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a b s t r a c t

A paced assembly line consisting of several workstations is considered. This line is intended to assemble
products of different types. The sequence of products is given. The sequence of technological tasks is
common for all types of products. The assignment of tasks to the stations and task sequence on each
station are known and cannot be modi � ed, and they do not depend on the product type. Tasks assigned
to the same station are performed sequentially. The processing time of a task depends on the number of
workers performing this task. Workers are identical and versatile. If a worker is assigned to a task, he/she
works on this task from its start till completion. Workers can switch between the stations at the end of
each task and the time needed by any worker to move from one station to another one can be neglected.
At the line design stage, it is necessary to know how many workers are necessary for the line. To know
the response to this question we will consider each possible takt and assign workers to tasks so that the
total number of workers is minimized, provided that a given takt time is satis � ed. The maximum of
minimal numbers of workers for all takts will be considered as the necessary number of workers for the
line. Thus, the problem is to assign workers to tasks for a takt. We prove that this problem is NP-hard in
the strong sense, we develop an integer linear programming formulation to solve it, and propose
conventional and randomized heuristics.

1. Introduction

The current highly competitive market forces manufacturing
based industries to optimize their production costs. Workforce
minimization in manual assembly lines is one of the challenging
issues. This paper proposes models and methods to help the
practitioners to dimension and schedule workforce resources on
mass production manual mixed-model assembly lines.

On manual mixed-model lines, not only one but a set of similar
products (variants or models) are assembled. Usually, for mixed-
model assembly line balancing, a set of tasks for each variant is
assigned to each workstation on the line and is performed by the
worker(s) available at this workstation. Depending on the presence

of the different product variants on the line and the processing time
required to treat each task of a particular variant at each particular
workstation, the distribution of workload among workstations can
present considerable inequalities over time. The problem of how to
balance the workload among workstations has been intensively
studied in the literature ( Venkatesh, 2008). However, because of the
inequalities of task processing times for different variants, the
perfect balance can rarely be attained if at all. This results in idle
times and an inef � cient use of workforce resources.

Our paper suggests approaching this problem differently. We
assume that the assignment of tasks to workstations is known and
it is the same for all product variants. It cannot be modi � ed. In
contrast, the assignment of workers to workstations can be
dynamic depending on the state of the line.

We study the case where a line is designed for a mass production of
different variants of a product. The total volume and the ratios
of demands for product variants are known. To smooth the production
of different variants, a sequence of product variants is de � ned such that
the numbers of product variants in the sequence respect given ratios, and
this sequence is repeated cyclically. Considering a given number of
product variants and known variant ratios, we can enumerate all possible
cyclic sequences of product variants. This number is not so large. In this
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paper, we will consider a given sequence of product variants. The
approach and model are the same for all other possible sequences.

The assembly line is paced, i.e. at the end of each takt, all items
are simultaneously moved to the next stations. The takt time is the
time available to execute the tasks assigned to stations.

A state of the line is de � ned by variants of the product at
stations, i.e. if we know which variant is at each station for a takt,
we know the state of the line for this takt (and consequently task
processing times). For a given cyclic sequence of product variants,
all possible states of the line are known and their number (thus the
number of takts to consider) is equal to the sequence length. They
are repeated cyclically. We will develop a model for only one takt;
obviously this model is valid for all other takts, because the takt
state structural information is the same for all takts (workers and
workstations with their tasks); the differences among takt states
concern only processing times which is the input data of our model.

We consider that all workers are polyvalent (identical) and
each of them can execute any task at any workstation. The time
needed by any worker to move from one station to another one
can be neglected. A task is executed by one or several workers. The
processing time of a task is inversely proportional to the number
of workers performing it. When a task is � nished at one work-
station, a worker can move to another workstation in order to
speed a task completion there and to balance the workloads of
both workstations. The assignment of tasks to the stations and the
task sequence on each station are known and cannot be modi � ed,
and they do not depend on the product variant. Tasks assigned to
the same station are performed sequentially. Therefore, for a given
takt, the considered optimization problem is to � nd the optimal
assignments of workers to sequences of tasks, so as to � nd a
schedule of their moves along workstations, taking into account
the state of the line in the considered takt. The objective is to
minimize the total number of workers required for the given takt.

As aforementioned, this problem is the same for any takt; only the
states of the line are different, i.e. the product variants are situated
differently at stations for diverse takts. Thus, if we have a model to
optimize assignment of workers for a takt, this model can be applied
to all other takts. The worker moving times are neglected, thus the
working positions for different takts can be considered independently.
The number of workers assigned to the line cannot be modi � ed from
one takt to another one. By applying the model to each possible takt
separately, we can obtain a minimum number of workers necessary
for this line and a work schedule for each of them. This approach is
used to dimension the workforce at the line design stage.

To summarize, we consider one takt scheduling problem for
workers for a given sequence of product variants. The objective is to
� nd a schedule of moves of workers along workstations minimizing
the number of necessary workers under a takt time constraint and
taking into account workloads of stations (the state of the line for
the considered takt). This problem is also related to line balancing
problems, because it can be considered as an assignment of tasks to
workers to minimize the number of workers.

Section 2 presents an industrial case which motivated our research.
We call this problem P. Production environment and numerical
characteristics of the problem are described. Related literature is
analyzed in Section 3. A Mixed-Integer Program (MIP) is presented
in Section 4. Problem P is proved to be NP-hard in the strong sense in
Section 5. Five heuristics developed for problem P are described in
Section 6. Section 7 reports computer implementation and experi-
ments. Finally, the paper concludes with a summary of the results.

2. Industrial case

Problem P was stated by one of our industrial partners. This
enterprise from the automotive industry has to design a new

assembly line for three variants of an engine: V12, V16 and V20.
While doing the line design, it is necessary to dimension the
workforce: to know how many workers should be employed on
this line. This number should be as small as possible in order to
decrease the labor costs. Thus, a workforce planning for this
assembly line, minimizing the number of workers, is necessary.

The assembly stations are connected by a unidirectional con-
veyor. The sequence of the assembly stations to be visited by the
semi- � nished engines, and the sequences of tasks to be performed
at the assembly stations are the same for all engine variants.
However, the task processing times depend on the variant of
engine. For the same number of workers assigned to a task, some
tasks for V20 engines take a longer time than those for V16
engines, and some tasks for V16 engines take more time than
those for V12 engines, while some other tasks have the same
processing times for all engine variants.

The assembly line is paced, therefore, the sum of task times at
any assembly station in each takt must not exceed a given
takt time.

To calculate the takt time, the following information given in
Table 1 is used.

The annual production volume and shares (ratios) of demand
for each engine variant are known, they are given in Table 2.

Taking into account the information that the line is designed to
produce 1450 engines per year, the takt time in hours needed to
produce one engine is calculated as follows:

Takt time ¼
230 days

year

h i
n2 shifts

day

h i
n8 hours

shift

� �

1450 engines
year

h i ¼ 2:5 ½hours=engine�

The manufacturer prefers to have evenly distributed engine
variants on the line. Due to this requirement, a cyclic sequence of
variants to enter the line was designed taking into account the
ratios of engine models in the total annual production. These
ratios are as follows:

Ratio V12 ¼ 75%¼
3
4

¼
15
20

Ratio V16 ¼ 20%¼
1
5

¼
4

20

Ratio V20 ¼ 5%¼
1

20

Therefore, the following cyclic sequence respecting the criteria
of smoothness and ratios was selected: see Fig. 1.

Mass production with push principle, the smoothness criterion
for variant releases and given variant ratios can explain this choice
made by our industrial partner. The total annual sequence of

Table 1
Available production time.

Days per year 230
Shifts per day 2
Shift duration (h) 8

Table 2
Annual production volume and variant ratios.

Annual volume for all variants (engines/
year)

1450

V12 share 75%
V16 share 20%
V20 share 5%



engine variants is, of course, a repetition of this sequence of 20
regularly distributed engine models.

Without loss of generality we will study only this cyclic
sequence. If we need to consider all other situations, we can
enumerate all possible sequences respecting the variant ratios, and
apply the same approach and model for each of these sequences.
Taking into account the constraints on ratios, the number of
possible cyclic sequences is not large. For the studied industrial

case, in total, there are 19
4

� �
= 3876 possible sequences. Moreover,

for each sequence, we can calculate a lower bound on the number
of workers as well as an upper bound on the number of workers
on the line. Considering these bounds and other constraints, we
can remove less promising sequences. For this example, after such
an analysis, only 12 sequences were proposed to our industrial
partner and the sequence in Fig. 1 was selected.

There are 11 assembly workstations in the line. The � rst state of
the line for the sequence in Fig. 1, i.e. the state at the � rst takt, is
where the 11 � rst engines of the sequence are loaded on the
stations in their order in the sequence (three V12, then one V16,
then three V12 and again one V16 and three V12). Before starting
the second takt, the V12 engine of the last station will leave the
line, all other engines will move to their next station, and the V20
engine (next in the sequence) is loaded on the � rst station, and so
on for next takts. In total, there are 20 states of the line for this
sequence. The last state is where the last V16 engine is on the last
station of the line. Thus after 20 takts the sequence is completed
(the cycle is � nished) and it will be repeated again and so on.

For such a line, the processing time of a task for an engine
variant is inversely proportional to the number of workers
assigned to it. Let task i require pi time units if it is performed
by one worker. Let piðmÞbe the processing time of task i if it is
performed by m workers. The relation between time piðmÞneeded
to perform task i by m workers, and time pi needed to perform
task i by one worker is as follows:

pi mð Þ ¼pi=m

No more than four workers can be assigned to the same task.
Workers are authorized to move from one station to another

station when it is needed. If a lack of workforce occurs at a station,
then workers from the stations with a surplus of the workforce can
move there to help to complete tasks in time. An example of such
a situation is illustrated in Fig. 2.

In Fig. 2, at two stations, which are occupied in a certain takt by
V20 and V16 engines, two workers are not enough to obtain the
sum of processing times satisfying the given takt time. If two
workers from stations with a surplus of the workforce move to the
station with the V20 engine, and one worker moves to the station
with the V16 engine, then the takt time is satis� ed.

The distance between any two consequent stations is at most
11 m, and any worker can travel between them in less than 10 s,
which is only 0.09% of the takt time. Therefore, we can simplify the
problem by assuming that the time needed by any worker to move
from one station to another is equal to 0.

In this line, there are also sub-assembly stations. An assembly
station can have several associated sub-assembly stations. A sub-
assembly module, which is a part of the engine prepared at a sub-
assembly station, must be � nished in a takt that immediately
precedes the takt in which the engine variant will be treated at the
corresponding assembly station.

In Fig. 3, the V20 engine arrives at the assembly station A.S.01
and, at the same time, the sub-assembly stations SA.S.2.1 and SA.
S.2.2 start to prepare a sub-assembly module for the V20 engine,
so that it will be mounted on the engine in the next takt at the
assembly station A.S.02.

For the studied assembly line, there are 170 tasks in total to be
executed at 11 assembly and 17 sub-assembly stations for one
engine. The workers move among all stations (assembly and sub-
assembly stations)

The states of sub-assembly stations are completely de � ned by
the state of corresponding assembly stations; thus in our model
we do not need to distinguish assembly and sub-assembly
stations, we need only to know the state of all stations (assembly
and sub-assembly) for a takt, and we will search for an optimal
schedule of workers among all 28 stations.

The state of the assembly (and consequently subassembly)
stations for a takt are de � ned by the selected sequence of product
variants and the position of the takt in a cycle. Since the annual
sequence of engine variants entering the line is a repetition of the
sub-sequence presented in Fig. 1 that consists of 20 variants, there
are 20 distinct takts which differ with the assignment of engine
models to the assembly stations. The problem is to � nd an
assignment of workers to the 170 tasks such that the total number
of workers is minimized and the takt time of 2.5 h is satis� ed for
each of these 20 takts. Since the set of workers should not change
from one takt to another one, the number of workers of the line
must be set to the maximal number of workers among the 20
different takts. Taking into account our assumption that worker
moving times are negligible, the 20 corresponding problems can
be solved independently. Thus, we develop a model for only one
takt. This model will be used for each of 20 takts of this line.

The initial solution proposed by our industrial partner con-
sisted of 28 workers for 15 takts and 29 workers for the remaining
5 takts. Thus, it was supposed that at most 29 workers are
necessary for this line.

3. Overall statement of the problem and related literature

The following formal problem, denoted problem P, is studied:

A paced line to assemble different variants of a product is
designed. A set of workstations is given, at which tasks
required for assembling the product variants are performed.
The tasks are already assigned to stations and the assignment
and the order of tasks at each station cannot be modi � ed.
Product variants enter the line in a given sequence one after
another, and all products visit all stations in the same order. At
the same station, the same tasks are performed for any type of
product. Tasks of each station are performed sequentially.
When a takt is � nished, one new product enters the � rst
assembly station of the line, one � nished product leaves the
last assembly station, and semi- � nished products move
towards the next assembly stations. The new takt starts.
Each task requires a minimum number of workers but also has
an upper limit on the possible number of workers. The task
time depends on the number of workers employed for its
execution and on the variant of product. The values of proces-
sing times are given for each task, number of workers and
product variant. If a worker is assigned to a task, he/she is fully
occupied by this task from its start till completion time. After

Fig. 1. Cyclic sequence of 20 evenly distributed engine variants.



having completed a task, a worker can move among stations.
The travel time is assumed to be zero (it is negligible compared
to processing times).
The line takt time is assumed to be given. A takt time is the
period of time needed to produce one item of the � nished
product. It is determined by the required throughput of the
assembly line (equal to the inverse of the number of products
required per time period). The takt time provides an upper
limit on the total processing time for one item at any station.
The sequence of products is given. Thus, for each takt, the
assignment of products to the assembly stations is also given
and consequently the task times for all stations are known. The
problem is to determine for a takt an assignment of workers to
tasks, such that the total number of workers is minimized and
the line takt time is not exceeded. In other words, the assign-
ment of workers to tasks needs to � nd a sequence of tasks for
each worker for the considered takt. More formally, considering
a set W of workers and a set I of tasks, the latter set being
partitioned in subsets of ordered tasks which are called stations,
the problem is to assign each task to a number of workers.

Problem P needs to be solved for each possible takt. The
maximum of the minimal number of workers on all takts will
give us the necessary number of workers for the line.

The notion of tasks which can be assigned to some workers
working in parallel has already been introduced in scheduling, in the
case of tasks assigned to identical parallel processors. Such tasks are
named malleable tasks (see, e.g. Blazewicz et al. (2006), Fan et al.
(2012), Jansen and Zhang (2012) and Sadykov (2012)). As a scheduling
problem, and using the standard notation, problem P can be denoted
by Pm | MT, prec, CMAX | m where MT stands for Malleable Tasks.

In the literature, the optimization of workforce resources has
also been considered in line balancing problems. A general pre-
sentation of line design and balancing problems is given in ( Dolgui
and Proth, 2010 ) and a recent comprehensive review of literature
on assembly line balancing can be found in ( Battaïa and Dolgui,
2013). More speci � cally, assembly line balancing problems with
workforce assignment are currently being intensively studied. The
most frequently considered criterion is to minimize the line takt
time, see Miralles et al. (2008) , Blum and Miralles (2011) , Moreira
and Costa (2013) and Mutlu et al. (2013) . Most of the publications

Fig. 2. Adaptation of work capacity to workload by movement of workers along stations.

Fig. 3. Relation between sub-assembly and assembly stations.



on workforce assignment or workforce planning assume that
workers have different skills, which in � uence task processing
times and hence the line productivity; see, for example, Nakade
and Ohno (1999) , Miralles et al. (2007) , Niemi (2009) , Araújo et al.
(2012) , Othman et al. (2012) , Fowler et al. (2008) and Costa and
Miralles (2009) .

The state-of-the-art on workforce planning problems assuming
different skills of workers is given in De Bruecker et al. (2015) . A
workforce assignment problem with a total cost minimization
criterion, in which a higher quali � ed worker can substitute a lower
quali � ed one, but not vice versa, was investigated by Özgüven and
Sungur (2013) and Sungur and Yavuz (in press) . The authors used
integer linear programming models to solve this problem. A
speci� c assembly line balancing problem arising in lines with
conventional and disabled workers was studied by Moreira et al.
(2015) . They proposed several mathematical models and heuristics
to minimize the number of workstations, while integrating in the
assembly line a number of disabled workers. Borba and Ritt (2014)
used an MIP model and a heuristics based on beam search to solve
a worker assignment problem with a � xed number of workers and
the production rate maximization criterion.

Corominas et al. (2008) study a problem that differs from
problem P in that it distinguishes permanent and temporary
workers, introduces incompatible groups of tasks and a change
of stations is not possible. The objective is to minimize the number
of temporary workers. A binary linear programming formulation
for this problem is proposed and a commercial solver is applied. A
heuristic algorithm for the assignment of workers in a lean U-
shaped line is developed by Shewchuk (2008) . Nakade and
Nishiwaki (2008) study a problem of allocating non-identical
workers to machines in a U-shaped production line to minimize
the takt time, provided that the number of workers is minimized.
A constructive heuristic algorithm for a multi-period problem of
the workforce assignment in a mixed-model vehicle production
assembly line is proposed by Karabak et al. (2011) . A mathematical
model for scheduling skilled permanent workers and unskilled
temporary workers in a mixed-model � ow line is developed by
Techawiboonwong et al. (2006) . In this latter problem, the num-
bers of skilled and unskilled workers in each time period are the
decision variables, and the goal is to minimize wage and hiring/
� ring costs.

A certain number of publications is dedicated to the effect of
the learning, forgetting and aging of the workforce; see for
example Grosse and Glock (in press), Grosse et al. (2013), Boenzi
et al. (2015) and Hewitt et al. (2015) .

In the works of Akagi et al. (1983), Wilson (1986) and Lutz and
Davis (1994), it is assumed that the performance of the workers
performing the same task is the same, and that the task processing
time depends solely on the number of workers assigned to this task.
Thus, they made the same assumption as we do for problem P.

The assignment of identical workers, just as in problem P, was
also studied in the literature. Vairaktarakis et al. (2002) developed
heuristic algorithms for workforce planning in synchronous pro-
duction systems with identical well-trained workers. They solved
this problem for the cost minimization criterion, including work-
force costs and costs associated with the length of the production
horizon. Yu et al. (2013) studied the multi-objective problem of
assembly line conversion into a pure cell system, for which one of
the objectives was to minimize the number of workers, just as in
problem P. The problem with the same objectives, but for main-
tenance workforce sizing, was studied by Ighravwe and Oke
(2014) . The authors formulated a non-linear integer programming
model to solve it.

Our research on problem P was inspired by a speci � c workforce
assignment problem coming from the automotive industry. The

problem with such a formulation has never been studied in
literature.

4. MIP formulation of problem P

In this section, we suggest a Mixed-Integer Programming (MIP)
model for problem P. The model is the same for each of the 20
takts determined by the entering sequence of evenly distributed
engine types, but the input data can be different for different takts.
The following notation is used:

4.1. Given sets:

� W – set of available workers;
� I – set of tasks;
� L – set of last tasks at all stations;
� O – set of ordered pairs of tasks ði; jÞsuch that task i precedes

task j on their station, not necessarily immediately;
� O' – set of ordered pairs of tasks ði; jÞ such that task i

immediately precedes task j on their station;
� D – set of unordered pairs of tasks f i; jg such that they are

assigned to different stations.

4.2. Indices:

� i or j – a task;
� w – a worker;
� m – number of workers assigned to a task.

4.3. Given parameters:

� C – takt time;
� wmax – cardinality of the set W of available workers,

wmax ¼ j W j ;
� mmax – an upper limit on the number of workers assigned to the

same task, mmax r wmax;
� piðmÞ – processing time of task i, if it is performed by m

workers, i A I, m ¼ 1;…;mmax.

4.4. Decision variables:

� Si – start time of task i;
� xiw – {1, if i is the � rst task performed by worker w,

0 otherwise};
� xijw -{1, if worker w successively performs tasks i and j, and no

other task between them, 0 otherwise};
� uij – {1, if tasks i and j are performed successively by the same

any worker, and this worker performs no other task between
them, 0 otherwise};

� yim – {1, if task i is performed by m workers, 0 otherwise};
� zw – {1, if worker w is used, 0 otherwise}.



Let M be a suf� ciently large positive number. Our MIP model is
as follows:

min
Xwmax

w ¼ 1

zw ;

subject to

Si þ
Xmmax

m ¼ 1

piðmÞUyim r C; 8 i A L; ð1Þ

Sj � Si Z
Xmmax

m ¼ 1

pi mð ÞUyim ; 8ði; jÞA O0; ð2Þ

Sj � Si Z
Xmmax

m ¼ 1

pi mð Þ:yim � Mð1� uij Þ; 8 f i; jgA D; ð3Þ

Xmmax

m ¼ 1

yim ¼ 1; 8i A I; ð4Þ

Xmmax

m ¼ 1

mUyim ¼
Xwmax

w ¼ 1

xiw þ
X

j A I;j a i

Xwmax

w ¼ 1

xjiw ; 8 i A I; ð5Þ

xijw þ xjiw r 1; 8 i; j A I; i a j; w A W; ð6Þ

xiw þ
X

j A I\f ig

xjiw Z
X

j A I\f ig

xijw ; 8 i A I; w A W; ð7Þ

xjw þ
X

i A I

xijw r zw ; 8 j A I; w A W; ð8Þ

X

i A I

xiw ¼ zw ; 8w A W; ð9Þ

Xwmax

w ¼ 1

xijw Z uij ; 8 f i; jgA D; ð10Þ

Xwmax

w ¼ 1

xijw r mmax Uuij ; 8 f i; jgA D; ð11Þ

uij þ uji r 1; 8 i; j A I; i a j; ð12Þ

zw Z zw þ 1; 8w A W; w a wmax; ð13Þ

X

j A I j ðj;iÞA 0

pjðmmaxÞr Si r C�
X

j A I j ði;jÞA 0

pjðmmaxÞ; 8 i A I; ð14Þ

xiw A f0;1g; 8 i A I; w A W; ð15Þ

xijw A f0;1g; 8 i; j A I; w A W; ð16Þ

uij A 0;1f g; 8 f i; jgA D; ð17Þ

yim A f0;1g; 8 i; A I; m ¼ 1;…;mmax; ð18Þ

zw A f0;1g; 8w A W: ð19Þ

The constraints (1) ensure that the takt time limit is not
exceeded.

The constraints (2) guarantee that if task i immediately pre-
cedes task j at a station, then it completes before or at the start of
task j.

The constraints (3) assure that if i and j are decided to be
performed by the same worker in the order ði; jÞwith no other task
between them, i.e., uij ¼ 1, then the start time of task i plus its
processing time does not exceed the start time of task j.

The constraints (4) ensure that the number of workers assigned
to a task is unique.

On the left hand side of the constraints (5), there is the number
of workers assigned to task i. On the right hand side, the � rst sum
is the number of workers for which i is the � rst task. The double
sum counts for workers that switch to i immediately from some
other tasks. It is required that the values in both sides are equal.

The constraints (6) exclude the case where a worker performs
tasks i and j both in the order ði; jÞand in the order ðj; iÞ.

The constraints (7) require that if a worker performs tasks i and
j in the order ði; jÞ with no other task between them
(
P

j A I;j a ixijw ¼ 1 for a worker w), then either i is their � rst task
(xiw ¼ 1) or he/she performs some other task immediately before
task i (

P
j A I;j a ixjiw ¼ 1).

The constraints (8) state that if worker w is not used, i.e., zw ¼ 0,
then there are no tasks i and j such that this worker switches to j
immediately after i, nor task j which is the � rst of this worker. If
worker w is used, i.e., zw ¼ 1, then there can only be either one
task i such that this worker switches to j immediately after i, or
one task j which is the � rst of this worker.

The constraints (9) state that, if a worker is chosen, then his/her
� rst task should be assigned to him/her, and, if a worker is not
chosen, then no � rst task should be assigned to him/her.

The constraints (10) state that, if i and j are decided to be
performed by the same worker in the order ði; jÞwith no other task
between them, i.e., uij ¼ 1, then there is at least one worker who
can do it.

The constraints (11) require that, if i and j are decided not to be
performed by the same worker in the order ði; jÞwith no other task
between them, i.e., uij ¼ 0, then no worker can perform these tasks
in this order, with no task between them.

The constraints (12) exclude the case where the tasks i and j are
processed both in the order ði; jÞand in the order ðj; iÞ.

The constraints (13) break the symmetry by requiring that only
consecutively numbered workers are used.

An interesting open question is whether the relaxed problem,
in which a worker can switch from one task to another, but not
necessarily at the end of the former task, has the same optimal
value as the original problem. If the answer to this question is
positive, then one can solve the problem that determines the
numbers of workers for each task, and then solve another
problem, which speci � es these workers.

5. NP-hardness proof

In this section, we prove that problem P is NP-hard in the
strong sense.

Theorem 1. Problem P is NP-hard in the strong sense even if there is
a single task on each station and each task can only be performed by
one worker.

Proof. We will use a reduction from the NP-complete in the
strong sense problem 3-P ARTITION; see Garey and Johnson (1979).

3-PARTITION: Given 3kþ 1 positive integer numbers h1;…;h3k and
H satisfying

P 3k
j ¼ 1 hj ¼ kH and H=4o hj o H=2, j ¼ 1;…;3k, does

there exist a partition of the set f1;…;3kg into subsets X1;…;Xk

such that
P

j A Xt
hj ¼ H for t ¼ 1;…;k?

Given an instance of 3-P ARTITION, we construct an instance of
problem P, in which there are n ¼ 3k tasks, k available workers:
only one worker can perform any task: mmax ¼ 1, 3k stations, and
task j must be performed on station j, j ¼ 1;…;3k. Task processing
times are pj1 ¼ hj , j ¼ 1;…;3k. The takt time is C¼ H. We will show
that there exists a feasible solution for this instance with at most k
workers, if and only if, the instance of 3-P ARTITION has a solution.
The described reduction is pseudo-polynomial in the input length
of 3-PARTITION.



Let us suppose that there exists a feasible solution of the
constructed instance of problem P. Note that all k workers must
be used, because otherwise at least one worker will need to
perform at least four tasks, whose total duration will exceed the
takt time H. For the same reason, each worker must perform
exactly three tasks. Let Xt denote the set of tasks performed by
worker t , t ¼ 1;…;k. Due to the solution feasibility, relations
P

j A Xt
hj r H, t ¼ 1;…;k, must hold. They imply

P
j A Xt

hj ¼ H,

t ¼ 1;…;k, as it is required to prove the part “only if ” of our claim.
Conversely, if a collection of sets X1;…;Xk is a solution of 3-

PARTITION, then assign tasks of the set Xt to the worker t , who will
perform them in any order, t ¼ 1;…;k. For this solution, all tasks
will complete by H ¼ C: Hence, it is a solution to the constructed
instance of problem P. �

The above proof implies that problem P is hard in strong sense,
thus an ef � cient exact algorithm to solve P is unlikely to exist. This
means that regardless of a given available calculation time, there is
always a size of problem's instance for which the problem cannot
be solved optimally. Therefore, in the next section, we introduce
several heuristics to be able to treat problem Pof any practical size.

6. Heuristics

The � rst heuristic is simple. It determines the number of
workers for each station. They perform every task of their station
and do not move to another station. This heuristic gives the same
solution as the solution proposed by our industrial partner.

Let s be the number of stations and let Iq be the given set of
tasks of station q, q ¼ 1;…;s. Let mq denote the number of workers
assigned to station q, which has to be determined, mq ¼ 1;…;mmax.
The � rst heuristic is as follows:

6.1. Heuristic Same� Station:

� Step 1. Calculate mq ¼ min fmj
P

j A Iq

pjðmÞr Cg; q ¼ 1;…;s:

Note that, if
P

j A NpjðmmaxÞr C, then the bisection search can be

employed to � nd the above minimum in polynomial time for
any non-increasing function pjðmÞ. In each of Oðlog 2mmaxÞ

iterations of the bisection search, the relation
P

j A IpjðmÞr C

needs to be veri � ed for a trial value mA f1;…;mmaxg.
� Step 2. Output a solution, in which mq consecutively indexed

workers perform tasks required for station q and these tasks
only, q ¼ 1;…;s.
If mq 4 mmax for a q, 1r qr s, then the solution found is
unfeasible. Otherwise, it is feasible with the total number of
workers Wð1Þ¼

P s
q ¼ 1 mq.

This algorithm can be applied with any functions pjðmÞ. For the

case pj mð Þ ¼pj=m, with this algorithm we obtain mq equal to
P

j A Iq
pj=C.

Our second heuristic, denoted as Sequential� Stations, is also
applied for mq r mmax, q ¼ 1;2;…;s. The heuristic considers sta-
tions in a certain sequence. Let the sequence be 1 ;2;…;s. The
heuristic proposes to assign the same arbitrary mmax workers to
the stations 1 ;2;…;qmax, qmax r s� 1, so that the workers serve
these stations in the indicated order from time zero until the total
processing time of the last task of station qmax does not exceed the
takt time C. Then the assigned workers and the stations 1 ;…;qmax

are removed from the problem input, and the process is repeated.
If qmax ¼ s, then m0 o mmax workers can be assigned to the last
stations.

6.2. Heuristic Sequential� Stations:

� Step 1. Calculate mq ¼ min fmj
P

j A Iq
pjðmÞr Cg, q ¼ 1;2;…;s. If

mq 4 mmax for a q, 1r qr s, then stop: no feasible solution
exists.

� Step 2. Re-number stations 1 ;2;…;s in a certain order, for
example, such that the sub-assembly stations of station 1 go
� rst, then station 1, then the sub-assembly stations of station 2,
station 2, and so on. Set a ¼ 1. Initialize the total number of

assigned workers W ð2Þ¼ 0.
� Step 3. Determine qmax ¼ max

ar qr s
fqj

P q
h ¼ a

P
j A Ih

pjðmmaxÞr Cg.

If qmax ¼ s, then go to Step 4. If qmax r s� 1, then perform the
following computations. Assign arbitrary mmax workers from
the set W of available workers to each task of the stations
a;aþ 1;…;qmax so that they serve these stations in the indicated
order. Remove the assigned workers from the set W. Re-set a :

¼ qmax þ 1 and Wð2Þ: ¼ W ð2Þþ mmax. Repeat Step 3.
� Step 4. Determine m0 ¼ min

1 r m r mmax

fm j
P s

h ¼ a

P
j A Ih

pjðmÞr Cg.

Assign arbitrary m0 workers to each task of the stations
a;aþ 1;…;s so that they serve these stations in the indicated
order. Re-set Wð2Þ¼ Wð2Þþ m0. Output the � nal solution and its
value W ð2Þ.

The third heuristic, denoted as Sequential-Stations-Random,
differs from the heuristic Sequential-Stations in that the sequence
of stations is generated at random.

6.3. Heuristic Sequential-One-Traveling-Worker:

Let s be the number of stations and let Iq be the given set of
tasks required at station q, q ¼ 1;…;s. Let mq denote the number of
workers assigned to station q, which has to be determined,
q ¼ 1;…;mmax, where i or j is a task, i; j A I.

If the number of workers mq, performing tasks of station q with
a given takt time C, is constant, then we can evaluate the
minimum number of workers mq required to perform the given
set of tasks Iq at station q for a given tact time C:

mq ¼ min fmj
X

j A Iq

pjðmÞr Cg; q ¼ 1;…;s:

Now we consider the case when a part of the tasks of set Iq is
performed by mq workers and a part of the tasks of set Iq is
performed by mq � 1 workers.

Let I �
q;k be � rst k tasks of station q and I þ

q;k ¼ Iq \I �
q;k.

We can calculate:

kq ¼ min k j
X

j A I �
q;k

pj mq
� �

þ
X

j A I þ
q;k

pj mq � 1
� �

r C

8
<

:

9
=

;

Note that I �
q;k a � , and I þ

q;k can be an empty set.

If I þ
q;k a � , then tasks of set I �

q;kq
are performed by mq workers

and tasks of set I þ
q;kq

are performed by mq � 1 workers. In this

situation, one worker at station q is free starting from the time:

Sq ¼
X

j A I �
q;k

pj mq
� �

This worker can perform tasks of set Iqþ 1;r at station qþ 1. We
assume that all tasks assigned to a particular station are denoted
sequentially and � rst task performed at a station has index 1, so:

Iqþ 1;r ¼ j A Iqþ 1; j Z r
� 	

ð20Þ

If all the workers initially assigned to the station qþ 1 remain at
this station until the end of takt time, we can calculate r using the



following formula:

r ¼ min r j
X

j A Iq þ 1;j o r

pj mqþ 1
� �

Z Sq

8
<

:

9
=

;

However we should note that this formula does not take into
account that, due to the set I þ

qþ 1;k, one of the workers at station

qþ 1 does not necessarily perform all tasks from set
In ¼ j j j A Iqþ 1; j o r

� 	
, because of his/her movement to station

qþ 2. We will provide the exact value for r after clarifying the
partition of all tasks of station qþ 1 into subsets that are
performed by different numbers of workers.

Now we need to calculate the minimum number of workers
mqþ 1 required to perform a given set of tasks Iqþ 1 at station qþ 1,
taking into account that a worker from station q performs tasks
Iqþ 1;r . To make these calculations, we consider the following
equalities:

Iq ¼ I �
q;k [ I þ

q;k

Iq ¼ ðIq\Iq;r Þ[ Iq;r

Iq\Iq;r ¼ ðI �
q;k\Iq;r Þ[ðI þ

q;k\Iq;r Þ

Iq;r ¼ ðIq;r \I
�
q;kÞ[ðIq;r \I

þ
q;kÞ

Therefore:

Iq ¼ ðI �
q;k\Iq;r Þ[ðI þ

q;k\Iq;r Þ[ðIq;r \I
�
q;kÞ[ðIq;r \I

þ
q;kÞ

The number of workers for each subset is shown in Table 3.
Figs. 4 and 5 demonstrate the subsets de � ned above.
Since we have already de� ned how many workers are perform-

ing tasks for each subset (see Table 3), we can provide an exact
value for r:

r ¼ min r j
X

j A I �
q þ 1;k \Iq þ 1;r

pj mqþ 1
� �

þ
X

j A I þ
q þ 1;k \Iq þ 1;r

pj mqþ 1 � 1
� �

Z Sq

8
<

:

9
=

;

ð21Þ

Note that set Iq;r de� ned by formula (21) contains the set Iq;r

de� ned by formula (20).
One can think that we can use the following formula to

determine mqþ 1:

mqþ 1 ¼ min mj kqþ 1 ¼ min kj
X

j A I �
q þ 1;k \Iq þ 1;r

pj mqþ 1
� �

8
<

:

8
<

:

þ
X

j A I þ
q þ 1;k \Iq þ 1;r

pj mqþ 1 � 1
� �

þ
X

j A Iq þ 1;r \I
�
q þ 1;k

pj mqþ 1
� �

þ
X

j A Iq þ 1;r \I
þ
q þ 1;k

pj mqþ 1 þ 1
� �

r C

9
=

;

9
=

;
: ð22Þ

However, this formula does not guarantee that there will be no
over� ow for one worker and under � ow for another one (see an
explanation below). We need to add constraints for each worker
and then combine them. As the result we will obtain the follow-
ing:

mqþ 1 ¼ min mj kqþ 1 ¼ min kj
X

j A I �
q þ 1;k \Iq þ 1;r

pj mqþ 1
� �

8
<

:

8
<

:

þ
X

j A I þ
q þ 1;k \Iq þ 1;r

pj mqþ 1 � 1
� �

r Sq;
X

j A Iq þ 1;r \I
�
q þ 1;k

pj mqþ 1
� �

þ
X

j A Iq þ 1;r \I
þ
q þ 1;k

pj mqþ 1 þ 1
� �

r C� Sq

9
=

;

9
=

;
ð23Þ

Thus, one worker at station qþ 1 does not perform tasks of set
ðI þ

qþ 1;k\Iqþ 1;r Þ[ðIqþ 1;r \I
�
qþ 1;kÞ ¼I þ

qþ 1;k. This worker can perform

tasks of set Iqþ 2;r at station qþ 2 starting from the time Sqþ 1:

Sqþ 1 ¼
X

j A I �
q þ 1;k \Iq þ 1;r

pj mqþ 1
� �

þ
X

j A Iq þ 1;r \I
þ
q þ 1;k

pj mqþ 1 þ 1
� �

þ � qþ 1 ð24Þ

� qþ 1 ¼

0; r Z k

Sq �
P

j A I �
q þ 1;k \Iq þ 1;r

pj mqþ 1
� �

þ
P

j A I þ
q þ 1;k \Iq þ 1;r

pj mqþ 1 � 1
� �

; r o k

8
><

>:

Note that Sqþ 1 Z
P

j A I �
q þ 1;k

pj mqþ 1
� �

, due to possible idle time
between tasks.

The term � qþ 1 appears in equality (24) because the time Sq is

evaluated for tasks of station q but the sets I þ
qþ 1;k, I �

qþ 1;k are de� ned

for tasks of station qþ 1. Therefore, the idle time shown in Fig. 5
appears between tasks of set I �

qþ 1;k\Iqþ 1;r and tasks of set

Iqþ 1;r \I
þ
qþ 1;k. For this reason, in order to calculate mqþ 1 we use

formula (23) instead of formula (22).
Note that we can de � ne Sqþ 1 in another way:

Sqþ 1 ¼

P

j A I �
q þ 1;k \Iq þ 1;r

pj mqþ 1
� �

; r Z k

Sq þ
P

j A Iq þ 1;r \I
þ
q þ 1;k

pj mqþ 1 þ 1
� �

; r o k

8
>>><

>>>:

6.4. Heuristic Min-Idle-One-Traveling-Worker:

In the previous heuristic we used sequentially arranged sta-
tions. However, we can improve this heuristic by choosing the next
station for a worker to move to; it will be the station which will
have the minimal total idle time after adding this supplementary
worker. Note that we should only take into account idle time but
not the free time (the rest of the time at the start of moving, i.e. the
difference between the end of takt and the moment when the
move starts) of the worker who is going to move to the next
station.

6.5. Heuristic Random-One-Traveling-Worker:

Another way of choosing the sequence of stations is at random.

6.6. Heuristic Additional-Workers:

This heuristic is as follows (we assume that workers perform-
ing tasks can move from one station to another).

Step 1. For every station q, q ¼ 1;…;s, we evaluate the number
of workers mq so that
X

j A Iq

pj mq þ 1
� �

o Cr
X

j A Iq

pjðmqÞ; q ¼ 1;…;s;

and the remainder time (slack time):

rq ¼
X

j A Iq

pj mq
� �

� C

And we assign mq workers to each station q.

Table 3
Number of workers for each subset of Iq.

I �
q;k\I q;r m

I þ
q;k\I q;r m � 1

Iq;r \I
�
q;k m

Iq;r \I
þ
q;k

mþ 1



Step 2. Now, the problem is to � nd a minimal set of additional
workers fwd;1r dr Dgto perform the set of tasks I . This problem
is equivalent to the problem of placement of intervals with
length rq; q ¼ 1;…;s, without intersections in the minimal num-
ber of intervals with length C.

For station q¼1, let bq� 1 be equal to 0 and let the index of
additional worker d be equal to 1. Find minimal set of tasks Iq;r for
station q such that they are performed after time bq� 1 and their
runtime is greater than or equal to rq. In order to do this, we
calculate:

aq ¼ min a j
X

j A Iq;j r a

pj mq
� �

Z bq� 1

8
<

:

9
=

;
;

bq ¼ min bj
X

j A Iq;aq r j o b

pj mq þ 1
� �

Z rq

8
<

:

9
=

;
:

Note that we can also use the following formula for bq:

bq ¼ min bj
X

j A Iq;j o aq

pj mq
� �

þ
X

j A Iq;aq r j o b

pj mq þ 1
� �

8
<

:

þ
X

j A Iq;j Z b

pj mq
� �

o C

9
=

;

Then, Iq;r ¼ fj A Iq; aq r j o bqg. If Iq;r exists, we add the set Iq;r to
tasks that are performed by the worker with number d, then go to
next station qþ 1 and � nd a minimal set of tasks Iqþ 1;r . If the set Iq;r

does not exist, we take a new additional worker wdþ 1, assign
bq� 1 ¼ 0 and � nd a minimal set of tasks Iq;r for station q.

6.7. Heuristic Additional-Workers-Improved:

We can also consider the following modi � cation of the heur-
istic proposed above. For every station q, q ¼ 1;…;s, we evaluate
bq ¼ min fbj

P
j A Iq;aq r j o bpj mq þ 1

� �
Z rqg, where aq does not

depend on bq� 1; here aq is selected randomly or so that bq � aq

is minimized. We get intervals [ aq, bq], q ¼ 1;…;s. Then, we solve
the problem of placement of intervals [ aq,bq] without intersections
in the minimal number of intervals ½0;C�.

7. Computer experiments

In order to compare proposed heuristics they were implemen-
ted using C# programming language. Fig. 6 demonstrates a
screenshot of the created software application.

The experiments were run on PC with Intel Core i7-3520M CPU
with 4 Gb of RAM under MS Windows 7, 64 bit. All the heuristics
take just a few seconds to provide a solution, which is very fast
(Fig. 7).

The time limit for solving problem P with the MIP model for
each of the 20 takts was set to 30 min in a commercial solver.
However, we could not obtain an exact solution, due to the
exponentially increasing time needed to � nd it. Taking into account
that problem P must be solved 20 times, i.e. for each takt
corresponding to a certain disposition of products on the line, this
gives 10 h in total to solve the whole problem. Of course at the
design stage, we have enough time, but we believe that psycholo-
gically this is inacceptable for a decision maker to wait so long for a
solution, which is not even optimal. Moreover, we made computer

Fig. 4. Graphic representation of Iq subsets in case if r Z k and Iq;r \I
þ
q;k ¼ � .

Fig. 5. Graphic representation of Iq subsets in case if r o k and I þ
q;r \I q;k ¼ � .



Fig. 6. Screenshot of the created application.
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experiments for an industrial case in which the sequence of 20 takts
is considered with only 3 types of engines and 170 tasks assigned to
28 workstations. In other cases, sequences may be longer with more
different engines, tasks and workstations, and thus the size of
model for a takt and the number of takts to be considered increase
quickly, which results in a larger number of necessary runs where
each run is drastically longer, therefore with an exponential
increase of overall computational time.

Table 4 contains the objective values and relative errors of the
solutions obtained by the heuristics.

The relative error %Gap of a solution is calculated by using the
lower bound LB ¼

P
j A Ipj=C and the number of workers obtained

by the corresponding heuristic:

%Gap¼
Number of Workers � LB

LB
� 100%

The workload distribution is unbalanced – some workers have
a higher percentage of idle time than others. In order to smooth
the workload, we propose to rank workers in takt q (which is just
� nished) in the non-increasing order of their accumulated idle
times. For the next takt qþ 1, the workers are ranked in the non-
increasing order of their workload. Then, for this takt qþ 1, the
worker with the highest workload will be replaced (to perform
his/her tasks) by the worker with the highest accumulated idle
time in the takt q. For example, let worker w1 have the highest
accumulated idle time up to and including the current takt q, and
let worker w2 have the highest workload in the next takt qþ 1
according to the obtained solution. Then, in the takt qþ 1, worker
w1 will perform the tasks of worker w2.

8. Conclusions

In this paper, we have studied the problem of workforce
resources optimization for manual mixed-model assembly lines.
We developed models and algorithms to assign identical workers
to tasks minimizing the total number of workers required. This
research is motivated by a real industrial case from the automotive
industry but the interest of this study is more general, since the

situation of multiple workers working in parallel and able to move
among workstations could occur in various industries using
mixed-model assembly lines.

The studied assembly line is manual designed to produce
several variants of a product. The assignment of tasks to work-
stations is given. Each task processing time depends only on the
engine variant and the number of workers performing this task.
The problem consists in assigning a minimal possible number of
workers to tasks so that the imposed takt time is not exceeded.

First, we proposed a MIP model for each production takt which
corresponds to a disposition of engine models on the assembly
line. Then, we have proved that the problem is NP-hard in the
strong sense. Finally, we suggested eight constructive heuristics,
three of which are randomized. Computer experiments proved the
ef� ciency of the proposed heuristics, both in terms of solution
quality and computational time.

The analysis of the obtained solutions revealed a high dispro-
portion of the workload between the assigned workers. In order to
cope with this problem, we also proposed a dynamic procedure,
which reassigns the workers: the workers with the highest
accumulated idle time in the current takt will execute tasks of
workers with the highest workload in the next takt.
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