Impact of Guar Gum Derivatives on Properties of Freshly-Mixed Cement-Based Mortars
Alexandre Govin, Marie-Claude Bartholin, Barbara Biasotti, Max Giudici, Valentina Langella, Philippe Grosseau

To cite this version:

HAL Id: emse-01250110
https://hal-emse.ccsd.cnrs.fr/emse-01250110
Submitted on 4 Jan 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Impact of Guar Gum Derivatives on Properties of Freshly-Mixed Cement-Based Mortars

Alexandre Govin¹, Marie-Claude Bartholini¹, Barbara Biasotti², Max Giudici², Valentina Langella², Philippe Grosseau¹

¹ SPIN-EMSE, CNRS:UMR5307, LGF, École des Mines de Saint-Étienne, 42023 Saint-Étienne, France
² Lamberti SpA, 21041 Albizzate, Italy

Study of bio-based Water Retention and VEA admixture: Hydroxypropyl Guar (HPG)

Materials

- **Hydroxypropyl Guar**
 - A native Guar Gum (GG) + 3 HPGs + 2 hydrophobically modified HPGs
 - Roughly the same molecular weight (≈ 2.10⁶ Da)

- **Sample**
 - **MSHP**
 - **Additional Substitution**
 - **DSAC**
 - HPG 1: Low
 - HPG 2: Medium
 - HPG 3: High
 - HPG 4: Short alkyl chain
 - HPG 5: Higher than HPG 4

- **Water-to-Binder ratio:** W/B = 0.22
- **Admixtures in addition to the binder:** 0.05% – 0.15% bwob

Water Retention

- Water Retention: Capacity of fresh mortar to keep its mixing water
 - With Water Retention Agent
 - Without Water Retention Agent

Adsorption

- TOC - Centrifugation - Depletion method
 - Low dissolution kinetics of GG
 - MSHP: Adsorption of GG because of free -OH and polarity
 - Hydrophobic alkyl chain: Low Adsorption in conformation of HPG (Simon et al.)
 - Alkyl chains inside the coils / Hydrophilic groups at the outside

Rheological properties of mortars

- Herschel-Bulkley model:
 - \(\tau = \tau_0 + K\gamma^n \)
 - \(\tau_0 \): yield stress
 - \(K\): consistency coefficient
 - \(n\): fluidity index

- \(K \) and \(n \) with HPGs 4, 5
- Adhesion, Cracking

Conclusions

- HPGs are good water retention agents
- Huge impact of HPG chemical composition
 - MSHP promotes WR by GG[HGP]
 - Hydrophobic side chain promotes WR by C

Chemical composition of HPGs is a key parameter of mortar formulation