total traveled
distance of trucks and trailers. The main difference between the SB-VRP and TTRP is that
the SB-VRP considers the presence of swap-locations where more operations than dropping-
off and picking up the trailer are possible (see Table 1). This implies much more complicated
routes. In addition, the objective function of the SB-VRP is richer than the TTRP one (see
Equation 1).

To the best of our knowledge, Semet and Taillard [17] is the first paper that deals with the
TTRP. The authors address an industrial problem that deals with the routing of trucks and
trailers with customer time windows. They consider a heterogeneous fleet of vehicles, their
related customer accessibility constraints and access times. The authors develop a tabu search
algorithm to tackle this problem. Gerdessen [6] addresses a special version of the TTRP: each
trailer is parked exactly once and all customers have unit demand. These two assumptions
considerably simplify the problem. In fact, the first assumption makes the feasibility problem
easy to check and the second limits the number of possible routes. The objective function is

4

the sum of the time that vehicles need to cover the routes and the total access time. They
use a two-phase heuristic based on a construction phase and an improvement phase.

In Chao [2], Scheuerer [15] and Lin et al. [9] the routing costs do not differentiate between
tours with and without trailers. The objective function is based on the total traveled distance.
It does not consider any other cost components like fixed costs, costs for shifting demand,
or costs for coupling or uncoupling of trailers. Chao [2] and Scheuerer [15] propose tabu
search algorithms, while Lin et al. [9] develops a very effective simulating annealing algorithm
that performs better than previous studies. In Lin et al. [10], the same authors use the same
simulating annealing algorithm to address a version of the TTRP in which the truck and trailer
availability constraints are relaxed. Villegas et al. [23] proposes a hybrid metaheuristics based
on a greedy randomized adaptive search procedure (GRASP), a variable neighborhood search
and a path relinking. Numerical results show that their methods outperform all previously
published methods. Other variants of the TTRP were addressed in the literature. Semet [16]
addresses a similar problem called the partial accessibility constrained vehicle routing problem
(PACVRP). In this problem, each parking place for the trailer is restricted to have only one
subtour. To solve the problem, the author develops a cluster-first route-second procedure.
Villegas et al. [22] studies the single truck and trailer routing problem with satellite depots
where goods can be transferred between the trucks and the trailers. To solve the problem,
the authors propose a multi-start evolutionary local search and a hybrid metaheuristic based
on GRASP and variable neighborhood descent paradigms. Drexl [4] describes how several
important types of vehicle routing problems with multiple synchronization constraints such as
multi-echelon location-routing problems and simultaneous vehicle and crew routing problems,
can be modeled as VRPTT.

The literature on the SB-VRP is limited to a few recent papers from participants to the
challenge. In Huber and Geiger [7], the authors propose an iterated variable neighborhood
search to solve the problem. They represent a vehicle route as a set of successive segments,
indicating the changes of status for the vehicle (i.e., visits to a swap location or the depot).
In addition to classical local search operators, they introduce an intra-route operator moving
customers between different segments of a route. Also, they introduce an operator modifying
a swap location. When a local optimum is obtained, they perturb the solution by destroying
some routes and reinserting the customers.

In Lum et al. [11], the authors start by considering only trucks: vehicles always travel
with a single swap-body and swap locations are ignored. They build a solution with an off-
the-shelf VRP library, slightly modified to take care of the complex cost function. Customers
with a demand greater than the swap-body capacity are not included. They are added
in post-processing with single-customer train routes. Note that the special case where all
customers can be visited by trains (see Section 8) is addressed with the same off-the-shelf
library but only considering trains; a quick post-processing is then applied to transform train
routes into truck routes when the capacity of a single swap-body is exploited. The solution is
improved with a Variable Neighborhood Descent procedure. Classical local search operators
are applied to truck routes or to the main tour of train routes (the one traveled with the
two swap-bodies). A so-called migration operator is added to move truck customers from
truck routes into subtours on train routes. When a local optimum is obtained, the solution
is perturbed with a swap-string operation.

In Miranda-Bront et al. [13], the authors propose a GRASP procedure. In the construction
phase, the type of route - truck or train - is randomly chosen when new routes are opened. Cus-
tomer insertion admits complex insertions such as the insertion of the customer surrounded

5

by visits to a swap-location. An Iterated Local Search approach is used for improvement.
Local search is performed with a set of classical and specialized operators. The perturbation
operator used when a local optimum is obtained, randomly selects a subset of customers,
that are removed and reintroduced. In order to improve the efficiency of the whole scheme,
the instance is first decomposed with a cluster-first mechanism and the GRASP method is
applied to each cluster independently. After a given amount of time, the best solutions found
in the different clusters are merged and the Iterated Local Search rerun until completion.

Computational results obtained in these three papers are discussed in Section 8.

4 Algorithm outline

The algorithm is based on a two-phase paradigm. A Heterogeneous-Fleet VRP (H-VRP) is
first solved, where two types of vehicles are available: vehicles of type v1 with a capacity equal
to one SB, that is Q, and vehicles of type v2 with a capacity that is twice the capacity of a
SB, that is 2Q. Routing a vehicle of type v1 costs exactly as routing a truck, while routing
a vehicle of type v2 costs as much as routing a train. Precisely, if route r is performed by a
vehicle of type v1, the cost is

C(r)v1 = C(r)truck = ctruckfix + ctruckhour T (r) + ctruckkm D(r) (2)

while it costs

C(r)v2 = C(r)train = ctruckfix + ctrainfix + ctruckhour T (r) + (ctruckkm + ctrainkm)D(r) (3)

if r is performed by a vehicle of type v2.
In this phase, accessibility constraints are not considered: each customer can be visited by

either a truck or a train. As a consequence, the solution obtained when solving the H-VRP,
can be infeasible for the SB-VRP. In this case, the second phase of the algorithm is launched
in order to repair the solution (Section 6). The repairing procedure considers all the routes
in the H-VRP solution that are infeasible for the SB-VRP. These routes are performed by
vehicles of type v2. Visits to swap-locations are added and the customer demand assigned
to the two SB, in order to make the solution feasible with a minimal cost increase. It may
happen that the reparation is impossible. Delays caused by the insertion of swap-locations
and by the associated operations can be incompatible with the time horizon. In addition,
the assignment of customers to a specific SB can be impossible. In this case the solution is
penalized (i.e., its cost is increased).

We decided to tackle the solution of the H-VRP with a memetic algorithm following the
concepts introduced in Vidal et al. [20], which demonstrated their efficiency for many classes
of vehicle routing problems. Additionally, to take advantages from multi-core architecture in
nowadays computer processors, we propose a collaborative parallel population-based proce-
dure to solve the SB-VRP (Section 5.2). On each thread a population-based algorithm is run.
Populations are formed by chromosomes (Section 5.1 explains the chromosome encoding).
Each chromosome is a representation of a H-VRP solution. Children chromosomes are cre-
ated from parents chromosomes already present in the population in the hope that children
will be built up on the good bricks of the parents (details are given in Section 5.4).

Finally, the algorithm includes a post-optimization phase that aims at improving the best
obtained solution. To this purpose, all the feasible routes created during the search are stored

6

into a pool R. At the end of the collaborative procedure, a set-partitioning problem on the set
of customers N is solved in order to find a new best solution (Section 7). The set partitioning
procedure can also be solved during the collaborative procedure in order to enrich the current
population. The concept of the method is summarized in Figure 3.

Insert the new solution in the population

Solve the H−VRP

Solve the SB−VRP

using a repair procedure

Solution of the H−VRP

Solve a set partitionning

problem
Update the set of routes

Update the population

The set of feasible routes

Figure 3: The solution algorithm

5 Population algorithm for the H-VRP

5.1 Chromosome encoding

A chromosome Ψ = (Ψ1, . . . ,ΨN) is simply a permutation of the N customers to serve. In
the literature it is usually called giant-tour. An initial H-VRP solution is obtained from each
chromosome by means of a split procedure (see Section 5.5), inspired by the procedure used
in Prins [14] to turn a chromosome into a VRP solution. Note that swap-locations are not
represented in the chromosome.

5.2 Collaborative population based algorithm

In order to take the advantages of parallel computing available in nowadays computers, a
collaborative procedure was implemented. In particular, on each thread, the same population-
based procedure is run (see Section 5.4). In this section we explain the general structure of
the collaborative procedure.

On each thread h of the nthread available threads, a population Ph of chromosomes is kept.
Each Ph is first initialized (see Section 5.3) with ninit chromosomes. Each population Ph is
then independently managed as explained in Section 5.4. The populations do not directly
communicate with each other, but rather independently evolve until each population contains
nfinal chromosomes.

The chromosomes of all populations Ph are then inserted into a common empty population
P. On P, a survivor procedure is launched. In particular, the survivor procedure consists
in evaluating the chromosomes according to a biased fitness BF , as proposed in Vidal et
al. [20], that takes into consideration the chromosome quality (proportional to the cost of its
associated SB-VRP solution) and their contribution to the diversification of the population
(to avoid premature convergence). After the survivor procedure is performed, chromosomes
in P are ordered with respect to the BF .

All the populations Ph are re-initialized with the best 2
3ninit chromosomes with respect to

the BF . Then, each of the following nthreadninit
3 chromosomes is randomly inserted in one of

7

the populations. This prevents the populations from being identical. With a probability pmut

a new chromosome is generated and inserted into all populations. The procedure is repeated
until the time limit tcollaborative is reached.

Each time a new best solution for the SB-VRP is found, it is memorized into a global
variable (shared by all the parallel threads).

A pool Rh of routes is associated with each thread. It stores all feasible routes (for the
SB-VRP) that are obtained during the search.

A similar procedure can be found in Duhamel et al. [5] in the context of the H-VRP.

5.3 Initial population

On each of the nthread threads, the population Ph is initialized with ninit chromosomes. The
initial permutations are constructed as follows. A customer is randomly selected and a route
that uses a vehicle of type v1 is initialized with it. Next customer i is randomly selected and
inserted between customers j and k that minimize the following saving cost (Vaz Penna et
al. [19]):

cji + cik − cjk − c0i − ci0. (4)

If the insertion of customer i in a route performed by a vehicle of type v1 violates the capacity,
the route is considered to be performed by a vehicle of type v2. Moreover, the possibility of
initializing a new route with only customer i is considered. In the latter case, fixed costs of
using a vehicle are counted. Costs involved in Equation (4) take into account both variable
costs related to traveled time and distance arising from routing a vehicle of type v1 or v2,
depending on the current route. The terms in Equation (4) involving the depot allow to avoid
late insertions of customers located far away from the depot.

Each permutation is transformed into a H-VRP solution using a split procedure described
in Section 5.5. The obtained solutions are improved applying a local search procedure de-
scribed in Section 5.6. A SB-VRP solution is obtained by repairing a H-VRP solution (Sec-
tion 6). This part correspond to lines 6–15 of Algorithm 1 and are explained in details in
Section 5.4.

5.4 Population-based procedure

This section explains the management of each population Ph assigned to a particular thread.
A sketch of the algorithm is given in Algorithm 1.

The algorithm starts by initializing an empty pool of feasible routes R. At each iteration,
two chromosomes Ψ1 and Ψ2 are selected from the population. Best chromosomes have a
higher probability to be selected. The second chromosome Ψ2 is selected in the population
among those with a different cost than Ψ1 (lines 3–4). This is done in order to avoid to select
twice the same chromosome. The classic order crossover operator OX is used to obtain a child
Ψ from the parents Ψ1 and Ψ2 (line 5). The new chromosome undergoes the split procedure
(line 6) to obtain a feasible solution ξH−V RP for the H-VRP. ξH−V RP is improved by means
of a local search procedure (line 7) and possibly repaired (line 8) in order to obtain a feasible
solution ξSB−V RP for the SB-VRP. If the resulting solution ξSB−V RP is infeasible, its cost is
multiplied by a coefficient θ (lines 9–13), otherwise all feasible routes are inserted into the pool
R. The routes are then concatenated and the permutation of customers updated accordingly
(line 14). This allows the chromosome to well represent the structure of the solution. The
chromosome is then inserted into the population (line 15). The procedure is repeated until

8

Algorithm 1 Population-based algorithm outline

1: R = ∅
2: while |Ph| < nfinal do
3: Ψ1 = Select(Ph)
4: Ψ2 = Select(Ph,Ψ1)
5: Ψ = OX(Ψ1,Ψ2)
6: ξH−V RP = Split(Ψ)
7: ξH−V RP = LS(ξH−V RP)
8: ξSB−V RP = Repair(ξH−V RP)
9: if ξSB−V RP is infeasible then

10: c(ξSB−V RP) = θc(ξSB−V RP)
11: else
12: R = R∪

{
all routes of ξSB−V RP

}
13: end if
14: Ψ = Concatenate(ξSB−V RP)
15: Insert(Ph,Ψ)
16: end while

the population reaches a size equal to nfinal. This same procedure is run on each of the
available threads.

5.5 Split procedure

The split procedure constructs a H-VRP solution ξ from a chromosome Ψ. It does not consider
the swap-locations.

Split works on an auxiliary graph G′
= (N ′

,A′
). N ′

contains N + 1 nodes, indexed from
0 to N . A′

contains arc (i, j) if it is feasible to perform route r = (0,Ψi+1, . . . ,Ψj , 0) either
with a vehicle of type v1 or with a vehicle of type v2. The costs on the arcs are fixed according
to the following proposition.

Proposition 1. Given a route r such that Q(r) ≤ Q, it is never beneficial to perform it with
a vehicle of type v2.

Proof. Let us recall that a vehicle of type v1 in the H-VRP context is equivalent to a truck
in the SB-VRP context, while routing a vehicle of type v2 costs as much as routing a train
along the whole route (the two SB are always pulled and swap-locations are never visited).
Given a route r let C(r)v1 = C(r)truck and C(r)v2 = C(r)train be respectively the cost of
performing the route r with a vehicle of type v1 and with a vehicle of type v2. Let suppose
that Q(r) ≤ Q. We know from Equations (2) and (3) that:

C(r)v1 = C(r)truck = ctruckfix + ctruckhour T (r) + ctruckkm D(r),

and
C(r)v2 = C(r)train = ctruckfix + ctrailerfix + ctruckhour T (r) + (ctruckkm + ctrailerkm)D(r).

Since the coefficients are non negative, C(r)truck ≤ C(r)trailer. This concludes the proof.

This proposition implies that it is never beneficial to use a vehicle of type v2 to perform
a route r = (Ψi+1, . . . ,Ψj), when Q(r) ≤ Q. The costs on the arcs (i, j) are then fixed as
follows: cij = C(r)v1 , if Q(r) ≤ Q, and cij = C(r)v2 otherwise.

9

Due to the infinite availability of each fleet component, it is only needed to compute the
shortest path on the auxiliary graph G′

(otherwise computing a shortest path with resource
constraints would be needed). Then, to each arc (that represents a route) that belongs to
the shortest path is assigned a vehicle of type v1 or of type v2 according to the transported
quantity of merchandise.

5.6 Local search

The local search procedure is applied to the solution that is obtained by the split procedure.
It is thus applied to a H-VRP solution and does not consider the swap-locations. Classical
moves used in routing context can be used.

Let i, j ∈ N be two customer nodes. Let σ(i) and σ(j) be their successors. Let r(i) and
r(j) indicate their respective routes. The local search procedure is based on the following
moves:

• relocate i after j;

• if σ(i) is not the depot, relocate (i, σ(i)) after j;

• if σ(i) is not the depot, remove (i, σ(i)) from r(i) and insert (σ(i), i) after j;

• exchange i with j;

• if σ(i) is not the depot exchange (i, σ(i)) with j;

• if σ(i) is not the depot replace (i, σ(i)) with j, and j with (σ(i), i);

• if σ(i) and σ(j) are not the depot exchange (i, σ(i)) with (j, σ(j));

• if σ(i) and σ(j) are not the depot replace (i, σ(i)) with (j, σ(j)) and (j, σ(j)) with
(σ(i), i);

• if r(i) = r(j), replace (i, σ(i)) and (j, σ(j)) with (i, j) and (σ(i), σ(j));

• if r(i) 6= r(j), replace (i, σ(i)) and (j, σ(j)) with (i, σ(j)) and (j, σ(i));

Note that the last two moves are the classical 2-opt and 2-opt∗. The neighborhoods defined
by each one of the previous moves are progressively explored one after the other. Before
exploring a new neighborhood, the best improving move, if any, is performed. An improving
move is a move that decreases the cost of the current solution. The local search stops when
all the neighborhoods are explored in turn, without finding an improving move.

To reduce the size of the neighborhoods, a granular local search is implemented (Toth and
Vigo [18]): a move is considered only if j is among the nclosest closest customers of i. The
nclosest closest customers of each customer can be calculated in the preprocessing phase.

6 Repair procedure

If the SB-VRP instance contains at least one customer that cannot be visited by a train, the
solution ξ obtained by solving the H-VRP can be infeasible. In fact, the route r serving this
customer can be assigned to a vehicle of type v2. The implementation of this solution in the
SB-VRP context would require a train to perform r, violating the accessibility constraints.

10

The repair procedure aims at repairing these violations, and then considers all routes made
by vehicles of type v2 in which at least one of the visited customer is a truck customer.
The routes made by truck are by definition feasible. The labeling procedure explained in
Section 6.2 repairs the routes individually by

• inserting swap-locations;

• assigning demands to swap-bodies.

For each route r of the solution ξ of the H-VRP that would be infeasible in the SB-VRP
context, the procedure constructs an acyclic graph whose nodes are the customers visited
in r. Details on the graph construction are given in Section 6.1. The labeling procedure
(Section 6.2) determines a path on the graph which indicates how the swap-locations can be
included in the route to make it feasible with a minimum additional cost. Because of some
approximations in this procedure, a correction procedure (Section 6.3) finally determines the
exact itinerary and cost of the route.

6.1 Graph construction

Given a route r = (0, r1, . . . , rR, 0) a graph G′′
= (N ′′

,A′′
) is constructed as follows. N ′′

=
{0, 1, . . . , R} and A′′

= A′′
1 ∪ A

′′
2 where:

A′′
1 =

(i, j)

∣∣∣∣∣∣
i, j ∈ N ′′

, i < j∑j
k=i+1Qrk ≤ Q

∃k = i+ 1, . . . , j s.t. TT (rk) = 0

and

A′′
2 =

{
(i, j)

∣∣∣∣ i, j ∈ N ′′
, i < j

∀k = i+ 1, . . . , j s.t. TT (rk) = 1

}
An arc (i, j) represents the fragment (ri+1, . . . , rj) of route r. Set A′′

1 contains arcs rep-
resenting fragments of routes that visit at least one truck customer. These fragments cannot
be performed in the SB-VRP context without including a visit to a swap-location. In the
subsequent labeling procedure, if a path traverses an arc (i, j) ∈ A′′

1 , it means that the train
goes to a certain swap-location s before visiting ri+1, where it leaves one of its two SB, and
that it goes back to s after having visited rj , to pick up the SB. We denote the corresponding
extra routing cost δij and associate it with the arc (i, j). Is is evaluated as follows,

δij = min
s∈S
{ctrainris + ctrucks,ri+1

+ ctruckrjs + ctrains,rj+1
} − ctrainri,ri+1

− ctrainrj ,rj+1
+ Ctruck

ri+1,rj , ∀(i, j) ∈ A
′′
1 , (5)

where:

Ctruck
ri+1,rj =

j−1∑
k=i+1

(ctruckkm − ctrainkm)Drkrk+1
;

ctrainris = (ctruckkm + ctrainkm)Dris + ctruckhour Tris;

ctrucksri = ctruckkm Dsri + ctruckhour Tris;

ctrainri,ri+1
= (ctruckkm + ctrainkm)Dri,ri+1 + ctruckhour Tri,ri+1 .

11

Other terms are calculated equivalently.
Note that Equation (5) implicitly associates a swap-location s∗i,j with each arc (i, j) in A′′

1 .
Most importantly, note also that the evaluation of the extra routing cost δij implicitly

assumes that customers ri and rj+1 are visited with trains. If ri or rj+1 is visited with a
truck, it only gives an approximation.

Set A′′
2 contains arcs that represent fragments visiting only trailer customers. These

fragments can be performed by the train following the original route calculated for the vehicle
of type v2. No additional cost is associated with these arcs, i.e., δij = 0 for all (i, j) ∈ A′′

2 .

6.2 Labeling procedure

Given the route r = (0, r1, . . . , rR, 0) and the graph G′′
= (N ′′

,A′′
) computed as explained in

Section 6.1, a labeling procedure is run in order to determine which and where swap-locations
need to be inserted in r to make it feasible. Moreover, the extra time needed at a swap-
location to perform actions is calculated, depending on the current status of the vehicle. In
the meantime, this procedure assigns the demands to swap-bodies. More precisely, a label L
is a vector with six components, L = (qSB1, qSB2, t, status, ∆c, pred), where

- L1 = qSB1 is the quantity assigned to SB1;

- L2 = qSB2 is the quantity assigned to SB2;

- L3 = t is the additional time needed for the digressions (equivalent to the additional
times evaluated in the computation of Equation (5)) plus the time at the swap-locations
to perform the correct actions (that depends on the status of the vehicle);

- L4 = status records the current status of the vehicle. It is needed to select the proper
action to perform at the swap-location and the time it takes;

- L5 = ∆c records incurred additional cost, given as the sum of costs calculated by
Equation (5) and the costs due to the actions performed at the swap location;

- L6 = pred records the predecessor node in G′′
.

The procedure starts with the null label associated with node 0 in G′′
, and determines a

path to reach node R by extending L to subsequent nodes across arc selection. A label Li is
extended to a label Lj considering an arc (i, j) ∈ A′′

. Two cases have to be considered:

• 1st case: (i, j) ∈ A′′
1 . At least one of the customers ri+1, . . . , rj cannot be visited by

a train. A swap-location s is visited before serving ri+1 and after rj . The demand
required by these customers need to be assigned to one SB. Let suppose it is the first.
The label Lj is obtained as follows:

12

L1j = L1i +
∑

k∈{i+1,...,j}

Qrk

L2j = L2i
L3j = L3i + tij + ts

L4j = new status

L5j = L5i + δij

L6j = i

Value ts represents the additional time needed to perform the actions at the swap-
location s (before going to ri+1 and after the service at rj). This value cannot be
considered a priori when calculating the arc costs since it depends on the status of
the vehicle, that in turn depends on the selected arcs in G′′

. Value tij represents the
additional traveling time due to the selection of arc (i, j). When the selected SB is the
second, a similar case occurs. The two possibilities are considered and two labels are
then created. When the capacity of a SB is exceeded (qSB1 > Q or qSB2 > Q) or the
time horizon length violated (L3j > TH − TH−V RP

r), the (partial) solution represented
by the corresponding label is infeasible and the label is dropped.

• 2nd case: (i, j) ∈ A′′
2 . Customers ri+1, . . . , rj are visited by the train. Since the

demands of the visited customers can be split between the two SB, there is no need to
assign quantities to a particular SB at this moment. Moreover, the train follows the
sequence given by the H-VRP solution. The status of the train does not change. The
labels are updated as follows:

Lhj = Lhi h = 1, . . . , 5

L6j = i

Labels are extended until node R is reached and a path, called reparation path, from node
0 is determined. The minimum-cost label associated with node R, estimates the cost of the
reparation. The reparation is determined sweeping backward the path.

6.3 Correction procedure

The labeling procedure determines a solution for the SB-VRP and an estimation of its cost.
This cost only gives an exact evaluation when arcs in (i, j) ∈ A′′

1 are followed by arcs in
(j, k) ∈ A′′

2 . In this particular case, the vehicle goes to the swap-location s determined by
arc (i, j), where it leaves one SB, visits customers ri+i, . . . , rj , goes back to s to retrieve the
SB, then goes to rj+1 before restarting the original planned route. The case is depicted in
Figures 4a–4c for a simple route with five customers. Let us suppose that the total quantity
required by the five customers is strictly bigger than Q and then the route is performed by
a vehicle of type v2 (this assumption will hold in successive examples). Figure 4a represents
the base H-VRP route that is infeasible and needs to be repaired: customers 2 and 3 are
truck customers (grey circles). Figure 4b represents the reparation path. Arc (i, j) is the arc

13

(1, 3), while (j, k) = (3, 4). Figure 4c represents the final route, that is feasible in the SB-VRP
context. Figure 4d is the key for these figures (and for Figures 5 and 6).

2 4

3

5

1

s

(a) H-VRP route

1 2 3 4 5

(b) Reparation path

2 4

3

5

1

s

(c) SB-VRP route

Depot

Swap-location

Train customer

Truck customer

Train movement

Truck with SB 1 movement

Truck with SB 2 movement

(d) Key

Figure 4: Arc (i, j) ∈ A′′
1 is followed by an arc (j, k) ∈ A′′

2

In the case that arc (i, j) ∈ A′′
1 is followed by another arc (j, k) ∈ A′′

1 , a final correction
procedure is needed to obtain the exact cost of the solution and to determine its feasibility
in the SB-VRP context.

In particular, cost δij takes into account the detour from ri to a given swap-location s1
before visiting customer ri+1. The vehicle then serves customers ri+1, . . . , rj and goes back
to s1 to get back the SB before heading to rj+1. Analogously, δjk takes into account the cost
of the detour of visiting a swap-location s2 between the visits of rj and rj+1 and between rk
and rk+1. Two cases appear.
1st case: s1 = s2 = s. The detours needed to go from rj to s and from s to rj+1 are counted
twice: the fist due to the arc (i, j) entering in j, the second due to the arc (j, k) leaving j. The
cost of the route then needs to be updated to take this into account. Figures 5a–5d represent
the case. Arc (i, j) is the arc (1, 3), while arc (j, k) is the arc (3, 5) (Figure 5a).

14

1 2 3 4 5

(a) Reparation path

2 4

3

5

1

s

(b) H-VRP route

2 4

3

5

1

s

(c) SB-VRP intermediate route

2 4

3

5

1

s

(d) SB-VRP route

Figure 5: Arc (i, j) ∈ A′′
1 is followed by an arc (j, k) ∈ A′′

1 and s1 = s2 = s

2nd case: s1 6= s2. In this case, arc (i, j) selects s1, while arc (j, k) selects s2. The selection
of arc (i, j) imposes the visit of s1 after rj and before rj+1. Arc (j, k) imposes the vehicle to go
from rj to s2 and then to rj+1. Finally, arc (i, j) imposes the vehicle to go across (rj , s1) and
(s1, rj+1), while arc (j, k) to go across (rj , s2) and (s2, rj+1). To solve this problem we force
the vehicle to travel directly from s1 to s2 and we update the cost of the route accordingly.
Figures 6a–6d represent this case: arc (i, j) = (1, 3) and arc (j, k) = (3, 5).

15

1 2 3 4 5

(a) Reparation path

2 4

3

5

1

s1

s2

(b) H-VRP route

2 4

3

5

1

s1

s2

(c) SB-VRP intermediate route

2 4

3

5

1

s1

s2

(d) SB-VRP route

Figure 6: Arc (i, j) ∈ A′′
1 is followed by an arc (j, k) ∈ A′′

1 and s1 6= s2

7 Post-optimization phase

As mentioned in Section 4, we implemented a post-optimization procedure to improve the best
solution obtained by the collaborative procedure. This is done by keeping all feasible routes
created during the population based procedure in a pool R. We then try to find the best
packing of a subset of these routes in order to improve the current best solution. Practically,
this is done by solving a set partitioning problem (as done for example by Mendoza and
Villegas [12]). After tcollaborative units of time, the collaborative population-based procedure
is stopped. All the routes stored in the pools Rh associated with each thread h are inserted
into a common pool R.

The set partitioning problem is defined by a set of routes R and the set of customers N .
For each route r ∈ R, cr is its cost and air is a coefficient equal to 1 if customer i is visited
by route r, 0 otherwise. Variable ζr is a binary variable that equals 1 if route r is selected, 0
otherwise. In the case that R enumerates all the feasible routes, the optimal solution for the
SB-VRP could be obtained by solving the following set partitioning problem:

min
r∈R

crζr (6)∑
r∈R

airζr = 1, ∀i = 1, . . . , N (7)

ζr ∈ {0, 1}, ∀r ∈ R (8)

The objective function (6) minimizes the total cost of the SB-VRP. Constraints (7) impose

16

that each customer is visited exactly once. Constraints (8) define the variables as binary. This
model is solved using a commercial solver with a time limit tpostopt.

8 Experimental results

Our algorithm (denoted R&R) is implemented in C++ using Microsoft Visual C++ 2012.
The tests are performed on an Intel Xeon CPU 2.8 GHz PC with 12 GB RAM using the
Windows 7 operating system. CPU times are given in seconds. We use the callable library
IBM ILOG CPLEX 12.6 with the default settings to solve the set partitioning problem.

8.1 Test Instances

We report computational tests on the set of 12 test instances proposed by the organizers of
the Verolog Challenge 2014. The instances are classified in four sets: Small, Medium, Large1
and Large2 respectively characterized by 57, 206, 548 and 550 customers and 20, 41, 99 and
101 swap locations. The instances can have: only truck customers, only train customers or a
mix. Table 2 summarizes the characteristics of the instances.

Set of instances Small Medium Large1 Large2

No of instances 3 3 3 3
No of customers 57 206 548 550
No of swap locations 20 41 99 101

Table 2: Overview of the Benchmark Instances

8.2 Parameters setting

The procedure R&R uses a number of parameters. Table 3 summarizes their values.

Parameter Value

nthread 3
ninit 15
nfinal 40
nelite 2
nclose 4
nclosest 0.5N , 0.2N , 0.1N
pmut 0.5
tcollaborative 600, 1200

Table 3: Parameters setting

R&R uses three threads (nthread = 3). On each thread a population is initialized with 15
individuals and children are created until its size reaches 40. These values are determined
following the guidelines given in Vidal et al. [20] and the values obtained in Cattaruzza et
al. [1] while setting their procedure. Analogously the parameters nelite and nclose are set
to 2 and 4 respectively. These two parameters do not figure in this paper but are involved
in the computation of the biased fitness presented in Section 5.2 (see Vidal et al. [20] for

17

details). The value nclosest depends on the size of the particular instance that is solved: it is
set to 0.5N , 0.2N and 0.1N respectively for Small, Medium and Large instances. Preliminary
extensive tests were made to determine these values. A new random generated chromosome
is inserted in each population with a probability pmut of 0.5. Finally, the organizers of the
VeRoLog Challenge 2014 imposed a time limit of 600 seconds. Originally, the 600 seconds
included the post-optimization phase. However, a fine tuning is required to determine the
time to dedicate to R&R and to the post-optimization. Thus, we decided, when running our
procedure to obtain the results presented here, to simply dedicate the whole 600 seconds to
R&R and a maximum of 300 seconds for the set partitioning phase. The impact of the post-
optimization phase is evaluated separately. A second value of tcollaborative, i.e., 1200 seconds
is considered for comparison purposes. Again, a maximum of 300 seconds is allocated to the
post-optimization phase.

8.3 Computational results

In the following, we analyze the efficiency of the R&R method, the impact of the parameters
(number of used threads) and the impact of each phase on the quality of the obtained solutions.
The algorithm is executed ten times. For each instance, the best solution is extracted after
600 and 1200 seconds. In order to solve the set partitioning problem, a time limit of 300
seconds is given to CPLEX after the end of the solution method.

Tables 4 reports best (column best) and average (column avg) solutions of R&R after
respectively 600 seconds and 1200 seconds. We can notice that the average gap between
average values and best values is relatively low. It is in average around 0.12% for small
instances, 0.48% for medium instance and 1.14% for large instances. We can also notice that
the percentage of improvement in best solution quality while increasing CPU time from 600
sec to 1200 sec is between 0.00% (for small instances) and 1.73% (for large instances). The
average improvement between the time limits of 600 seconds and 1200 seconds is between
0.1% and 1%.

Time limit R&R 600 seconds 1200 seconds

Class Customer type avg best avg best

mix 4808.18 4802.38 4804.76 4802.38
Small only trains 4724.81 4716.58 4721.96 4716.58

only trucks 5007.74 4992.44 5001.30 4981.70

mix 7876.66 7819.35 7866.53 7810.93
Medium only trains 7827.93 7765.47 7815.83 7763.13

only trucks 8112.88 8065.10 8102.58 8058.89

mix 21365.48 20983.90 21138.12 20760.30
Large1 only trains 21026.51 20630.30 20877.81 20495.70

only trucks 22026.64 21560.80 21987.20 21580.60

mix 25988.46 25844.20 25703.02 25529.50
Large2 only trains 25670.90 25453.80 25365.26 25021.70

only trucks 26253.76 26071.00 26205.02 25975.50

Table 4: Detailed solutions

Table 5 compiles best known solutions and compares the different methods proposed in

18

the literature. Column HG [7] gives the average results obtained by Huber and Geiger [7]
with 30 runs of the so-called all pre-selection variant of their algorithm, on a Intel Xeon
X5650 2.66 GHz. Column LCWGW [11] provides the results obtained by Lum et al. [11] on
a 2012 MacBook Air. Column MCMMPZ [13] reports the average results by Miranda-Bront
et al. [13] with 10 runs on a Intel Core i5-3320M. Our average results on 10 runs are recalled
in column R&R. The computing time given to all these methods is 600 seconds. Recall that
our method uses a post-optimization phase with a maximum of 300 seconds of additional
computing time. Column BKS compiles the best known solutions among all solution values
reported in the different papers. All best known values come from the different variants of
the algorithm presented in Huber and Geiger [7], except for the small only-trains instance
whose best known value comes from Table 4. The last line of the table indicates the overall
gap of the methods against the best known solutions (summing over all instances). These
results show that, if the method from Huber and Geiger [7] clearly outperforms the others,
our R&R algorithm ranks rather well among the existing methods.

Class Customer type BKS HG [7] LCWGW [11] MCMMPZ [13] R&R

mix 4797.85 4805.32 4959.00 4818.15 4808.18
Small only trains 4716.58 4730.92 4873.05 4730.63 4724.81

only trucks 4839.64 4860.06 5356.36 4913.09 5007.74

mix 7814.17 7818.87 8297.25 8040.17 7876.66
Medium only trains 7749.42 7885.75 8335.55 7957.60 7827.93

only trucks 8021.88 8119.43 8628.37 8263.76 8112.88

mix 20471.40 20764.05 22051.40 21050.29 21365.48
Large1 only trains 20215.26 20482.65 21317.00 20932.23 21026.51

only trucks 21176.49 21457.48 22419.40 21782.45 22026.64

mix 25376.41 25617.77 26712.40 26291.65 25988.46
Large2 only trains 24939.83 25331.66 26658.10 26013.09 25670.90

only trucks 25835.85 26166.99 26712.40 26762.80 26253.76

Gap to BKS 1.19% 5.89% 3.18% 2.69%

Table 5: Best known solutions and algorithm comparison

Table 6 provides the gap between the second phase of the algorithm (repair procedure)
and the first phase of the algorithm that provides an H-VRP solution which is not necessarily
feasible. The table shows also the improvement provided by solving the set partitioning
problem. Note that the first phase of the algorithm does not necessarily provide a lower
bound to the problem. In fact, the H-VRP can obtain a route with only train customers. The
cost of such a route can be improved by the correction procedure by visiting swap locations
that can help reducing the cost of using a full train.

19

Impact of the Impact of
2nd phase set partitioning

Class Customer type avg gap max gap avg gap max gap

mix 1.33% 2.96% -0.10% -0.54%
Small only trains 0.00% 0.00% -0.16% -0.31%

only trucks 2.81% 4.67% -1.34% -2.54%

mix 0.47% 1.33% -1.12% -1.78%
Medium only trains 0.00% 0.00% -1.00% -1.87%

only trucks 2.35% 4.41% -1.41% -2.28%

mix 0.22% 0.93% -0.76% -2.03%
Large1 only trains 0.00% 0.00% -0.47% -2.28%

only trucks 0.68% 2.74% -1.74% -4.19%

mix 0.08% 0.56% -0.81% 0.00%
Large2 only trains 0.00% 0.00% -1.01% -0.24%

only trucks 0.07% 1.03% -0.67% 0.00%

Table 6: Impacts of the different phases

We can notice that the average deterioration of the objective function when repairing the
solutions of the H-VRP in order to obtain feasible solutions for the SB-VRP is relatively small
in average (0.75%). For example, for instances with only train customers, the average and
maximum gaps are null. In this particular case, the routes obtained by the first phase of the
algorithm are feasible and the solution would not need to be repaired. On the other side, this
value tells the procedure never found beneficial to visit swap-location and perform (part of) a
route with a truck, when it is assigned to a train (we recall that routing a truck costs less than
routing a train). This gap increases to 1.24% in average for mix instances. For instances with
only truck customers, this gap is higher in average (2.75%) and can reach 4.47%. We can also
notice that average improvements when using the set partitioning procedure are higher for
instances with only truck customers. This improvement can reach 4.19% for large instances.

Table 7 shows the CPU time (in seconds) spent by the set partitioning phase for each
class. It shows that the time spent to solve the set partitioning problem is very low for small
instances. On the other hand, this phase can use all the allocated time (300 seconds) for
larger instances.

Time limit R&R 600 seconds 1200 seconds

Class average CPU Time average CPU Time

Small 19 35

Medium 251 277

Large1 300 300

Large2 300 300

Table 7: CPU Time of the set partitioning phase

Table 8 reports the impact of executing the algorithm on three threads rather that one
thread. The columns max and avg report respectively the maximum and the average percent-
age of improvement obtained using three threads rather than only one thread. From Table 8
we can see that the impact of using several threads is higher for large instances. It can reach

20

2.79% for large mix instances. This improvement is reduced to 0.24% for small instances with
only train customers.

Class Customer type max avg

mix 0.32% 0.10%
Small only trains 0.24% 0.02%

only trucks 0.56% 0.21%

mix 0.96% 0.23%
Medium only trains 1.04% 0.25%

only trucks 0.95% 0.50%

mix 2.32% 1.30%
Large1 only trains 2.57% 1.42%

only trucks 2.13% 0.56%

mix 2.79% 1.50%
Large2 only trains 1.99% 1.17%

only trucks 2.29% 0.75%

Table 8: Impacts of using three threads

Table 9 reports the maximum and the average improvements obtained using three threads
and the set partitioning phase rather than only one thread and no set partitioning phase.
The columns max and avg report respectively the maximum and the average percentage of
improvement. We can notice that this improvement can be relatively high for instances with
only truck customers. This improvement is higher for large instances. From Tables 6, 8 and 9,
we can conclude that using several threads and the set partitioning phase can help obtaining
better results. In addition, these two steps do not require a heavy programming effort.

Class Customer type max avg

mix 0.68% 0.24%
Small only trains 0.31% 0.20%

only trucks 2.94% 1.78%

mix 2.13% 1.35%
Medium only trains 1.97% 1.21%

only trucks 2.59% 1.90%

mix 2.93% 1.86%
Large1 only trains 2.81% 1.66%

only trucks 4.53% 2.34%

mix 2.79% 2.05%
Large2 only trains 2.19% 1.68%

only trucks 2.29% 1.10%

Table 9: Impacts of using three threads and set partitioning

8.4 New instances

We conducted new computations on a set of 20 new instances generated based on a subset of
initial instances. These new instances are classified into 5 classes. Each class extends the four

21

initial mix instances. In the first class, the time horizon is multiplied by two. In the second
class the time horizon is divided by two. All customers that cannot be served during this
time horizon by a round trip are removed. In the third class of instances demand is divided
by two (non-integer demands are rounded to the closest higher integer). The fourth class
extends the four original instances by multiplying the demand by two. Clients with a demand
higher than the capacity of the swap-body that cannot be visited using a train are removed.
Clients with a demand higher than the capacity of two swap-bodies are also removed. In the
fifth class of instances, the time horizon and the demand of each customer are divided by two
(non-integer demands are rounded to the closest higher integer). All customers that cannot
be served by a round trip during this time horizon are removed.

For each instance, the best solution is extracted after 600 seconds. In order to solve the
set partitioning problem, a time limit of 300 seconds is given to CPLEX after the end of
the solution method. The algorithm is executed five times. Tables 10 reports best (column
best) and average (column avg) solutions of R&R after 600 seconds. #customers reports the
number of customers for each instance.

Class Size #clients best avg

Small 57 4292.07 4302.80
Class 1 Medium 206 7411.30 7532.78

Large1 548 20008.50 20246.73
Large2 550 21084.30 21328.52

Small 39 3437.63 3444.68
Class 2 Medium 199 14450.50 14457.48

Large1 520 37954.90 38031.15
Large2 481 50052.80 50076.43

Small 57 3975.87 3975.87
Class 3 Medium 206 6809.87 6820.14

Large1 548 17606.80 17776.52
Large2 550 22806.50 22874.95

Small 56 6950.81 6981.30
Class 4 Medium 203 11015.70 11072.40

Large1 548 30183.10 30409.00
Large2 550 33601.20 33835.42

Small 39 3222.84 3222.84
Class 5 Medium 199 14329.80 14335.62

Large1 520 37338.10 37410.13
Large2 481 50054.60 50066.77

Table 10: Detailed solutions for new instances

Through Table 10 we can notice that the average gap between average values and best
values is relatively low. It is in average around 0.15% for small instances, 0.48% for medium
instance and 0.55% for large instances. These small gaps show that our method is relatively
robust. In this sense, remarkable is the fact that for the small instance of classes 3 and 5, the
algorithm always finds the same best known solution.

22

9 Conclusions and perspectives

In this paper we addressed the Swap-Body Vehicle Routing Problem (SB-VRP), a variant
of the Truck and Trailer Routing Problem. We proposed a solution scheme that we called
Relax-and-Repair. This approach consists in solving a relaxed version of the SB-VRP and
deriving a feasible solution by repairing the relaxed one. We embedded this approach within
a population-based heuristic (memetic algorithm). During computation we stored all feasible
routes in order to derive better solutions by solving a set-partitioning problem. To take
advantages of nowadays multi-core machines, the algorithm is designed as a collaborative
parallel population-based heuristic. Experimental results showed that the relax-and-repair
algorithm is very competitive and allowed analyzing the impact of each phase on the quality
of the obtained solutions. For example, the set-partitioning phase can improve the best
obtained solution by more than 4%, and the the use of a three-cores machine can improve
the solution by almost 3%.

The proposed relax-and-repair scheme can be adapted to solve complex industrial routing
problems. In fact, the recent advances in the vehicle routing context showed that a large
variety of rich vehicle routing problems can be solved efficiently. Relaxing complex constraints
can allow to deal with efficiently solved rich vehicle routing problems. The repair procedure
should be developed to obtain feasible solutions. The other parts of the algorithm can remain
unchanged.

References

[1] Diego Cattaruzza, Nabil Absi, Dominique Feillet and Thibaut Vidal. A memetic algo-
rithm for the Multi Trip Vehicle Routing Problem European Journal of Operational
Research, 236(6):833–848, 2014.

[2] I-Ming Chao. A tabu search method for the truck and trailer routing problem. Computers
& Operations Research, 29(1):33–51, 2002.

[3] Jean-François Cordeau, Gilbert Laporte, and Anne Mercier. A unified tabu search heuris-
tic for vehicle routing problems with time windows. Journal of the Operational Research
Society, 52:928–936, 2001.

[4] Michael Drexl. Applications of the vehicle routing problem with trailers and transship-
ments. European Journal of Operational Research, 2012.

[5] Christophe Duhamel, Christophe Gouinaud, Philippe Lacomme, and Caroline Prodhon.
A multi-thread graspxels for the heterogeneous capacitated vehicle routing problem. In
Hybrid Metaheuristics - Studies in Computational Intelligence, volume 434, pages 237–
269. Springer, 2013.

[6] Johanna C Gerdessen. Vehicle routing problem with trailers. European Journal of Op-
erational Research, 93(1):135–147, 1996.

[7] Sandra Huber and Martin Josef Geiger. Swap body vehicle routing problem: A heuristic
solution approach. In Computational Logistics, pages 16–30. Springer, 2014.

[8] Stefan Irnich. A unified modeling and solution framework for vehicle routing and local
search-based metaheuristics. INFORMS Journal on Computing, 20(2):270–287, 2008.

23

[9] Shih-Wei Lin, Vincent F Yu, and Shuo-Yan Chou. Solving the truck and trailer routing
problem based on a simulated annealing heuristic. Computers & Operations Research,
36(5):1683–1692, 2009.

[10] Shih-Wei Lin, Vincent F Yu, and Shuo-Yan Chou. A note on the truck and trailer routing
problem. Expert Systems with Applications, 37(1):899–903, 2010.

[11] Oliver Lum, Ping Chen, Xingyin Wang, Bruce Golden, Edward Wasil. A Heuristic
Approach for the Swap-Body Vehicle Routing Problem. In 14th INFORMS Computing
Society Conference, pages 172-187, 2015.

[12] Jorge E Mendoza and Juan G Villegas. A multi-space sampling heuristic for the vehicle
routing problem with stochastic demands. Optimization Letters, 7(7):1503–1516, 2013.

[13] Juan-José Miranda-Bront, Brian Curcio, Isabel Méndez-Dı́az, August́ın Montero, Fed-
erico Pousa, and Paula Zabala. A cluster-first route-second approach for the Swap Body
Vehicle Routing Problem. 2015.

[14] Christian Prins. A simple and effective evolutionary algorithm for the vehicle routing
problem. Computers & Operations Research, 31(12):1985–2002, 2004.

[15] Stephan Scheuerer. A tabu search heuristic for the truck and trailer routing problem.
Computers & Operations Research, 33(4):894–909, 2006.

[16] Frédéric Semet. A two-phase algorithm for the partial accessibility constrained vehicle
routing problem. Annals of Operations Research, 61(1):45–65, 1995.

[17] Frédéric Semet and Eric Taillard. Solving real-life vehicle routing problems efficiently
using tabu search. Annals of Operations research, 41(4):469–488, 1993.

[18] Paolo Toth and Daniele Vigo. The granular tabu search and its application to the vehicle
routing problem. INFORMS Journal of Computing, 15(4):333–346, 2003.

[19] Puca Huachi Vaz Penna, Anand Subramanian, and Luiz Satoru Ochi. An iterated local
search heuristic for the heterogeneous fleet vehicle routing problem. Journal of Heuristics,
19(2):201–232, 2013.

[20] Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, Nadia Lahrichi, and Walter
Rei. A hybrid genetic algorithm for multidepot and periodic vehicle routing problems.
Operations Research, 60(3):611–624, 2012.

[21] Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, and Christian Prins. A hybrid
genetic algorithm with adaptive diversity management for a large class of vehicle routing
problems with time windows. Computers & Operations Research, 40(1):475–489, 2013.

[22] Juan G Villegas, Christian Prins, Caroline Prodhon, Andrés L Medaglia, and Nubia Ve-
lasco. Grasp/vnd and multi-start evolutionary local search for the single truck and trailer
routing problem with satellite depots. Engineering Applications of Artificial Intelligence,
23(5):780–794, 2010.

[23] Juan G Villegas, Christian Prins, Caroline Prodhon, Andrés L Medaglia, and Nubia
Velasco. A grasp with evolutionary path relinking for the truck and trailer routing
problem. Computers & Operations Research, 38(9):1319–1334, 2011.

24

