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Abstract

This paper aims to propose a new feature and intensity-based image registration method.

The proposed approach is based on the block matching algorithm [1]: a displacement

field is locally computed by matching spatially-invariant intensity sub-blocks of the

images before performing an optimization algorithm from this vector field to estimate

the transformation. Our approach proposes a new way to calculate the displacement

field by matching spatially-variant sub-blocks of the images, called General Adaptive

Neighborhoods (GANs) [2]. These neighborhoods are adaptive with respect to both the

intensities and the spatial structures of the image. They represent the patterns within

the grayscale images. This paper also presents a consistent shape metric used to match

the GANs. The performed qualitative and quantitative experiments show that the pro-

posed GAN matching method provides accurate displacement fields enabling to per-

form image rigid registration, even for data from different modalities, that outperforms

the classical block matching algorithm with respect to robustness and accuracy criteria.
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1. Introduction

Image registration consists in bringing two images, acquired with the same or dif-

ferent sensors, into spatial alignment. More formally, given two input images, register-

ing the floating (i.e., moving) image to the reference (i.e., fixed) image entails finding

the spatial transformation that minimizes the dissimilarity between the transformed5

floating and reference images. This process is mainly composed of three elements:

• a transformation space, which describes the set of admissible transformations

from which one is chosen to apply to the floating image,

• a similarity criterion, which measures the discrepancy between the images, and

• an optimization algorithm, which traverses the transformation space, in search10

of the transformation that minimizes the similarity criterion.

Many registration methods have been developed and/or used in the literature using a

large variety of:

• transformation spaces (linear [3], polyaffine [4, 5], elastic [6, 7], fluid [8], ...);

• similarity criteria (sum of squared differences [9], correlation coefficient [10],15

correlation ratio [11], mutual information [12], multiscale integral invariants

[13]...); and

• optimization algorithms (Powell method [14], Levenberg-Marquardt method [15],

stochastic search [16], ...).

However, registration methods can be classifed into two main categories. The first cat-20

egory, called geometric methods, is based on feature matching, where transformations

are calculated using correspondences between points [17], contours [18], ... While it

could be argued that these techniques enable a better control over the registration pro-

cess, the feature extraction can be a difficult task [19]. The second category of methods,

called iconic methods or intensity-based methods, rely on the intensities associated to25

pixels/voxels in the input images. Assuming a global relationship between the intensi-

ties of the images to register (affine, functional, statistical, ...), the approach consists in
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maximizing (or minimizing) a specified similarity measure between intensities of the

corresponding pixels [6, 12]. These approaches have several issues [1]. First, all the

similarity measures are known to be highly non-convex with respect to the transforma-30

tion parameters. Thus their global maximization is seldom straightforward. Secondly,

the assumption of a global relationship between the image intensities may be violated

by the presence of various image artefacts.

1.1. Presentation of the problem

The problems mentioned above have been addressed by hybrid registration meth-35

ods. Such methods combine feature and intensity information [1, 20, 21, 22, 23, 24].

However, these methods still require a pre-segmentation of features or take spatial re-

gions of interest independently of the image context. For example, the block-matching

algorithm [1], a local iconic method, determines a displacement field based on intensity

similarity on small sub-blocks of the image, before determining a global transforma-40

tion. The blocks have a fixed size and shape and are determined independently of the

local structure of the image. Local displacements cannot be accurately computed in

homogeneous areas or for large transformations [25]. It can therefore lead to some

outliers in the displacement field estimation. Some specific strategies including inter-

polation, regularization or robust optimization methods are then required to try to solve45

these problems [1].

Alternatively, approaches to get a more robust raw displacement field could be inves-

tigated. Combining the two strategies (estimating a robust raw displacement field and

using a robust optimization method) should lead more easily to the expected transfor-

mation.50

1.2. Aims and outline of the paper

This paper aims to propose a new hybrid (feature and intensity-based) registration

method. It is based on the block matching algorithm [1]: but contrary to the latter, it

computes and matches spatially-variant sub-blocks of the images, called General Adap-

tive Neighborhoods (GANs) [2], before determining a global transformation. These55

neighborhoods represent the patterns within the grayscale images: they are adaptive
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with respect to the image intensities and the image spatial structures. The GANs are

determined by the image itself and should provide a more robust and accurate estima-

tion of the displacement field.

The paper is organized in the following way. Section 2 gives the concepts and60

definitions of the General Adaptive Neighborhood (GAN) framework. Section 3 de-

scribes the GAN-based registration method including the computation of the displace-

ment field and the optimization algorithm to estimate the transformation. Section 4

introduces a shape metric based on [26] that is used to measure the similarity between

GANs and therefore to match the GANs. The performance of this metric is evaluated65

on a dataset of binary images. Finally, some qualitative and quantitatives results are

exposed in Section 5 highlighting the accuracy and robustness of the proposed regis-

tration method. The last section is devoted to the conclusion. In this study, the method

is described in two dimensions (2D) and the geometric transformation is limited to

rotations and translations.70

2. GAN image representation

This paper deals with 2D intensity images, that is to say image mappings defined

on a spatial support D in the Euclidean space R2 and valued into a gray tone range,

which is a real number interval. The General Adaptive Neighborhood paradigm has

been introduced [27] in order to propose an original image representation for adaptive75

processing and analysis. The central idea is based on the key notion of adaptivity

which is simultaneously associated to the analyzing scales, the spatial structures and the

intensity values of the image class to be addressed (see Subsection 2.2). This section

aims to recall the concepts and definitions of the GAN framework. The interested

reader can look at the references [2, 28] for more details.80

2.1. GANs sets

In the so-called General Adaptive Neighborhood Image Processing (GANIP) ap-

proach [2, 28], a set of General Adaptive Neighborhoods (GANs set) is identified

around each point in the image to be analyzed. A GAN is a subset of the spatial
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support constituted by connected points whose measurement values, in relation to a85

selected criterion (such as luminance, contrast, thickness, . . . ), fit within a specified

homogeneity tolerance. In this way, the computation of a GAN can be done by using

a region growing process from the current point. These GANs are used as adaptive

windows for image transformations or quantitative image analysis.

Several GANs sets have been defined and each collection satisfies specific prop-90

erties [2]. This paper only presents the most elementary kind of these ones, denoted

V h
m(x). For each point x ∈ D and for an image f , the GANs V h

m(x) are subsets of D.

They are built upon a criterion mapping h (based on a local measurement such as lumi-

nance, contrast, thickness, . . . related to f ), in relation with an homogeneity tolerance

m ∈ R+. More precisely, V h
m(x) is a subset of D fulfilling two conditions :95

1. its constituting points have a measurement value close to that of the point x :

∀y ∈ V h
m(x) |h(y)− h(x)| ≤ m

2. the set is path-connected (with the usual Euclidean topology on D ⊆ R2).

The GANs are mathematically defined as follows for each point x ∈ D:

V h
m(x) = Ch−1([h(x)−m,h(x)+m])(x) (1)

where CX(x) denotes the path-connected component [29] (with the usual Euclidean100

topology on D ⊆ R2) of X ⊆ D containing x ∈ D.

Figure 1 illustrates the GANs of two points computed with the luminance criterion

on a retina image. The GANs are self-determined by the local structures of the image.

Note that two distinct points x and y may lead to the same GAN. For example, if

h(x) = h(y) and x ∈ V h
m(y) then V h

m(x) = V h
m(y).105

2.2. GAN paradigm

A multiscale image representation such as wavelet decomposition [30] or isotropic

scale-space [31], generally takes into account analyzing scales which are global and a

priori defined, that is to say extrinsic scales. This kind of multiscale analysis presents a

main drawback since a priori knowledge, related to the features of the studied image, is110

required. On the contrary, the GAN framework is an intrinsic multiscale representation,
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(a) original image f with two seed

points x and y (white dots)

(b) GANs V f
10(x) and V f

10(y)

Figure 1: The GANs of the two selected points of the original image (a) are homogeneous with respect to

the luminance criterion (b) using the tolerance m = 10.

such as anisotropic scale-space [32], where scales are self-determined by the local

image structures. Such a decomposition does not need any a priori information. The

GAN image representation is thus adaptive with respect to the different scales of the

image representation.115

Furthermore, the image processing techniques using spatially invariant transfor-

mations, with fixed analyzing neighborhoods, give effective and compact computing

structures, in the sense where data and operators are independent. Nevertheless, they

have several drawbacks such as creating artificial patterns, changing the detailed parts

of large objects, damaging transitions or removing significant details [33]. Alternative120

approaches towards context dependent processing have been proposed [34]. The GAN

image representation is one of them in the sense that it supplies spatially adaptive ana-

lyzing neighborhoods which are no longer spatially invariant, but vary over the whole

image, taking locally into account the image context. The GAN image representation

is thus adaptive with respect to the spatial structures.125

The next section exposes the GAN-based image registration method. The proposed

approach is focused on the class of rigid transformations. Note that it could be ex-

tended to other classes of transformations with appropriate similarity measures and

optimization algorithms but it is out of the scope of this paper.130
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3. GAN-based image registration

The proposed method takes two images as input: a reference image I and a floating

image J . The output is a transformation T bringing the two input images into spatial

alignment. It is based on the block-matching strategy, where two successive tasks are

performed with a multiscale and iterative scheme (Subsection 3.3):135

• computing a displacement field (i.e. a set of displacement vectors) between I

and J (Subsection 3.1),

• gathering these displacements to determine the global transformation T using a

robust estimator (Subsection 3.2).

3.1. GAN matching: computation of the displacement field140

A displacement field is determined by computing correspondences between pixels

of the two input images I and J . For each pixel x of the spatial support of the image I ,

the GAN V I
m(x) is computed and its best correpondence (with respect to a dissimilarity

measure DM) with the GANs V J
m(y) is sought in the image J for pixels y within the

neighborhood of x. Note that the size m of the GANs is an important parameter to be145

chosen for this matching. This GAN matching is mathematically defined as:

ŷ = arg min
y∈N(x)

DM(V I
m(x), x, V J

m(y), y) (2)

whereN(x) is the search neighborhood of x in the image J , and DM is the dissimilarity

measure between GANs exposed in Section 4.

The best corresponding GAN V J
m(ŷ) allows to define a displacement vector, (x, ŷ)

between the pixel x of the reference image and the pixel ŷ of the floating image.150

The GAN-matching involves three parameters:

• the grid step size (∆x,∆y), underlying the spatial support of the image I , is

introduced and determines the density of the displacement field. For (∆x,∆y) =

(1, 1), displacement vectors are calculated for all pixels of the spatial support of

the image;155
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• the size of the neighborhood search N(x) that is constant (fixed-size) over the

whole image; and

• the homogeneity tolerance m for the computation of the GANs.

The main difference of this GAN matching algorithm with the block-matching one

is the adaptivity of the blocks to be matched: fixed-size and fixed-shape blocks are160

replaced by variable-size and variable-shape blocks by using GANs.

3.2. Least trimmed squares minimization: estimation of the transformation T

The proposed GAN-matching algorithm provides a list of N corresponding 2D

points, xk and yk. Assuming that there exists a rigid transformation T between the in-

put images I and J , the problem is to estimate a rotation matrixR and a translation vec-165

tor t that characterize the displacement. A standard approach to solve such a problem is

to perform a Least Squares (LS) minimization on the residuals rk(R, t) = yk−Rxk−t.
The main advantage of the LS estimator is that the solution is unique and is quickly

computed. However, LS is known to have poor robustness properties, in the sense that

its solution is sensitive to outliers. M-estimators [35] appear to be the most straight-170

forward alternative to LS to get a more robust estimation. In our experiments, the

rigid transformation is estimated by Least Trimmed Squares (LTS) minimization [1].

It consists in solving the following minimization problem:

(R̂, t̂) = arg min
R,t

q∑
k=1

||r(k)(R, t)||2 (3)

based on the ordered residuals ||r(1)|| ≤ ||r(2)|| ≤ · · · ≤ ||r(N)|| where ||.|| denotes

the Euclidean norm. The value of the parameter q is fixed to b0.7×Nc in this paper to175

achieve a 70% breakdown point.

Equation 3 is solved by means of a simple iterative LS estimation.

3.3. The iterative and multiscale scheme

For more accuracy, the method follows an iterative scheme [1]. At step n, the

transformation Tn is estimated, (Tn)
−1 is then applied to the floating image J and180
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the process is again performed at step n+ 1 between images I and J ◦ (Tn)
−1 to ob-

tain the transformation Tn+1. At each iteration, the current transformation is updated

according to Tn+1 ← T 1 ◦ ... ◦ Tn, the new floating image J ◦
(
Tn+1

)−1
is there-

fore obtained by resampling only once the image J . This iterative scheme enables to

enhance the accuracy of the registration method.185

In order to recover large displacements without considering large search neighbor-

hoods N(x), the method is implemented in a multiscale scheme (coarse-to-fine anal-

ysis) [1]. It enables a trade-off between performance and computational cost. In this

manner, large but inaccurate displacements are determined at high levels, and small

but more accurate ones are found when the scale decreases. The multiscale scheme is190

based on a pyramidal representation of the two input images I and J . At each level

i of the pyramid, a displacement field is computed between the two subsampled im-

ages Ii and Ji and a transformation Ti is estimated. (Ti)
−1 is then applied at the next

level i − 1 of the pyramid before calculating a new displacement field between Ii−1

and Ji−1 ◦ (Ti)
−1. Thereafter, the transformation Ti−1 is estimated. The process is195

repeated up to the lowest level of the pyramid (i.e. at the highest resolution).

This iterative and multiscale scheme involves two additional parameters to the

GAN-based image registration:

• the number i of pyramid levels in the multiscale representation; and

• the number n of iterations at each level of the pyramid.200

The next section presents the dissimilarity measure for GAN matching, required to

compute the displacement field.

4. The GAN dissimilarity measure

The computation of the displacement field (Eq. 2) between the two input images

involves a dissimilarity measure DM between GANs, which are planar shapes of the205

spatial support of the images. Therefore, it is necessary to use a geometric measure

(shape metric) as opposed to intensity-based measures (such as correlation coefficient,
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mutual information, ...). Note that the GANs are already computed using the image

intensities.

Several shape metrics have been proposed in the literature. The Hausdorff distance210

[36] is a classical shape metric used to determine the degree of ressemblance between

two objects that are superimposed. It measures the minimum distance between any

point of one set from some point of the other set. This distance is particular in the

sense that no descriptor is required. Nevertheless, this distance is not invariant to rigid

tranformations and is sensitive to noise [37].215

Other shape metrics are based on the similarity between descriptors of the shapes,

where the descriptor should satisfies several conditions:

• invariance: the description of the shape should be invariant to the expected image

deformation;

• uniqueness: two different shapes should have different descriptions; and220

• continuity: the description of a shape which is slightly deformed in an unknown

manner should be close to the description of the original shape.

Many authors used contour-based descriptors of the shapes. Peli [38] proposed a sim-

ple and fast shape description using radial shape vectors but the usage of this method is

limited to star-shape regions only. A generalized shape description in form of a binary225

matrix was proposed in [39]. This shape matrix description is invariant, continuous

but time consuming. The Fourier descriptors describe a shape by a fixed number of

sample points on the boundary and further transformed to the frequency domain using

a Discrete Fourier Transform. Nevertheless, the Fourier descriptors can describe only

a single closed curve shape. So, shapes with holes are not considered.230

Another group of methods uses region-based descriptors of shapes. Hu [40] derived

seven orthogonal invariant moment descriptors of order 2 and 3. The first six de-

scriptors encode a shape with invariance to translation, scale and rotation. The sev-

enth descriptor ensures skew invariance, which enables to distinguish mirrored images.

Flusser and Suk derived the affine transform invariants [41]. These decriptors are easy235

to implement, little time consuming but not continuous. Tang et al. [42] have recently
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proposed a rotation and scale invariant similarity measure based on hierarchical kernels

but the method needs to define adequate templates which is still an open problem.

In our particular case, the dissimilarity measure DM between GANs should fulfill

another condition. Indeed, two GANs V I
m(x) and V J

m(z) with exactly the same shape240

but with different seed positions x and z inside the GANs have to be discriminated to

avoid bad matches (see Figure 2).

x

y

z

=

6=
V J
m(z)

V J
m(y)

V I
m(x)

Figure 2: GAN dissimilarity measure: importance of the seed position inside the GANs. The three GANs

V I
m(x), V J

m(y), V J
m(z) have the same geometrical shape. However, the match (V I

m(x), V J
m(y)) is correct

(DM = 0) while (V I
m(x), V J

m(z)) is not (DM 6= 0). Indeed, the GANs of the two seeds y and z are equal

(in terms of spatial region) but their descriptors hV J
m(y),y and hV J

m(z),z are different because the location

of the seed point is taken into account.

Therefore, the shape descriptor has to be dependent on a reference point.

Furthermore, the computation of the dissimilarity measure between GANs will be per-

formed a great number of times for the displacement field estimation. So, an additional245

requirement to the metric is needed: the shape metric should be little time consuming.

4.1. The proposed shape metric

The proposed metric for matching two shapes is based on the descriptor presented

in [26] but it is here defined for binary images which represent the shapes.

In the following, the definition of the proposed shape metric is firstly given before250

evaluating its performance.
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4.1.1. Definition

Let A and B be two shapes. For defining the descriptor of A, the distance values

d(y, x) between points y within A and a reference point x are considered (Fig. 3).

x

y u

A

Figure 3: Points y within the shape A whose distance to the specific point x is equal to u.

The descriptor hA,x of the shape A is mathematically defined as the distribution255

(histogram) of the distance values d(y, x) from the reference point x.

hA,x(u) =
∑
y∈A

χ{0}(d(y, x)− u) (4)

where χ is the characteristic function.

In [26], the histogram of gray levels at distance u is used for defining the descriptor of

a gray-level image, while here it is the number of pixels at distance u.

260

The proposed shape metric DM between two shapes A and B, with its two refer-

ence points x and y, is then defined as the Manhattan distance between the two descrip-

tors:

DM(A, x,B, y) =
∑
d

|hA,x(u)− hB,y(u)| (5)

Note that these two shapes A and B will later play the role of two GANs for which the

dissimilarity is measured in the displacement field computation (Eq. 2). The descriptor265

of each GAN will naturally be built with its seed (current) point as reference point.

DM is invariant to rigid transformations (translation and rotation): if T denotes

such a transformation, DM(A, x, T (A), T (x)) = 0. Note that it is also invariant to mir-
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ror transformations which can lead to some ambiguities in certain applications. Com-270

puting this distance between two shapes is few time consuming since the descriptor of

each shape can be quickly calculated by using a distance map [43].

4.1.2. Performance tests

To evaluate the performance of the proposed shape metric DM, a first comparison

between pairs of similar shapes -from the Kimia dataset [44]- along a continuum is275

performed (Tab. 1). Thereafter, the distance is tested (Tab. 2) with different categories

of animals (fishes, rabbits, birds and camels) from the same dataset [44] for shape

classification. The distance between shapes are computed by using the equation 5 and

the reference points used for the shapes are their barycenters. In this way, the distance

between 2 shapes A and B is given by: DM(A, bar(A), B, bar(B)) where bar(A) and280

bar(B) denote the barycenter of A and B, respectively. Each bin of the histogram

counts pixels within a distance range of three pixels for computing the histograms

hA,bar(A) and hB,bar(B) of the shapes A and B.

Table 1: Metric comparison between pairs of shapes along a continuum. For a better readability, the values

have been divided by 20000. The first rows shows that as the quadrangle moves toward the triangle, the

distance increases. An exception is observed for the fourth shape because of a best match with a π rotation

angle of the shape (DM is invariant to mirror transformations).

0.00 0.10 0.18 0.08 0.24 0.29 0.38

0.10 0.00 0.10 0.15 0.33 0.37 0.46

0.18 0.10 0.00 0.22 0.41 0.45 0.54

0.08 0.15 0.22 0.00 0.21 0.25 0.34

0.24 0.33 0.41 0.21 0.00 0.07 0.14

0.29 0.37 0.45 0.25 0.07 0.00 0.09

0.38 0.46 0.54 0.34 0.14 0.09 0.00

In Table 1, the first rows shows that as the quadrangle moves toward the triangle,
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the distance increases. An exception is observed for the fourth shape because of a best285

match with a π rotation angle of the shape.

Table 2: Metric for the dataset. For a better readability, the values have been divided by 10000. The animals

are well categorized: for each tested animal (in one row), the three best results are achieved for the animals

of its category.

0.00 0.07 0.07 0.16 0.13 0.20 0.24 0.17 0.18 0.46 0.51 0.50

0.07 0.00 0.03 0.14 0.08 0.13 0.17 0.10 0.11 0.39 0.44 0.43

0.07 0.03 0.00 0.14 0.09 0.14 0.17 0.11 0.11 0.39 0.44 0.43

0.16 0.14 0.14 0.00 0.08 0.06 0.13 0.08 0.09 0.29 0.34 0.33

0.13 0.08 0.09 0.08 0.00 0.06 0.14 0.09 0.10 0.32 0.37 0.36

0.20 0.13 0.14 0.06 0.06 0.00 0.11 0.08 0.09 0.26 0.31 0.30

0.24 0.17 0.17 0.13 0.14 0.11 0.00 0.08 0.09 0.25 0.32 0.30

0.17 0.10 0.11 0.08 0.09 0.08 0.08 0.00 0.04 0.29 0.34 0.33

0.18 0.11 0.11 0.09 0.10 0.09 0.09 0.04 0.00 0.27 0.33 0.32

0.46 0.39 0.39 0.29 0.32 0.26 0.25 0.29 0.27 0.00 0.08 0.08

0.51 0.44 0.44 0.34 0.37 0.31 0.32 0.34 0.33 0.08 0.00 0.07

0.50 0.43 0.43 0.33 0.36 0.30 0.30 0.33 0.32 0.08 0.07 0.00

Regarding Table 2, the animals are well categorized. Indeed, for each tested animal

(in one row), the three best results are achieved for the animals of its category.

In the following experiments, the noise sensitivity of the proposed shape metric is290

studied on the whole Kimia dataset. The performance is evaluated by considering two

types of noise:

• Pepper noise: a percentage of all the pixels are reassigned as background pixels

(black pixels). In the experiments, the noise amount is related to this percentage

value going from 0.05 to 0.5 (with a step of 0.05).295

• Boundary noise: pixels on the image border are spatially randomly reassigned

from their initial location to produce the deformed shape. In the experiments,
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the noise amount is related to the maximal displacement for both the x and y

coordinates, going from -5 to 5 pixels (excluding 0, with a step of 1).

Figure 4 illustrates these two kinds of noise with the minimal and maximal amount of300

noise according to the selected parameters. In Figure 5 the average value of the dissi-

(a) original image (b) minimal boundary

noise

(c) maximal boundary

noise

(d) minimal pepper noise (e) maximal pepper noise

Figure 4: Damaged images with pepper and boundary noise using the minimal and maximal amount of noise

according to the selected parameters.

malirity measure on the whole Kimia dataset is given as a function of the noise amount

which is labeled from 1 to 10 for both boundary and pepper noise parameters. One

can notice that the proposed shape metric is more sensitive to pepper noise than bound-

ary noise. Indeed, the proposed descriptor is a region-based descriptor: each value of305

the histogram can be affected by several pixels for the pepper noise as opposed to the

boundary noise.

Note that the Manhattan distance used in the dissimilarity measure DM could be re-

placed by the Earth mover’s distance if one wishes to be less sensitive with respect to a

small shift of the reference points of the considered shapes. Indeed, with such a shift,310

some pixels of a shape counted up to a specific bin of the histogram could move to the

neighboring bins. In this case, the Earth mover’s distance would be more robust than
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Figure 5: Noise sensitivity of the proposed dissimilarity measure. The resulting values have been normalized

by the area of the original image. The noise amount is labeled from 1 to 10 for both boundary and pepper

noise parameters.

the Manhattan distance.

All these experiments highlight the performance (continuity, classification accu-315

racy, noise sensitivity) of the proposed shape metric.

4.2. Application to GANs

Using the proposed shape metric, it is possible to measure the dissimilarity be-

tween two GANs: DM(V I
m(x), x, V J

m(y), y), so as to find the best match according to

Equation 2. As mentioned before, it is important to note that the descriptor of a GAN320

is naturally built with its seed (current) point from which it has been computed, and

not with its barycenter. In this way, GANs with the same geometrical shape but with

different seed positions can be discriminated (Fig. 2) to avoid mismatches.

The next section presents some qualitative results for the displacement field com-

putation and thereafter for the registration of MR brain and retinal images, before pre-325

senting quantitative results.
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5. Experimental results

This section aims to evaluate the performance of the proposed GAN-based regis-

tration method in comparison with the block matching method. Both algorithms firstly

give a raw displacement vector field which is further used as input for the robust esti-330

mation of the transformation using the least trimmed squares minimization. The results

of qualitative and quantitative experiments are given for standard and real images.

5.1. Displacement field estimation

Figures 6 and 7 compare the raw displacement fields computed with the block

and GAN matching algorithms at the first iteration with the pyramidal level of highest335

resolution.

Regarding Figure 6, the GAN-based displacement vectors are qualitatively accu-

rate. Moreover, contrary to the classical block matching, the proposed method is able

to compute accurate displacement vectors inside homogeneous areas as highlighted in

the proposed binary images.340

As one can notice in Figure 7, the GAN matching method provides well-estimated

displacement fields while much more outliers occur with the block matching method.

Such a GAN-based displacement field is suitable for image registration.

5.2. Qualitative evaluation

5.2.1. Illustration on MR brain images345

To qualitatively evaluate the GAN registration results, a rigid registration is per-

formed on MR brain images. Proton density (PD) imaging and T1 imaging are used to

discriminate anatomical structures based on their proton density or their T1 relaxation

properties. Examples of intra PD/PD (Fig. 8) and inter T1/PD (Fig. 9) MR brain im-

age registration are shown. The reference and floating images are superimposed before350

and after registration. After registration, the images superimpose perfectly: the rigid

transformation is well estimated.

It can be noted that even with dissimilar intensities (Fig. 9), the registration suc-

ceeds: it is one of the strength of the proposed method, it is able to register data from

different modalities. Indeed, the patterns of the two input images have similar shapes355
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(a) reference image I1 and dis-

placement field computed with

block matching

(b) reference image I1 and dis-

placement field computed with

GAN matching

(c) floating image J1

(d) reference image I2 and dis-

placement field computed with

block matching

(e) reference image I2 and dis-

placement field computed with

GAN matching

(f) floating image J2

Figure 6: Displacement field computation between two binary images (I1, J1) and (I2, J2) using block and

GAN matching. The parameter m of the GAN is fixed to 0 while the size of the blocks is fixed to r = 7

and the vectors are only computed for pixels within the object. Contrary to the classical block matching, the

proposed GAN-based method is able to compute accurate displacement vectors inside homogeneous areas.
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(a) reference image I and dis-

placement field computed with

block matching

(b) reference image I and dis-

placement field computed with

GAN matching

(c) floating image J

Figure 7: Displacement field computation between two MR brain images (I, J) using block and GAN

matching. The GANs are computed with the luminance criterion and the tolerance is fixed to m = 50

while the size of the blocks is fixed to r = 7. The displacements vectors computed by the GAN matching

method are qualitatively better estimated in comparison with the block matching method. Such a GAN-based

displacement field is suitable for image registration.

(a) PD MR brain image (b) PD MR brain image (c) before registration (d) after registration us-

ing the proposed GAN

matching

Figure 8: PD/PD registration of MR images. The rigid transformation is well-estimated thanks to the GAN

matching.
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(a) T1 MR brain image (b) PD MR brain image (c) before registration (d) after registration us-

ing the proposed GAN

matching

Figure 9: T1/PD registration of MR images. The structures within the two input images being similar, the

GAN matching enables a robust rigid transformation to be calculated. The dissimilarity measure compares

the spatial structures and not the local intensities.

and consequently, GANs are consistently and accurately matched, and the optimization

algorithm performed on the resulting displacement field provides the expected trans-

formation.

5.2.2. Illustration on retinal images

In this subsection, an application on retinal images is investigated. The global ob-360

jective is to reconstruct a comprehensive single image from multiple spatial images

acquired from the same patient, in order to facilitate the disease diagnosis and treat-

ment planning. In Figure10, the spatial rigid registration of a pair of retinal images

is presented both with the classical block matching and the proposed GAN matching

method.365

One can note that the rigid transformation is badly estimated with the block match-

ing method, contrary to the proposed GAN matching one. The main reason seems to be

related to the presence of several uniform regions. Indeed, local displacements cannot

be accurately estimated in homogeneous areas with fixed-size and fixed-shape blocks.

Mismatches between such blocks often occur contrary to the correspondances between370

GANs which are spatially adapted to the underlying regions. For a full registration of

such a pair or retinal images, note that nonlinear registration methods are required since

the retina is not a planar surface (projective transformations are consequently needed
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(a) first retinal image (b) second retinal image

(c) before registration

(d) after registration using the classical block

matching

(e) after registration using the proposed GAN

matching

Figure 10: Rigid registration of a pair or retinal images by comparing the block matching and the GAN

matching. One can note that the classical method fails contrary to the proposed GAN-based method.

21



for such 2-D images).

5.3. Quantitative evaluation375

5.3.1. GAN vs. block matching

The GAN matching is here quantitatively evaluated for rigid image registration and

compared to the classical block matching on a dataset of twelve standard images of

size 256 × 256 pixels, from Matlab (Fig. 11). For both algorithms, the following

Figure 11: Image dataset for the performance evaluation of the proposed GAN matching algorithm.

parameter values are used: N = 3 pixels for the neighborhood search, ∆x = ∆y = 5380

pixels for the density of the displacement field, i = 3 for the number of pyramid levels

and n = 10 for the number of iterations at each pyramid level. The resampling uses

bilinear interpolation. In addition, the size of the GAN (resp. block) is controlled by

the parameter m (resp. the size r of the block) and is fixed to m = 35 (resp. r = 7).

The metric used for comparing blocks in the block matching algorithm is the sum of385

squared differences between pixel gray levels.

For each image of the dataset, 100 random rigid transformations T are generated.

T is then applied to the original image I leading to the transformed image J . The

22



registration between I and J is then performed by using the block and GAN matching,

giving an estimated transformation T̂ is given.390

The registration is evaluated in terms of robustness, capture range and accuracy such

as proposed in [25]:

• The robustness is defined as the percentage of random experiments being a

success. The registration is considered a success if the final warping index

ωf =
1

#I

∑
v∈I
||T (v)− T̂ (v)|| is lower than 1 pixel.395

• The capture range of the algorithm is defined as the maximum initial warping

index ωi =
1

#I

∑
v∈I
||T (v)− v|| for which it succeeds.

• The accuracy is defined as the average ωf for which it succeeds.

The performance of the algorithms is evaluated for small, medium and large displace-

ments:400

• Tsmall: random rotation in the range [0, 20] degrees and random translation in

the range [0, 5] pixels

• Tmedium: random rotation in the range [20, 40] degrees and random translation

in the range [5, 10] pixels

• Tlarge: random rotation in the range [40, 60] degrees and random translation in405

the range [10, 15] pixels

The results are summarized in Table 3. The different values denote the average for

the 100 simulations and the twelve images of the dataset.

These results demonstrate that GAN and block matching algorithms achieve per-410

fect registrations for small displacements with a robustness of 100%. For medium and

large displacements, the GAN matching provides better results than the block match-

ing in terms of robustness, capture range and accuracy. Indeed, contrary to the GANs,

searching similar spatially-invariant blocks within the original and transformed images

for such transformations (rigid displacements) often leads to wrong displacement vec-415

tors which explain the difficulty of the block matching to well register the images.
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Table 3: Quantitative evaluation of the proposed GAN matching (GM) algorithm with comparison to the

block matching (BM) for 100 simulated transformations on a dataset of twelve images.

Displacement Algorithm Robustness (%) Cap range (px) Accuracy (px)

Small
BM 100.00 33.41 0.24

GM 100.00 33.41 0.20

Medium
BM 93.58 65.62 0.27

GM 99.92 65.95 0.19

Large
BM 64.42 91.71 0.27

GM 81.08 95.43 0.19

5.3.2. Impact of the GAN homogeneity tolerance

In this paragraph, the impact of the GAN homogeneity tolerance m is studied. For

these experiments, the 100 transformations are identical for each homogeneity toler-

ance valuem so as to only evaluate the impact of this parameter. The GAN registration420

is achieved by using different values m varying from 0 to 50 with a step size of 5. The

following graph (Fig. 12) shows the robustness of the proposed method as a function

of the homogeneity tolerance values m of the GANs for small, medium and large dis-

placements. The computed values denote the average for the 100 simulations and the

12 images of the dataset.425

For small and medium displacements, the two curves in Figure 12 are monotonic

while a maximum exists for the curve associated to large displacements. The value

m = 35 gives good results for the small, medium and large displacements. Note

that this value depends on the underlying images: it does not give necessarily the best

performance for each individual image.430

One can see the decreasing performance from m > 35 for large displacements.

Indeed, the GANs are truncated by the image borders caused by the transformation

which is too large for the observation window. It means that for large displacements

the spatial regions are not identical in the two images to be registered. It consequently

leads to mismatches with the proposed shape distance. Using another distance between435

GANs, less sensitive to truncations or occlusions such as proposed in [13] for example,
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Figure 12: Impact of the homogeneity tolerance for GAN rigid registration with small, medium and large

displacements.

would probably increase the value of m from which the robustness starts to decrease.

For small and medium displacements, the same behavior would probably appear

but for larger m values (m > 50). Indeed, the larger the homogeneity tolerance value

m is, the larger the GANs are. For small and medium displacements, mainly very large440

spatial regions (i.e. GANs computed with large values m) will be truncated by the

observation window.

5.3.3. Noise sensitivity

In this subsection, the performance of the proposed rigid image registration is eval-

uated in the presence of noise. In Figure 14 the robustness of the GAN matching and445

block matching methods is given as a function of the noise amount for small, medium

and large displacements. As in the previous experiments, the computed values denote

the average for the 100 simulations and the 12 images of the dataset. Both the reference

and floating images are damaged by an additive Gaussian noise. The noise amount is

related to its variance going from 0 to 0.02 with a step of 0.005. Figure 13 illustrates450

two damaged images of ’Lena’ with the minimal (0.005) and maximal (0.02) amount

of noise. The results show that in noisy conditions the GAN matching method out-

performs the block matching one. Moreover, the proposed method is less sensitive to
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(a) original image (b) minimal Gaussian noise (c) maximal Gaussian noise

Figure 13: Damaged images with an additive Gaussian noise using the minimal (var=0.005) and maximal

(var=0.02) amount of noise according to the selected parameters.
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Figure 14: Noise robustness of the block and GAN matching methods as a function of the noise variance for

small, medium and large displacements.
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Gaussian noise than the classical method: the overall approximated slope of each GAN

matching curve is lower than its corresponding block matching curve.455

5.3.4. Computational time

In this subsection, some experiments have been done to give the computational time

for both the block matching and GAN matching methods. The algorithms have been

run on a 64 bits Dual Intel Xeon X5650 Processor (2 x 6 cores at 2.66Ghz) with the

Matlab software running in parallel on 22 threads. In Table 4, the average CPU time460

per image (computed on the image database for which the registration is a success) are

given in seconds. The rotations R and translations t have been fixed to (R = 10o, t =

2.5px), (R = 30o, t = 7.5px), (R = 50o, t = 12.5px) to represent a small, medium

and large displacements, respectively.

Table 4: Computational time (in average per image) of the proposed GAN matching (GM) algorithm with

comparison to the block matching (BM) algorithm for small, medium and large displacements.

Displacement Algorithm Time (s)

Small
BM 19

GM 182

Medium
BM 28

GM 172

Large
BM 34

GM 195

One can note that the GAN matching is less efficient with respect to computation time465

than the block matching but it provides better results in terms of robustness and accu-

racy. It is also interesting to note that the computational time for GAN matching does

not increase with the size of the deformation.

6. Conclusion

In this paper, a new hybrid (feature and intensity-based) image registration algo-470

rithm has been presented. It is based on the block matching algorithm and proposes a
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new way to calculate the displacement field by matching spatially-variant sub-blocks of

the images, called General Adaptive Neighborhoods (GANs) [2]. These neighborhoods

represent the patterns within the grayscale images: they are adaptive with respect to the

intensities and the spatial structures of the image. The GANs are determined by the im-475

age itself and consequently enable a robust and accurate estimation of the displacement

field by GAN matching. A consistent shape metric has also been introduced so as to

match the GANs. It provides a good trade-off between performance and computational

cost. Several tests have been carried out on a shape dataset to evaluate the performance

of the proposed metric. Thereafter, all information of the computed displacement field480

have been gathered to estimate (by an optimization algorithm) the transformation be-

tween two images for image registration. According to the performed experiments, the

proposed GAN-based registration method works better than the classical BM method

for image rigid registration and opens large perspectives for nonlinear approaches [45].

Indeed, for nonlinear registration, the same process could be applied in order to extract485

a robust vector field. The main constraint concerns the dissimilarity measure used for

matching GANs that should be modified so as to get new invariance and/or robustness

properties [13] with respect to the expected tranformation.
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