Impact of Guar Gum Derivatives on Properties of Freshly-Mixed Cement-Based Mortars
Alexandre Govin, Marie-Claude Bartholin, Barbara Biasotti, Max Giudici, Valentina Langella, Philippe Grosseau

To cite this version:

HAL Id: emse-01250110
https://hal-emse.ccsd.cnrs.fr/emse-01250110
Submitted on 4 Jan 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Impact of Guar Gum Derivatives on Properties of Freshly-Mixed Cement-Based Mortars

Alexandre Govin¹, Marie-Claude Bartholin¹, Barbara Biasotti², Max Giudici², Valentina Langella², Philippe Grosseau¹

¹ SPIN-EMSE, CNRS:UMR5307, LGF, École des Mines de Saint-Étienne, 42023 Saint-Étienne, France
² Lamberti SpA, 21041 Albizzate, Italy

Study of bio-based Water Retention and VEA admixture: Hydroxypropyl Guar (HPG)

Hydroxypropyl Guar

- A native Guar Gum (GG) + 3 HPGs + 2 hydrophobically modified HPGs
- Roughly the same molecular weight (= 2.10⁶ Da)

Water Retention

Water Retention Agent (polysaccharide)

Water Retention = Capacity of fresh mortar to keep its mixing water

Desired Effect

Mixing water stay into the fresh mortar → Good Mechanical and adhesive properties

Support

Absorption of water by the substrate

Adhesion failure

Cracking

Polysaccharides are also expected to act as VEA

Major drawback: Cement hydration delay

Materials

Hydroxypropyl Guar

- Water-to-Binder ratio: W/B = 0.22
- Admixtures in addition to the binder: 0.05% – 0.15% bwob

Mortar Formulation

Water Retention

- HPGs are good water retention agents
- Huge impact of HPG chemical composition
 - MSHP promotes WR by [HPG]
 - Hydrophobic side chain promotes WR by C

Adsorption

TOC - Centrifugation - Depletion method

- Low dissolution kinetics of GG
- MSHP: Adsorption because of free -OH and polarity
- Hydrophobic alkyl chain: Low Adsorption Change in conformation of HPG (Simon et al.)
 - Alkyl chains inside the coils / Hydrophilic groups at the outskirt of the coils

Water Retention

Standard ASTM C 1506-09:

- Excepted GG, HPGs improve the WR capacity of mortars
- MSHP improves the WR capacity [MSHP] < [HPG] < [MSHP]
 - Thanks to Adsorption and thus [HPG] in pore solution
- Positive impact of the additional alkyl chain
- Adsorption compensated by in coil overlapping concentration
- DSAC slightly reduces the WR capacity DSAC < DSAC

Rheological properties of mortars

Herschel-Bulkley model:

- τ = τ₀ + Ky

- τ₀ with HPGs 1, 2, 3
- Bridging flocculation
- MSHP adsorption bridging compensated by η₀ and [HPG]

- K and n with HPGs 4, 5

- Rheological behavior of mortars imposed by the more and more shear thinning behavior of pore solution

Conclusions

- HPGs act as VEA
- “Classical” HPGs the stability of mortars by τ₀
- Hydrophobically modified HPGs the resistance to the flow of admixed mortars by K

Chemical composition of HPGs is a key parameter of mortar formulation