Compilation of a
Countermeasure Against
Instruction-Skip Fault Attacks

Thierno Barry? Damien Couroussé?! Bruno Robisson?
LCEA = LIST / LIALP 2CEA — Tech / DPACA
Grenoble, France Gardanne, France

firstname.lastname@cea.fr

3th Workshop on Cryptography and Security in Computing Systems

Prague Jan. 20, 2016

www.cea.fr

leti & List

physical attacks

\ 4 A 4

Side Channel Attacks Fault attacks

V4

£

Injecting a fault in order to disrupt the

Observing physical quantities of the o _
normal functioning of the device

device during its operation

Our objective

B Using compiler techniques to efficiently automate the application of software
countermeasures against fault attacks

Thierno Barry CS2 2016 - Prague © CEA. All rights reserved DACLE Division| Jan. 2016 | 2

Fault Model

B A fault may occurs at different levels

| Faultlevel | Fault Model

== Algorithmic

. » Skip an instruction » Instruction redundancy
== [NStruction _
» Corrupt a data being transferred

- Register from/to memory

== |ransistor

B We propose an implementation of the instruction duplication technique

B Based on the scheme proposed and formally verified by [Moro et al. 2014] :

“Formal verification of a software countermeasure against instruction
skip attacks.”

Thierno Barry CS2 2016 - Prague © CEA. All rights reserved DACLE Division| Jan. 2016 | 3

is |

>~ Jldempotent ?
No | \/f

Transform /

[Assembly W VI € ASM

code (ASM) J

v

is idempotent

add RO, R1, R2 Duplication , add RO, R1,
add RO, R1,
Is not idempotent pE——
add R1, R1, R2 X , add RL, RL,
add R1l, R1,
Transformation
[Moro et al. 2014]
v mv RX, Rl
mv RX, R1 Duplication ~mv RX, R1
add R1, RX, R2 add R1, RX,
add R1, RX,

Thierno Barry

R2
R2

R2
R2

R2
R2

CS22016 - Prague

«“An instruction is
idempotent when it can
be re-executed several
times with always the
same result”

» Duplicate]

B How to find a free register at the
assembly code level ?
== FOI [Barenghi et al. 2010]
the number of free registers are
known for their implemented AES

== FOr [Moro et al. 2014]
the use of the ARM scratch register r12

B Overhead:
== At least X 4 for each instruction

= [Moro et al. 2014] Reported X 14
for the ARM instruction: umlal

© CEA. All rights reserved

DACLE Division| Jan. 2016 | 4

source
code

Source to
Source
approach

Compiler

Ccompilation?
approach

Assembly
approach

Binary
code

4
v
010110

110011
101000

0001/

~

Thierno Barry

Implementation approaches

Security properties cannot be guaranteed after the compilation
[Balakrishan et al. 2008]

Except if the compiler code optimizers are disabled as
suggested in [Eldib et al. 2014]
=» leads to a very high overheads + 400% in [Lalande et al. 2014]

Unlike the source to source approach we have control over
code optimizers

Unlike assembly approach we have the benefit of code
transformation opportunities provided by the compiler

=>» Allows to reduce the security overhead

Several transformations need to be performed
=>» leads to significant overheads [Moro et al. 2014]

CS22016 - Prague © CEA. All rights reserved DACLE Division| Jan. 2016 | 5

Our approach

B We implemented the instruction duplication inside the LLVM compiler

%)) C
o @) c (e]0] ;
Source | © v S c e £ = 8) S c c Binary
c N = O o .S © g = v .9
Code | @] R |E|R |85 o B £ T ® G = - Code
_— = > L - pf = - - - > >
c = 2 o w9 e > = > 9 Q .2
o Q = — o O ‘% < O o~ O €
T o 2a| |€Z S = | Z 9 Iy
w bt = E £ A = wv

Thierno Barry CS22016 - Prague © CEA. All ights reserved DACLE Division| Jan.2016 | 6

Our approach

B We implemented the instruction duplication inside the LLVM compiler

y
Instruction
Selection

This pass is responsible for selecting the appropriate target instructions for each
operation described by the program developer

This pass is modified in such a way that idempotent instructions are the ones
privileged during the selection

Example:

For the operation:a *b + ¢ mla is not idempotent
But mu1 and add can be idempotent if the

source and destination registers are different

mul and add are selected instead of m1a

Thierno Barry CS2 2016 - Prague © CEA. All ights reserved DACLE Division| Jan. 2016 | 7

Our approach

B We implemented the instruction duplication inside the LLVM compiler

Register
Allocation

This pass is responsible for mapping the endless number of program variables to a
limited number of physical registers

This pass is modified to introduce a constraint
so that: destinations registers are always different to sources ones

Example:
For the operation:a=b + ¢
instead of having: add RO, RO, R1
Duplication add RO, R1, R2

we have somethinglike: add RO, R1, R2 >
add RO, R1, R2

Thierno Barry CS2 2016 - Prague © CEA. All rights reserved DACLE Division| Jan. 2016 | 8

Our approach

B We implemented the instruction duplication inside the LLVM compiler

C
(@]
=
M
&
S
O
G
(%)
c
(L)
| .
|_

Store Sanitizer Push/Pop BL Elimination IT Elimination
Pass Elimination Pass Pass Pass

The role of these passes is to handle instructions that need special treatments

b1l fun
b1l fun adr RX, retBB
add RO, R1, R2 add LR, LX, #1
b fun
b1 fun b fun

add RO, R1l, R2 retgg: add RO, R1, R2

Thierno Barry CS22016 - Prague © CEA. All ights reserved DACLE Division| Jan.2016 | 9

Our approach

B We implemented the instruction duplication inside the LLVM compiler

C
ke,
o

(]
O
a

>
()]

Instruction
Scheduling
I

C
RS,
o

O

>

| -
)
(%]
C

The role of the scheduler is to rearrange the execution order of instruction in order
to improve the execution time while preserving the original behavior of the program

add
| add
Example: 1dr
| ldr
SUdEROGRRTZNRZ 0 1 2 3 4 5 6 7 g
add RO, R1, R2 | | | Clockcvcle‘
1dr R3, [R1l, #4] Tdr | |
1dr R3, [R1, #4] E add
| ldr ;
add
(I) 1 2 3 l‘l 5 6 7 8k
Clock cycle

Thierno Barry CS2 2016 - Prague © CEA. All rights reserved DACLE Division| Jan. 2016 | 10

Experimental evaluation

Unprotected Overhead IMoro et al. 2014

Cycles Size Cycles Size ICycIes Size

Moro et al.’s AES @ X 2.14

MiBench AES 1908 [67644 (x 1.76Y) X 1.18 Zx 2.86)

Target Architecture: ARM Cortex-M3 B Cycles: clock cycles

B Size: Bytes

4)
B More than 95% of instructions we generate are idempotent

== Only less than 5% need to be transformed

G The impact of the scheduler)

4)
B Our ARM-based Microcontroller supports both 32-bit and 16-bit instruction set

== The compiler selects 16-bit instructions whenever it is possible

G J

Thierno Barry CS2 2016 - Prague © CEA. All ights reserved DACLE Division| Jan. 2016 | 11

Conclusion

B We proposed a modified LLVM compiler to efficiently automate the
application of the instruction duplication technique

B We illustrated through experimentations the effectiveness of our
approach in terms of overheads compared to existing solutions

Thanks for your attention

Compilation of a Countermeasure
Against Instruction-Skip Fault Attacks

Thierno Barry
CEA - LIST / LIALP
Grenoble, France

thierno.barry@cea.fr
http://thiernobarry.fr

Thierno Barry CS22016 - Prague © CEA. All ights reserved DACLE Division| Jan. 2016 | 12

References

Balakrishnan, G., & Reps, T. (2010). Wysinwyx: What you see is not what you execute.
ACM Transactions on Programming Languages and Systems (TOPLAS), 32(6), 23..

Eldib, H., Wang, C., Taha, M., & Schaumont, P. (2014, June). QMS: Evaluating the side-
channel resistance of masked software from source code.
In Design Automation Conference (DAC), 2014 51st ACM/EDAC/IEEE (pp. 1-6). IEEE.

Lalande, J. F., Heydemann, K., & Berthomé, P. (2014). Software countermeasures for control
flow integrity of smart card C codes.
In Computer Security-ESORICS 2014 (pp. 200-218). Springer International Publishing.

Moro, N., Heydemann, K., Encrenaz, E., & Robisson, B. (2014). Formal verification of a
software countermeasure against instruction skip attacks.
Journal of Cryptographic Engineering, 4(3), 145-156.

Barenghi, A., Breveglieri, L., Koren, I., Pelosi, G., & Regazzoni, F. (2010, October).
Countermeasures against fault attacks on software implemented AES: effectiveness and cost.
In Proceedings of the 5th Workshop on Embedded Systems Security (p. 7). ACM.

Thierno Barry CS2 2016 - Prague © CEA. All rights reserved DACLE Division| Jan. 2016 | 13

