

Impact of Guar Gum Derivatives on Properties of Freshly-Mixed Cement-Based Mortars

Alexandre Govin, Marie-Claude Bartholin, Barbara Biasotti, Max Giudici, Valentina Langella, Philippe Grosseau

▶ To cite this version:

Alexandre Govin, Marie-Claude Bartholin, Barbara Biasotti, Max Giudici, Valentina Langella, et al.. Impact of Guar Gum Derivatives on Properties of Freshly-Mixed Cement-Based Mortars. Caijun Shi; Yan Yao. 14th International Congress on the Chemistry of Cement (ICCC 2015), Oct 2015, Beijing, Italy. , The 14th International Congress on the Chemistry of Cement - ICCC Proceedings, 2015. emse-01250110

HAL Id: emse-01250110 https://hal-emse.ccsd.cnrs.fr/emse-01250110v1

Submitted on 4 Jan 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Impact of Guar Gum Derivatives on Properties of Freshly-Mixed Cement-Based Mortars

Alexandre Govin¹, Marie-Claude Bartholin¹, Barbara Biasotti², Max Giudici², Valentina Langella², Philippe Grosseau¹

> ¹ SPIN-EMSE, CNRS:UMR5307, LGF, École des Mines de Saint-Étienne, 42023 Saint-Etienne, France ² Lamberti SpA, 21041 Albizzate, Italy

Water Retention Agent (polysaccharide) Most widely used admixture: Cellulose Ethers ~ 1/3 of raw materials cost for only 0,5 wt%

Water Retention = Capacity of fresh mortar to keep its mixing water With Water Retention Agent Support Support Desired **Effect** Absorption of water by the substrate Mixing water stay into the fresh mortar → Good Mechanical and adhesive properties Adhesion Cracking failure

Polysaccharides are also expected to act as VEA

Major drawback: **Cement hydration** delay

Study of bio-based Water Retention and VEA admixture: Hydroxypropyl Guar (HPG)

─→ HPG 5

→ HPG 1 ---HPG 2

¥ ≥ 85

0.00%

0.00%

Materials

HydroxyPropyl Guars

Saint-Étienne

HPG Studied

- > A native Guar Gum (GG) + 3 HPGs + 2 hydrophobically modified HPGs
- ➤ Roughly the same molecular weight (≈ 2.10⁶ Da)

Sample	MS _{HP}	Additional Substitution	DS _{AC}	
HPG 1	Low	-	-	
HPG 2	Medium	_	_	
HPG 3	High	_	_	
HPG 4	High	Short alkyl chain		
HPG 5	High	Short alkyl chain	Higher than HPG 4	
GG	-	_	-	

Mortar Formulation

Component	CEM II/B- LL 32.5R	Lime	CaCO ₃	CaMg(CO ₃) ₂	Water
% mass of dry mixture	12 %	3 %	18 %	67 %	22 %

- ➤ Water-to-Binder ratio: W/B = 0.22
- ➤ Admixtures in addition to the binder: 0.05% 0.15% bwob

Adsorption

TOC - Centrifugation - Depletion method

PHydrophobic alkyl chain: Low 7 Adsorption Change in conformation of HPG (Simon et al.)

Alkyl chains inside the coils / Hydrophilic groups at the outskirt of the coils

Water Retention

Standard ASTM C 1506-09:

Polymer dosage (% bwob)

– 100% adsorption

$$WR(\%) = \frac{W_0 - W_1}{W_0} \times 100$$

Fexcepted GG, HPGs improve the WR capacity of mortars

To MS_{HP} improves the WR capacity MS_{HP HPG 1} < MS_{HP HPG 2} < MS_{HP HPG 3} Thanks to > Adsorption and thus 7 [HPG] in pore

solution

Positive impact of the additional alkyl chain 7 Adsorption compensated by 1 in coil overlapping concentration

To DS Slightly reduces the WR capacity DS HP HPG 4 < DS HP HPG 5

Rheological properties of mortars

Herschel-Bulkley model:

Bridging flocculation

T MS_{HP} **≥** adsorption **≥** bridging compensated by η_0 and [HPG]

₹7 K and **≥** n with HPGs 4, 5

TRheological behavior of mortars imposed by the more and more shear thinning behavior of pore solution

Conclusions

Water Retention

- HPGs are good water retention agents
- Huge impact of HPG chemical composition
 - → 7 MS_{HP} promotes WR by 7 [HPG]
 - → Hydrophobic side chain promotes WR by > C*

Rheological properties

- ← HPGs act as VEA
- \leftarrow "Classical" HPGs 7 the stability of mortars by 7 τ_0
 - → Hydrophobically modified HPGs 7 the resistance to the flow of admixed mortars by **7** K

Chemical composition of HPGs is a key parameter of mortar formulation