

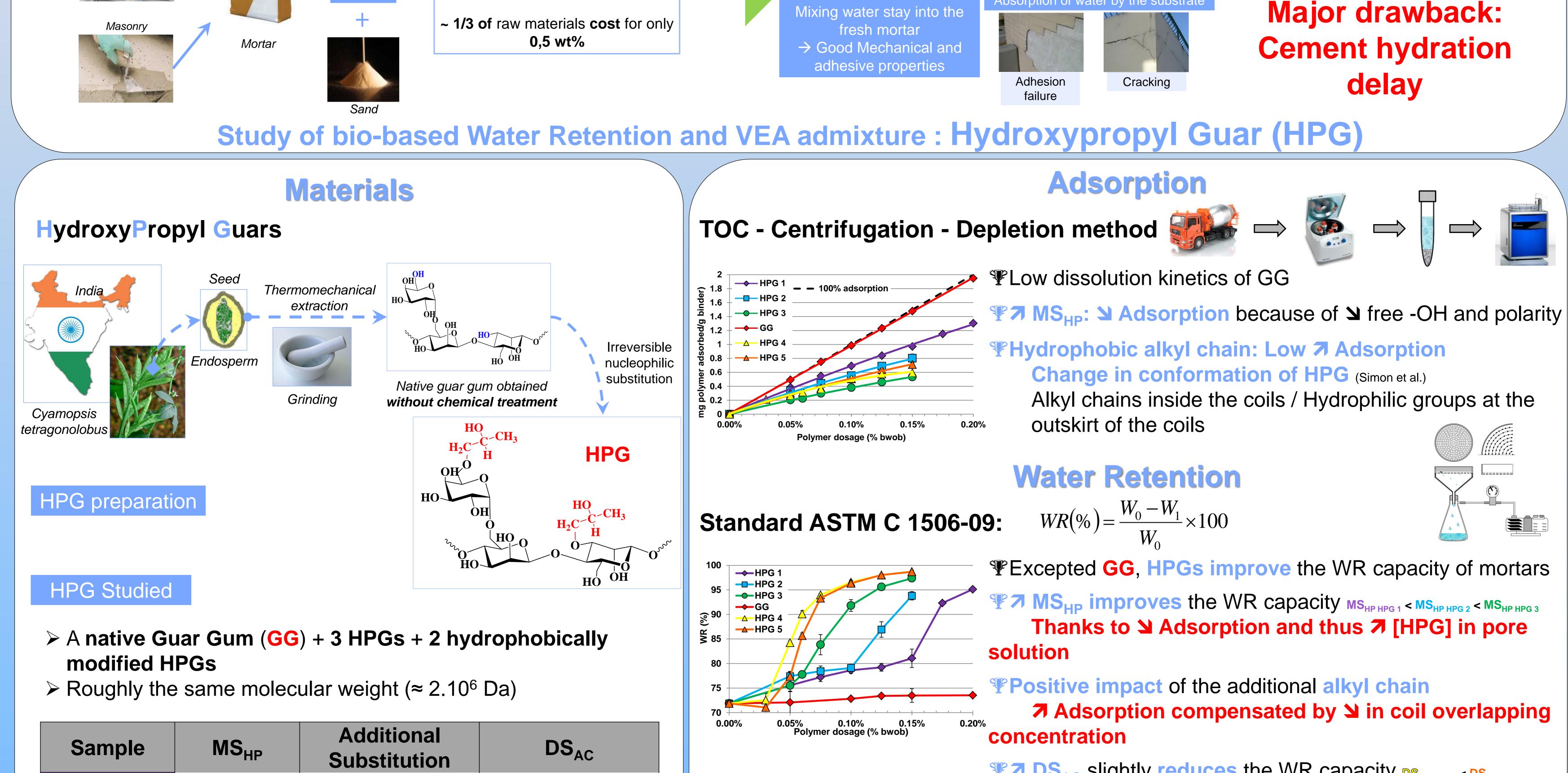
Impact of Guar Gum Derivatives on Properties of Freshly-Mixed Cement-Based Mortars

Alexandre Govin, Marie-Claude Bartholin, Barbara Biasotti, Max Giudici, Valentina Langella, Philippe Grosseau

▶ To cite this version:

Alexandre Govin, Marie-Claude Bartholin, Barbara Biasotti, Max Giudici, Valentina Langella, et al.. Impact of Guar Gum Derivatives on Properties of Freshly-Mixed Cement-Based Mortars. Caijun Shi; Yan Yao. 14th International Congress on the Chemistry of Cement (ICCC 2015), Oct 2015, Beijing, Italy. , The 14th International Congress on the Chemistry of Cement - ICCC Proceedings, 2015. emse-01250110

HAL Id: emse-01250110 https://hal-emse.ccsd.cnrs.fr/emse-01250110


Submitted on 4 Jan 2016

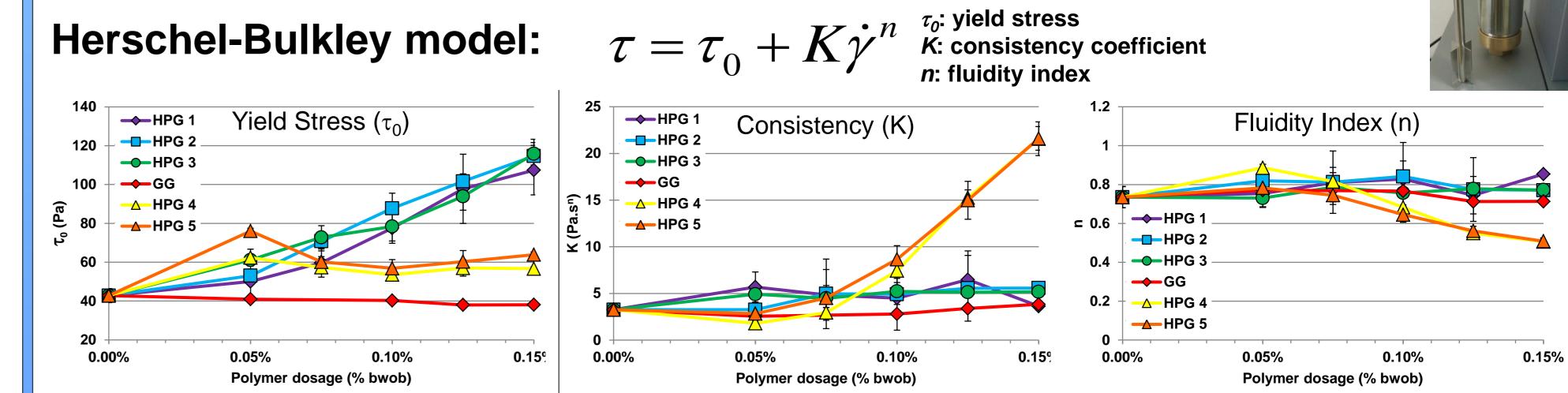
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Impact of Guar Gum Derivatives on Properties of Freshly-Mixed Cement-Based Mortars Alexandre Govin¹, Marie-Claude Bartholin¹, Barbara Biasotti², Max Giudici², Valentina Langella², Philippe Grosseau¹ lambert ¹ SPIN-EMSE, CNRS:UMR5307, LGF, École des Mines de Saint-Étienne, 42023 Saint-Etienne, France

² Lamberti SpA, 21041 Albizzate, Italy

<image/>	Cement			Water Retention = Capacity of fresh mortar to keep its mixing water Without Water Retention Agent		Polysaccharides are
		IVIOST WIDELY USED ADMIXTURE:		fect	Support Support	also expected to act as VEA
	The Theorem Conserts BE MACONNERSE 25 kg Admixture		Desired Effect			

Saint-Etienne


Sample	MS _{HP}	Additional Substitution	DS _{AC}	
HPG 1	Low	-	-	
HPG 2	Medium	-	-	
HPG 3	High	-	-	
HPG 4	High	Short alkyl chain		
HPG 5	High	Short alkyl chain	Higher than HPG 4	
GG	-	-	-	

Mortar Formulation

Component	<i>CEM II/B- LL 32.5R</i>	Lime	CaCO ₃	CaMg(CO ₃) ₂	Water
% mass of dry mixture	12 %	3 %	18 %	67 %	22 %

 \mathbb{T} DS_{AC} slightly reduces the WR capacity DS_{HP HPG 4} < DS_{HP HPG 4} < DS_{HP HPG 5}

Rheological properties of mortars

> Water-to-Binder ratio: W/B = 0.22

>Admixtures in addition to the binder: 0.05% – 0.15% bwob

 \mathbb{T} τ_0 with HPGs 1, 2, 3 **Bridging flocculation**

 \P MS_{HP} \checkmark adsorption \checkmark bridging compensated by **7** η_0 and [HPG]

\mathbb{P} / \mathbb{A} K and \mathbb{N} n with HPGs 4, 5

more and more shear thinning behavior of pore solution

Conclusions

Water Retention

Gerror HPGs are good water retention agents Gerror Huge impact of HPG chemical composition

 \rightarrow 7 MS_{HP} promotes WR by 7 [HPG]

 \rightarrow Hydrophobic side chain promotes WR by $\mathbf{Y} \mathbf{C}^*$

Rheological properties

Ger HPGs act as VEA

 $\mathcal{A} \rightarrow$ "Classical" HPGs **7** the stability of mortars by **7** τ_0

→ Hydrophobically modified HPGs **7** the resistance to the flow of admixed mortars by **7** K

Chemical composition of HPGs is a key parameter of mortar formulation