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The disassembly process is getting more and more important for tackling the burden of waste electrical and electronic equipment. Its complexity and frequently manual operation makes this process relatively expensive compared to its potential profit. Thus, the decisions taken for collection and disassembly of End-of-Life products need to be coordinated. In this work, an optimisation model is developed for incorporating these problems. Our experimental study shows that the coordination allows improving the global performance of the supply chain including lower total cost corresponding to the component demand satisfaction.

Introduction

The annual amount of waste within EU territory is around 4 million tons including waste electrical and electronic equipment (WEEE) of which is prohibited by EU Council Regulation 2002/96/EC on WEEE. This directive stipulates that WEEE is "one of target areas to be regulated, in view of prevention of the application of the principles of prevention, recovery and disposal waste". High amount of WEEE is mainly caused by the linear economic pattern adopting "take-make-dispose" paradigm where the waste is disposed and disregarded for being further processed. To deal with this issue, the circular economy offers another approach. Due to the reverse part of its cycle as depicted by Figure 1, the waste can be taken back and processed as the alternative supply source of production process. Among the waste flows considered, WEEE is viewed as the most hazardous but profitable one since it contains valuable materials and/or parts. Being a part of reverse flow in closed-loop supply chain (CLSC), the disassembly process is the essential step enabling the circular economy. It is a set of activities aiming to extract the subassemblies, raw materials and/or other forms from End-of-Life (EOL) products [START_REF] Mcgovern | The disassembly line: balancing and modeling, 1st Edition[END_REF]. The implementation of this process helps to enhance the sustainability of supply chain (SC) since it also practically promotes better employment and decreases the number of WEEE. Whilst augmenting the image of companies involved, it allows creating a market of EOL However, the disassembly process remains expensive due to its complexity as time consuming endeavour and labour intensive [START_REF] Ilgin | Performance improvement potential of sensor embedded products in environmental supply chains[END_REF]. Furthermore, collecting EOL products is considered as an indispensable process preceding the disassembly one. It is widely known that this transportation activity contributes to the increase on the total cost of SC. Compared to the assembly process that has been studied in decades, the supply side of disassembly process is less structured and more unstable so that it needs to be managed for avoiding inefficiency leading to high cost. Considering this process as a part of CLSC as shown in Figure 2, dealing with the supply side of EOL products as a collection process may be expected. Thereby, incorporating the collection and the disassembly processes of EOL products in reverse SC context is proposed in this article.

Dealing with several processes, the integrated logistical planning has drawn intention of both practitioners and researchers for proposing better forward SC.

Particularly, it has been encouraged since the practice of the vendor-managed inventory and distribution (VMI/D).

In reverse context, the disassembly process is located in the reverse side pre-ceded by the collection process. Motivated by [START_REF] Chandra | Coordination of production and distribution planning[END_REF] on dealing with the productiondistribution problem (PDP), our work proposes an optimisation model coordinating the decisions on reverse side. PDP incorporates production and routing aspects in order to jointly optimise production, inventory and routing decisions [START_REF] Díaz-Madroñero | A review of tactical optimization models for integrated production and transport routing planning decisions[END_REF]. In our case, the decision of collection and disassembly process is considered as the key point to diminish the total cost. To show it, the case with coordination and the case without coordination are compared in the experimental study which, henceforth, called as case I and case II, respectively.

Our work may be intended in the case where the reverse flow handled by a third-party reverse logistics provider (3PRL) due to the nature of disassembly process. Such circumstance is expected when (i) 3PRL performs better in term of speed, accuracy, cost and revenue on dealing with return process and (ii) few products returns and no dedicated personnel or procedures working on [START_REF] Stock | Managing product returns for competitive advantage[END_REF].

Moreover, it may lead to gain more economic efficiency for processes considered [START_REF] Kumar | Cradle to cradle: Reverse logistics strategies and opportunities across three industry sectors[END_REF].

The remaining parts of this article are organized as follows. The state-ofthe-art is provided in Section 2. The optimisation problems are formalised in section 3. Section 4 depicts the instance generation for the experimental study.

The obtained results are analysed in Section 5. Section 6 gives the concluding remarks.

Literature review

After some industrial practices of VMI/D e.g. Kellogg Company in [START_REF] Brown | The Kellogg company optimizes production, inventory, and distribution[END_REF] and Frito-Lay's North America in [START_REF] Üster | An Integrated Outbound Logistics Model for Frito-Lay: Coordinating Aggregate-Level Production and Distribution Decisions[END_REF], the integrated logistical planning is favourable for proposing an SC with better performance. Particularly, the coordinated management of production and distribution process lead to the reduction of the total cost. It may take various configuration such as (i) integrated lot-sizing with direct shipment, (ii) inventory routing problem and (iii) production-distribution problem (PDP). The first problem minimizes the total cost of set-up, production, inventory and direct shipment while disregarding the routing aspect. The second problem exposes the decisions on routing aspect but ignores on production detail. Whereas, PDP focuses on both production and distribution aspects by incorporating the production decision and routing part in operational level decision as depicted in Figure 3. We encourage the lecturer to see extensive review on PDP in [START_REF] Díaz-Madroñero | A review of tactical optimization models for integrated production and transport routing planning decisions[END_REF] and [START_REF] Adulyasak | The production routing problem: A review of formulations and solution algorithms[END_REF].

As aforementioned, the circular economy requires a CLSC by embedding the disassembly and its corresponding processes to form the reverse flow. Compared to forward flow, its differences include geographical location, inventory and financial aspects. It deals with many dispersed collection centres as supply sources to collect EOL products and transport them to producer or recovery facilities such as disassembly facility or disposal area. Its lack of proven and effective inventory management leads to inconsistency. Additionally, unclear financial implication results on higher inefficiency [START_REF] Mcgovern | The disassembly line: balancing and modeling, 1st Edition[END_REF].

However, as far as our knowledge, there is only few works considering integrated decisions which may lead to optimise the cost particularly on tactical/operational level ones. [START_REF] Özceylan | Interactive fuzzy programming approaches to the strategic and tactical planning of a closed-loop supply chain under uncertainty[END_REF] and [START_REF] Özceylan | Modeling and optimizing the integrated problem of closed-loop supply chain network design and disassembly line balancing[END_REF] investigated the integration across strategic-tactical decisions in disassembly context. A mixed-integer non-linear problem was provided integrating the decisions of closed-loop network design and disassembly line balancing. Although the disassembly process has been extensively investigated in the literature, the majority of researches considered only single decision e.g. lot-sizing [START_REF] Barba-Gutiérrez | Lot sizing in reverse MRP for scheduling disassembly[END_REF], line balancing [START_REF] Bentaha | A Sample Average Approximation Method for Disassembly Line Balancing Problem under Uncertainty[END_REF][START_REF] Bentaha | Disassembly Line Balancing and Sequencing under Uncertainty[END_REF], sequencing problem [START_REF] Yeh | Simplified swarm optimization in disassembly sequencing problems with learning effects[END_REF], inventory control [START_REF] Godichaud | Efficient multi-objective optimization of supply chain with returned products[END_REF], RFID application [START_REF] Ferrer | An RFID application in large job shop remanufacturing operations[END_REF]. Thus, this work provides an integrated logistical planning in the next section focusing on the collection routing problem and the disassembly lot-sizing problem. Following our work [START_REF] Habibi | Integrated procurement-disassembly problem[END_REF], this current work is the consecutive attempt of implementing such an integration into reverse context by considering collection routing and disassembly aspects.

Problem definition

This section provides case I as depicted in Figure 4 and case II as separated problems of collection routing and disassembly lot-sizing focusing on EOL product.

Suppose that a single disassembly site is responsible for gathering a single type of EOL products available at dispersed collection centres. A vehicles with fixed capacity is available for gathering the products under full truck load policy.

It is assumed that the nomenclature is known and identical. Each product has several components, a, a ∈ A where each component has one quantity, n a .

Once the products collected, it will be disassembled into a disassembly line in order to release the components requested for satisfying the demands. The disassembly line has a fixed capacity DisCap corresponding to its cycle time.

The unmet demand of components results a penalty cost for each unit, CP a , a ∈ A. The problem includes multi-periods since it concerns with inventory having capacity InvCap. There is no salvage value or disposal cost for any leftover components. The parameters and the decision variables used are provided as follows: SO at unmet demand of component a at period t, a ∈ A, t ∈ T .

Parameters. : A set of component: a = {1, 2, • • • , A}; N set of nodes: i, j = {1, 2, • • • , N }; N c set of collection centres: i, j = {2, • • • , N }; T planning horizon: t = {1, 2, • • • , T }; n a amount of

Formulation of case I (with coordination)

The following formulation provides the integration of collection routing and disassembly lot-sizing problem. It deals with the decisions on routing, inventory and disassembly.
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Integer Linear Programming (ILP) model.

Min t∈T j∈Nc CF •x 1jt + i∈N j∈N c ij •x ijt +CH •I t +CD •P t + a∈A CP a •SO at (1) 
Subject to:

j∈N,i =j x ijt ≤ 1 ∀i ∈ N c , ∀t ∈ T ; (2) i∈N,i =v x ivt = j∈N,j =v x vjt ∀v ∈ N, ∀t ∈ T ; (3) 
y it + (Q -S it ) • x 1it ≤ Q ∀i ∈ N c , ∀t ∈ T ; (4) 
y it -y jt + Q • x ijt + (Q -S jt -S it ) • x jit ≤ Q -S jt i = j, ∀i, j ∈ N c , ∀t ∈ T ;
(5)

I t = I t-1 + i∈N j∈N,i =j S it • x ijt -P t ∀t ∈ T ; (6) 
n a • P t + SO at ≥ q at ∀a ∈ A, ∀t ∈ T ; (7) 
j∈N,i =j Constraints [START_REF] Ilgin | Performance improvement potential of sensor embedded products in environmental supply chains[END_REF] state that each collection centre is visited at most once during a period. The flow balance of each node is assured by constraints (3). The subtour elimination constraints (4) and ( 5) are based on lifting method proposed by [START_REF] Desrochers | Improvements and extensions to the Miller-350 Tucker-Zemlin subtour elimination constraints[END_REF]. Constraints [START_REF] Kumar | Cradle to cradle: Reverse logistics strategies and opportunities across three industry sectors[END_REF] are the inventory balance of disassembly site for all periods. Constraints [START_REF] Brown | The Kellogg company optimizes production, inventory, and distribution[END_REF] impose the demand fulfilment. Constraints (8-10) limit the decisions of vehicle load, inventory and disassembly, respectively. Constraints [START_REF] Özceylan | Modeling and optimizing the integrated problem of closed-loop supply chain network design and disassembly line balancing[END_REF] and ( 12) define the nature of decision variables.

S it • x ijt ≤ y it ≤ j∈N,i =j Q • x ijt ∀i ∈ N, ∀t ∈ T ; ( 8 
)
I t ≤ InvCap ∀t ∈ T ; (9) 
P t ≤ DisCap ∀t ∈ T ; ( 10 
)
x ijt ∈ {0, 1} ∀i 

Formulation of case II (without coordination)

This subsection assumes that the decisions on collection and disassembly are optimised independently. The problem is deployed into two subproblem: [START_REF] Mcgovern | The disassembly line: balancing and modeling, 1st Edition[END_REF] disassembly lot-sizing and (2) collection routing. As depicted in Figure 5 

M in

t∈T

{CD • P t + CH • I t + a∈A CP a • SO at }; (13) 
Subject to:

I t = I t-1 + Collection t -P t , ∀t ∈ T ; (14) 
Constraints ( 7), ( 9), ( 10) and ( 12)

Collection t ≥ 0 and integer, ∀t ∈ T ;

The objective function [START_REF] Bentaha | A Sample Average Approximation Method for Disassembly Line Balancing Problem under Uncertainty[END_REF] minimizes the total cost of disassembly, inventory and penalty. Constraints [START_REF] Bentaha | Disassembly Line Balancing and Sequencing under Uncertainty[END_REF] balance the number of products in inventory for all periods. Constraints (15) are the nature of variable Collection t .

Using the value of Collection t obtained from the previous problem, the collection routing is dedicated to yield the route of vehicles as follows:

ILP model of collection routing. M in t∈T { i∈N j∈N C ij • x ijt + j∈Nc CF • x 1jt + a∈A CP a • SO at }; (16) 
Subject to:

Collection t ≥ j∈N i∈N,i =j S it • x ijt , ∀t ∈ T ; ( 17 
)
n a • i∈N,i =j S it • x ijt + SO at ≥ q at , ∀a ∈ A, ∀t ∈ T ; (18) 
Constraints ( 2)-( 5), ( 8) and ( 11)

The objective function ( 16) minimizes the dispatch and mileage cost corresponding to the vehicles used as well as the penalty cost emerged by the unmet component demands. Constraints [START_REF] Ferrer | An RFID application in large job shop remanufacturing operations[END_REF] assure that the number of products collected is lower than Collection t for preventing the excess mileage cost.

Constraints [START_REF] Habibi | Integrated procurement-disassembly problem[END_REF] impose the satisfaction of component demands.

Instances

Due to lack of benchmark instances available for our problem, the test instances were generated in following way. The data sets diagram is given in Figure 6. The first data set varies the location of collection centres, A, N , T , q at and DisCap. The second data set focuses on S it , Q and I 0 . The third data set is used to evaluate the impact of the different costs between disassembly process and collection routing involving CD, CH, CF a , CF and c ij .

In the first data set, the collection centres' location is generated into either at random or by cluster as presented by Figure A.1. In the random category, the location is generated uniformly with U (0 : 100) corresponding to ordinates and axis. In the cluster category, their location is uniformly generated as shown in Table 1. Correspondingly, N decreases from 25 into its subsets by [START_REF] Özceylan | Interactive fuzzy programming approaches to the strategic and tactical planning of a closed-loop supply chain under uncertainty[END_REF] 4.
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The model was implemented in java JDK 7 using ILOG CPLEX 12.6 on a PC with processor Intel R Core TM i7 CPU 2.9 GHz and 4 Go RAM under Windows 7

Professional. The first data set containing 488 instances was executed within 10 minutes since it corresponds to six parameters. The second and third data sets containing 18 and 9 instances, respectively, were executed within 100 minutes 190 in which they correspond to three parameters each. Parameters Value 

S it , ∀i ∈ N c , ∀t ∈ T U (9:11) Q 2 • i∈Nc Sit T I 0 0 InvCap ∞ CD 10 CH 1 CP a , ∀a ∈ A 4 CF 10 c ij , ∀i, j ∈ N 1

Parameters Value

A 5

N 10

T 10

q at , ∀a ∈ A, ∀t ∈ T U (90% : 110%) • i∈Nc t∈T Sit N •T I 0 2 • a∈A t∈T qat A•T DisCap ∞ CD 10 CH 1 CP a , ∀a ∈ A 4 CF 10 c ij , ∀i, j ∈ N 1

Collection Centres Location Random

Table 4: Parameter of Data Set 3

Parameters Value

A 5

N 10 T 10 S it , ∀i ∈ N c , ∀t ∈ T U (9 : 11) 
q at U (40% : 60%) • i∈Nc t∈T Sit N •T InvCap ∞ DisCap ∞ I 0 0 SO at 4 c ij 1 
Collection Centres Location Random

Results and Discussion

This part discusses our findings obtained from our proposition (case I) compared to independently solved problems (case II) as depicted by the following figures. The analysis on managerial factor of each interpretation is also avail- Concerning to collection process, we note that for higher values of number of nodes N , number of periods T and number of components A T CC is increased as depicted by figure 7(b), 7(c) and 7(d), respectively. It is natural since their elevation requests a higher number of products to be collected for avoiding higher penalty cost. Correspondingly, the value of component demand q at alternates T CC proportionally. In other words, the increase of demand naturally requires a higher number of products to be collected incurring higher collection cost.

Disassembly capacity DisCap has no significant influence except in the under-constrained disassembly capacity instances. It can be concluded that DisCap is not a sensitive parameter for influencing the result as long as its number is higher than q at . Consequently, setting up disassembly line balancing with a slightly higher time cycle will lead to more efficient T CC since the 215 collection process permits optimizing more products gathered. Regarding the computational time as shown in Figure 8, it is directly proportional to either N or T and inversely proportional to A and q at . DisCap has a particular effect since constrained instances require more computational time due to the trade off between penalty cost and collection cost. Bridging on general view, this work allows sustaining reverse SC of WEEE in two ways. In one hand, it assures the satisfaction of component demand of EOL products for customers. In other hand, the recycler / remanufacturer will be allowed to gain more profit by optimising efficiency yielding on lower total cost. As the result, better circular economy will be preserved while fulfilling economics needs and protecting environment.

For future works, it is necessary to consider the uncertainty at the supply side since it is practically common for EOL products. The hypothesis of encouraging the customers to bring back their EOL products has to be considered. On the other side, the different type of recyclers have to be studied.
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 1 Figure 1: The circular economy
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 2 Figure 2: Closed-loop supply chain
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 3 Figure 3: Network representations of Production-Distribution Problem [9]

Figure 4 :

 4 Figure 4: Representations of our problem

  , j ∈ N, ∀t ∈ T ; (11) SO at , I t , P t ≥ 0 and integer ∀a ∈ A, ∀t ∈ T ; (12) The objective function (1) minimizes the total cost summing the costs of collection routing, holding, disassembly and penalty. The collection routing consists of the dispatch and mileage cost. The holding cost concerns about the number of products stored at inventory. The disassembly cost is responsible of the number of products disassembled. The penalty cost corresponds to the unmet component demands.

  , the early problem concerns with the decisions on the amount of products intended for satisfying the component demands for all periods. Based on this decision, the collection routing attempts to fulfil by gathering the products available at collection centres. The penalty cost is applied when the demands of component are unmet. Variable Collection t is introduced denoting the amount of products intended for all periods.

Figure 5 :

 5 Figure 5: Relation of disassembly lot-sizing and collection routing

Figure 6 :

 6 Figure 6: Data sets diagram

  able. T C, T DC, T CC and T P C correspond to the average difference of total cost, of total disassembly cost, of total collection cost and of total penalty cost, respectively, between case I and II. For clarity, the following equation computes T C value with corresponding parameter: T C = average total cost caseII -average total cost caseI average total cost caseII The other average cost differences (T DC, T CC and T P C) are calculated by same manner based on cost associated. Data Set I. According to figure 7, the value of T C is always non zero indicating that lower cost is always obtained for case I. In other words, our proposition indeed permits the reverse SC having better performance. Whilst the values of T DC are nearly zero showing that the number of products disassembled is almost similar. While T CC alternates from axis line, T P C is near 1. It indicates that the elevation of collection cost affects the decrease on unmet demand. Henceforth, the satisfaction of customers will be elevated along with the reduction on penalty cost.
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 7 Figure 7: The results of Data Set I

  Parameter qat (f) Parameter DisCap.

Figure 8 :Figure 9 :

 89 Figure 8: The computational time of Data Set I (in second)
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 1011 Figure 10: The computational time of Data Set II

Figure 12 showsFigure 12 :

 1212 Figure 12 shows that the CPU time declines along with the increase of CD and CF . Since CD reflects an expensive unit disassembly cost, the collection process gathers less products. To this point, it reduces the permutation of routing vehicle yielding lower computational time. Whilst expensive fixed vehicle cost is reflected by CF . It yields less vehicles used resulting less computational time.
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 2 Figure A.2: The position of disassembly site (in red) and Collection Centres (in grey) in medium instances.

Figure A. 3 :

 3 Figure A.3: The position of disassembly site (in red) and Collection Centres (in grey) in medium instances.

  and 5 (see Figure A.2 and A.3).A is set to 10 and 5. T is fixed to 25, 10 and 5. q at is generated with U (40%; 60%) • S it and U (90%; 110%) • S it . DisCap is relative

	to a∈A t∈T qat T	by 85%, 118% and infinite as representing under constrained,
	constrained, and infinite disassembly capacity, respectively. The other values
	are shown in Table 2.
	In the second data set, S it is generated as U (9 : 11) and U (40 : 60). Q is
	generated with 2,3 and 4 times i∈Nc t∈T Sit

T

.

Table 1 :

 1 Location of Collection Centres

		Distribution Parameters
	Collection Centres		
		Ordinate	Axis
	2 nd -7 th	U (0 : 25)	U (0 : 25)
	8 th -14 th	U (75 : 100) U (30 : 50)
	15 th -19 th	U (75 : 100) U (75 : 100)
	20 th -25 th	U (0 : 25)	U (75 : 100)

Table 2 :

 2 Parameter of Data Set 1

Table 3 :

 3 Parameter of Data Set 2

period zero will reduce the total cost.