
HAL Id: emse-01353610
https://hal-emse.ccsd.cnrs.fr/emse-01353610

Submitted on 8 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Densification dependent yield criteria for sodium silicate
glasses - An atomistic simulation approach

Gergely Molnar, Patrick Ganster, Anne Tanguy, Etienne Barthel, Guillaume
Kermouche

To cite this version:
Gergely Molnar, Patrick Ganster, Anne Tanguy, Etienne Barthel, Guillaume Kermouche. Densifi-
cation dependent yield criteria for sodium silicate glasses - An atomistic simulation approach. Acta
Materialia, 2016, 111, pp.129-137. �10.1016/j.actamat.2016.03.053�. �emse-01353610�

https://hal-emse.ccsd.cnrs.fr/emse-01353610
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Densification dependent yield criteria for sodium silicate

glasses – an atomistic simulation approach

Gergely Molnára,∗, Patrick Ganstera, Anne Tanguyb, Etienne Barthelc,d,
Guillaume Kermouchea
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Abstract

Silicate glasses are macroscopically brittle but ductile at the micron scale.
This plastic response is complex: in open structure materials, such as amor-
phous silica, plastic yield results in significant densification. While, more
compact structures (e.g. soda-silicate glasses) are known to suppress densifi-
cation and promote shear flow. We have carried out atomic scale simulations
to analyze the plastic response of a series of silicates with increasing sodium
content. Quasi-static, multi-axial deformation tests were performed on large
samples (≈ 103 nm3). Their yield behavior was quantified at different stress
states, by measuring permanent volume changes. Qualitative agreement was
found between the response of modeled systems and experimental results.
Strong coupling between plastic yield and densification was observed. Our
results also suggest that sodium silicates may densify not only under hy-
drostatic compression but also upon shear at large strains. Based on these
numerical results, we propose a general yield criterion for soda-silicate glasses
in which density is an internal variable. As density increases, the elliptic yield
surface (characterizing amorphous silicates with open structures) gradually
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evolves into a Drucker-Prager-like model for fully densified samples.

Keywords: Silicate, Constitutive modeling, Yield strength, Multiscale
modeling, Molecular statics

1. Introduction

Silicate glasses are used for many technical purposes, especially where
stiffness and transparency are required. Silicate glasses are brittle on the
macroscopic scale but ductile at the micron scale [1]. This plastic response
is expected to be key to understand brittleness. However, it was soon found
that there is an unusual feature in the plastic response of amorphous sil-
icates. Open structure glasses exhibit irreversible volumetric strain upon
compression: for amorphous silica this densification saturates at ca. 20 % at
a hydrostatic pressure of about 20 GPa [2, 3, 4, 5]. Moreover, for technical
silicate glasses, sodium oxide (Na2O) is usually added to silica, along with
other compounds. Indeed, sodium modifies the silica network and lowers the
glass transition temperature for easier glass processing. But the addition
of sodium also impacts mechanical ductility. Upon hydrostatic compression
soda-lime-silicates show less densification [6], and at reduced pressures val-
ues [7]. This behavior results from the phenomena that sodium gradually
fills up the open structures.

In fact, the relation between densification and plastic yield in silicate
glasses is a complex question, and a continuing matter of debate. Ever since
densification was observed, the respective contribution of irreversible volu-
metric strain and shear flow has been an issue [8, 9]. Experimentally, because
larger samples break, nano-indentation was a useful tool. Unfortunately the
resulting strain field of an indentation is very inhomogeneous, which helps
little in the identification of a complex constitutive behavior. According to a
rule of thumb, if pile-up is present – especially with very sharp indenters [10]
– there is significant shear plasticity [11]. While if densification is dominant,
the refractive index of the glass changes [12]. A large number of experiments
was carried out, and the overall picture emerged: if densification is prevented,
shear flow is enhanced. It was shown, that the addition of sodium [13, 14]
and pre-densification [15, 16] decreases volumetric plasticity and increases
shear flow.

However, for a more quantitative assessment of the competing processes,
it is necessary to develop a continuum scale description of the governing
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plastic yield. Given the complexity of tests such as indentation, the use of
advanced numerical tools and especially finite element modeling is inevitable.
Compared to the large number of papers reporting indentation results, consti-
tutive models for plastic yield in silicate glasses are few and far [17, 18, 19, 20].
Moreover, these models must be calibrated using experimental results.

During indentation test force displacement curves are the usual indica-
tors, however they are not very sensitive. To strengthen the experimental
basis, a more elaborate identification of plasticity have been considered such
as the measurement of residual stress (from crack patterns [21] or birefrin-
gence [22]) or density fields after indentation (from Raman scattering [23],
luminescence [24] or chemical etching [25]). However, for a precise descrip-
tion other tests must be devised. The “simplest” one is probably the uniaxial
compression test [26, 27].

Once due consideration is given to these difficulties, it appears that nu-
merical experiments may offer insight into the mechanical response of such
complex materials. In this paper, our aim is to develop yield criteria from
atomistic simulations for amorphous silicates, specifically considering the im-
pact of composition. Given the present state of development of molecular
dynamics, we do not expect these calculations to provide a quantitative char-
acterization. Rather, we hope that our simulation results provide an explicit
functional description of yield surface. Which model can then be made quan-
titative for given actual glass compositions, based on the various micron-scale
mechanical experiments mentioned above, such as diamond anvil [28], pillar
compression [26] or indentation tests [15].

In a pioneering work, Schuh and Lund [29] derived a constitutive rela-
tion from atomistic simulations for metallic glasses. Their numerically cal-
culated yield surface compared favorably with experimental results. Since
then, many works have been dedicated to measure plasticity in metallic
glasses [29, 30, 31, 32, 33], nano-crystalline metals [34, 35] and glassy poly-
mers [36, 37]. Amorphous solids in general were studied [38, 39, 40], though
an elaborate quantitative description of silicate glasses is still missing. Sim-
ulations are very useful in this context, not only because they can provide
detailed information about the mechanical response, but also because the
underlying rearrangement mechanisms can be examined at the atom scale.

The paper is structured as follows. Section 2 introduces the numerical
methods with details on molecular dynamics and statics [41]. In section 3
results are given, first for simple hydrostatic compression and shear, then
for the combined of the two. This is necessary to identify the constitutive
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behavior with strong coupling between volumetric and shear deformations.
We show that the yield process can be rationalized when the evolution of
density is considered. Finally in section 4, a new form of yield function is
proposed with the density as an internal variable.

2. Methods

Our aim is to simulate the mechanical response of amorphous silicate
materials with open structures with increasing depolymerization.

2.1. Atomic sample preparation

The glass samples were generated by the random sequential placement
of the atoms in a cubic simulation box with periodic boundary conditions.
Molecular simulations were performed with LAMMPS [42] to equilibrate the
liquid at 3000 K, to cool it using 1013 K/s quenching rate until ∼ 0 K,
and finally deform the samples. Atomic interactions were modeled with the
empirical BKS potential [43] using the parameters of Yuan and Cormack [44].
The potential function was defined for the different pair interactions (e.g. Si-
O, O-O or Na-O) with respect to the strong ionic/covalent Si-O bonds and
the weaker but longer Na-O ones1.

To avoid the collapse of the atoms the short term potential was substi-
tuted with a repulsive function [45]. In this manner we have simulated three
glasses xNa2O-(100-x)SiO2 with x = 5, 15, and 30 %mol which will be re-
ferred to as NSx5, NSx15 and NSx30 following Yuan and Cormack [44]. The
system sizes were 67 041, 69 849 and 73 368 atoms respectively with a final
simulation box length of 10 nm. Thanks to this relatively large box, finite size
effects are minimized. All samples were then compared with neutron [46],
Brillouin [47] scattering and NMR [48, 49, 50] experiments to validate the
initial structure. Agreement was found within the precision of the experi-
mental results as shown also by Yuan and Cormack [44]. Further information
about the sample generation can be found in Ref. [51].

1The cutoff values used for the potential function were fine-tuned in order to achieve
the experimentally measured densities (2.238, 2.340 and 2.470 g/cm3) at ambient pressure.
Therefore, we used a parameter rcut equal to 5.1, 5.9, 6.9 Å for NSx5, NSx15 and NSx30
samples respectively.
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2.2. Deformation scheme

To display a pressure dependent yield surface the main variables are pres-
sure (p) and equivalent shear stress (k). Where p = −σm, and the average
normal stress σm is calculated from the components of the diagonal of the
Cauchy stress tensor (σ): σm = (σ1 + σ2 + σ3) /3, σi are the principal normal
stresses.

Similarly, equivalent shear stress k can be expressed as: k =
√
J2, where

J2 is the second invariant of deviatoric stress tensor s (s = σ−σmI, I is the
identity matrix). J2 can be given by the components of the Cauchy stress
tensor (σ) as well:

J2 =
1

6

(
(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2

)
. (1)

In addition, we have also studied the impact of the third stress invariant
J3 = det(s). Therefore, we will also use the Haigh-Westergaard (HW) stress
space [52, 53, 54, 55, 56, 57, 58], where the three independent variables are:

• hydrostatic stress ρ = −p
√

3,

• deviatoric stress s = k
√

2 =
√

2J2,

• meridian angle (or Lode angle) - ϑ.

The meridian angle (ϑ) is defined as [59]:

cos 3ϑ =
3
√

3

2

J3

J
3/2
2

. (2)

Note the opposite sign convention for pressure and hydrostatic stress: in
compression pressure is positive while hydrostatic stress is negative. The
third variable (ϑ) in the HW stress space indicates whether the deviatoric
stress tensor is predominantly tensile (ϑ = 0◦), shear (ϑ = 30◦) or compres-
sive (ϑ = 60◦).

The deformation was applied in a quasi-static way [41]. During both
compression and tension the dimensions of the simulation box was reduced
by a constant displacement step, while the positions of the particles were
rescaled in a homogeneous way. After box deformation, a new equilibrium
position was searched using the Polak-Ribiere conjugate gradient algorithm.
The macroscopic stress tensor of the system was calculated according to
Ref. [60]:
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σ = − 1

V

∑
i

[
−mivi ⊗ vi +

1

2

∑
i 6=j

rij ⊗ fij

]
, (3)

where i and j are the atomic indices. The summation is over all the
particles contained by the total volume (V ). The first term in the bracket is
the kinetic energy contribution which is considered zero because samples are
in static equilibrium. The variables vi and mi are the velocity vector and the
mass of atom i. The second term is the stress originating from the pairwise
energy. This value can be calculated for each atom by summing the tensorial
product of rij (rij = rj−ri, where ri and rj are the position vectors of atom
i and j) and the interatomic force vector (fij) applied on atom i by atom j.

To evaluate the constitutive relations, permanent plastic strains were cal-
culated as a function of maximum stress state in various loading/unloading
cycles. In practice, the yield stress is often written as a function of the plastic
strains. Here, by the inverse process, we register plastic strains as a function
of applied stresses to determine the hardening functions.

The following protocol was executed to calculate the permanent volume
variations (εplV ) at a given stress state (P ) after loading and unloading. In
Fig. A.1 the schema of the applied deformation is shown. In a first step, the
simulation box (ρ = 0 GPa) was deformed hydrostatically (σ1 = σ2 = σ3) to
obtain the desired pressure value. Then the sides of the box were elongated
or compressed separately to apply deviatoric stress at constant pressure and
constant meridian angle (step 2) to reach the target load point (P ). During
step 3 the direction of the deformation was reversed to reduce the applied
deviatoric stress to zero, maintaining the principal stress relations as in step 2.
Finally in step 4 the pressure was relaxed to zero. The final box shape was
compared to the original one to calculate the permanent volumetric strain
(εplV (ρ, s)) as a function of applied stresses. The experiment was carried out
for various stress states (ρ = [−25, 25] GPa, s = [0, 12] GPa) to map the
plastic response of the material accurately. Fig. A.1 also displays a schema
of the expected mechanical response: the red curve shows the quasi elastic
domain with only small permanent strain, then the material should yield
and after a gradual hardening the maximum load bearing capacity should be
reached.

These tests were carried out for all three compositions not only on the
pristine (undensified) samples but also after pre-densification as well. The
samples were pre-densified by pure hydrostatic compression (step 1), then
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Meridian section ϑ r1 r2 r3
Tensile 0◦ 2/

√
3 −1/

√
3 −1/

√
3

Pure shear 30◦ 1 0 −1

Compression 60◦ 1/
√

3 1/
√

3 −2/
√

3

Table 1: Parameter ri for different loading cases in eq. (4) [59, 61].

the pressure was relaxation (step 4) to zero.
To ensure that deformation proceeds at a constant meridian angle, we

followed a loading paths obeying:

σ2 = (σ1 + p) r2/r1 − p,
σ3 = (σ1 + p) r3/r1 − p,

(4)

where r1, r2 and r3 are ratios given in Tab. 1. The term in the brackets is
the stress difference applied by the deviatoric deformation compared to the
original pressure state. For example if ϑ = 30◦: the difference in the first
principal stress is positive, while the difference in the third is negative and
σ2 remains unchanged.

If the material is elastic, a similar relationship for principal strains hold
as well. However, when plasticity arises, the axial strains have to be modified
separately. Fig. A.2 shows the evolution of both principal stresses and strains
with increasing number of deformation steps. A constant strain increment
dε1 = 10−4 (axial displacement du1=Ldε1) was used. Initially the other
two axial strain increments were set as shown in Tab. 1 through du2,3 =
du1r2,3/r1. If the stresses were found to deviate from eq. (4) more than
0.005 GPa, the displacements were corrected in the next step. For example
if the second principal stress at step n (σn2 ) was larger than requested, the
displacement dun+1

2 was reduced in the next step according to the feedback
equation dun+1

2 = du1(r2/r1 + (σ2 − σn2 )B), where σ2 is the target value
according to eq. (4) and B is a convergence parameter set to 30 1/GPa.

Using this procedure we found that negligible rotation was induced
(τxy = τxz = τyz < 0.005 GPa) so that the axial stresses were directly
equal to the principal stresses. As a result, to calculate the permanent vol-
umetric strain, the normal strain components were calculated directly from
the logarithm of the individual Hencky stretch ratios (λi):

εi = ln (λi) = ln
(
1 + εSSi

)
. (5)
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In eq. (5) εi are the finite and εSSi are (small) engineering normal strains
(i = x, y, z). The volumetric strain (εV ) can be calculated as the sum of the
individual axial strain components:

εV =
∑
i=x,y,z

εi =
∑
i=x,y,z

ln
(
1 + εSSi

)
= ln

(
1 +

dV

V0

)
, (6)

where, dV is the volume change and V0 is the original volume size.
Fig. A.2 shows how the principal strains had to be set in order to achieve

the desired relationship between principal stresses for a ϑ = 30◦ and ρ = 0 GPa
(p = 0 GPa) deformation case. Using this iteration process we were able to
conduct deviatoric (shear) tests at constant hydrostatic stress (ρ) and con-
stant meridian angle (ϑ).

3. Results

The results are divided into three sections. First we investigate pure hy-
drostatic compression and the resulting permanent volumetric strain as a
function of pressure. Then we focus on the connection between deviatoric
deformation and densification. Finally, the two basic deformation schemes
(hydrostatic, deviatoric) are combined to map permanent volumetric defor-
mation as a function of stresses to develop a yield surfaces. The dependence of
these yield surfaces upon initial structures (composition or pre-densification)
is highlighted. Finally we show how these results can lead to a parametriza-
tion as a function of the key internal variable: the density.

3.1. Hydrostatic deformation

Simple hydrostatic loading experiments were carried out without shear.
Fig. A.3 shows the permanent volumetric strain as a function of maximum
hydrostatic pressure. The permanent volume variations were calculated by
compressing the samples isotropically until the desired pressure value was
reached, then the deformation was reversed in order to relax the pressure.
The difference between the initial and the relaxed volume was compared to
compute εplV .

The response can be divided into three separate stages. In a first stage,
at low pressure, the response is quasi-elastic and the volume change is rela-
tively small. In a second stage, densification is roughly linear with pressure
although the details are affected by Na content. More Na tends to reduce

8



Composition εpl,max
V [-] pc [GPa] m [-] R2

NSx5 -0.31 14.61 3.37 0.9984
NSx15 -0.29 12.01 2.37 0.9989
NSx30 -0.21 12.97 2.12 0.9994

Table 2: Parameters of eq. 10 for different compositions. R2 is the coefficient of determi-
nation of the fit.

the densification threshold: NSx5 begins to densify at p = 3 GPa while
NSx30 has almost no elastic resistance and plasticity starts at a very early
stage (p = 0.5 GPa). In a third stage, the linear regime gradually bends
over and saturates to a maximum value (εpl,max

V ). The maximum permanent
volumetric strain decreases with Na content.

More precisely the results can be adequately fitted using the following
sigmoidal curve:

εplV = εpl,max
V

(
1− 1

1 + (p/pc)
m

)
(7)

where pc and m are material constants: pc is the center of the sigmoidal
function close to the inflection point, where the increment of densification is
the largest. Coefficient m is the hardening exponent. The larger m, the larger
the plastic strain increment near pc. The material parameters εpl,max

V , pc,m
are shown in Tab. 2.

Qualitatively, the evolution of the plastic properties with increasing Na
content (reduction of the yield threshold and of the permanent volumetric
strain at saturation) is in agreement with experimental results. Note however
that the permanent volumetric strain at saturation is significantly larger than
expected. The maximum volume loss for NSx30 is found at 16 %. However,
experiments measured a much lower value for window glass around 6 % [6, 7].
This discrepancy is probably an artifact of the potential. Nevertheless, as
usual with atomistic simulations our aim is not to predict material properties
quantitatively, but to observe the atomistic mechanisms and the nature of
the mechanical response. Then, the exact values of the response parameters
should be determined using real life experiments.
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3.2. Elementary shear deformation

In Fig. A.4 the deviatoric stress and the permanent volumetric strain of
NSx5 are shown as a function of applied deviatoric strain2 (εs) at constant
hydrostatic tension p = −2 GPa. For this small negative pressure, pristine
NSx5 is elastic up to εs = 0.15 where it begins to densify gradually. Af-
ter reaching its shear strength (peak stress) a softening stage appears, with
densification. In this regime the plastic volumetric strain increases linearly
with applied deviatoric strain. For large shear, a plastic plateau is observed,
defining the flow stress. Under these conditions, densification even exceeds
the maximum value reached with pure hydrostatic pressure. A possible rea-
son for the saturation upon hydrostatic compression is that silica forms a
stable load bearing network with 6 coordinated silicons at high pressure,
whereas shear flow breaks this strong structures and allows the material to
densify further [62]. Some samples were also partially densified using hy-
drostatic pressure before the same type of shear experiment was carried out
at p = −2 GPa (Fig. A.4). We find that with pre-densification the mate-
rial exhibits reduced strength, earlier plasticity and tends to expand at the
initial deformation stage. Then we find a gradual transition, until the sam-
ples saturates at the same increased density εpl,max

V and the same flow stress
on the plastic plateau. Thus, at large strains shear erases the structural
modifications induced by pre-densification.

The softening phenomena shown in Fig. A.4 is generally explained by the
localization of internal plasticity (or so-called shear transformation zones) [39].
These localized regions form shear bands which allow the material to lose
elastic energy in an increased way, thus reducing the shear strength of the
material. Our tests connecting densification and softening is not a contradic-
tory hypothesis, but a result which shows, that in silicates this shear band
causes not only softening but permanent volume loss as well. The detailed
analysis of the localization of internal plasticity exceeds the topic of this pa-
per and does not affects the final results concerning the macroscopic yield
properties.

3.3. Determination of yield criteria

The central aim of this study is to define a yield surface for sodium silicate-
like materials as a function of composition. In the previous sections we found

2The deviatoric strain was calculated from the Hencky strain tensor in a manner similar
to deviatoric stress
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a strong correlation between densification and yield strength. Therefore, to
investigate the pressure and densification dependence of the yield strength
several tests were carried out under combined hydrostatic and deviatoric
loading (the method is explained in section 2).

Fig. A.5 shows permanent volumetric strain as a function of maximum
stress state in the pure shear meridian (ϑ = 30◦) for each of the three com-
positions. The squares show the maximum stress that can be reached dur-
ing deviatoric deformation due to the plastic plateau or even softening (see
Fig. A.4). It can be noticed that both shear strength and hydrostatic tensile
strength are reduced by the addition of sodium. The elastic domain is re-
duced, which suggests that sodium weakens the sample and facilitates early
plastification. More importantly, for low Na content, a minimum in the devi-
atoric strength is found in the early stage: for NSx5 the local minimum is at
ρ = −10 GPa (p = 5.77 GPa), for NSx15 is at ρ = −3 GPa (p = 1.73 GPa).
After this local minimum, the deviatoric strength increases again with pres-
sure, similar to a Drucker-Prager model [63]. Interestingly NSx30 does not
show any sign of a local minimum and the deviatoric strength increases mono-
tonically with increasing pressure. Hence, for high sodium content, an ex-
tended Drucker-Prager model [64] is suitable to account for the yield strength
evolution.

The previous representation suffers from several drawbacks. The perma-
nent volumetric strain can be shown only up to the maximum stress value.
For a softening material, such as shown in Fig. A.4, the softening stage can-
not be accounted for. More significantly, with the local minimum, shear
strength curve is concave, which appears to violate Drucker’s postulate [65]
and leads to instability. These observations suggest that the material actually
evolves during plastic deformation and that parametrization by some inter-
nal variable is necessary. From Fig. A.4 it is clear that densification lowers
the deviatoric strength. To clarify the situation, we have first pre-densified
samples using hydrostatic pressure, then performed the same density map-
ping procedure through combined pressure-shear loading. In Fig. A.6 the
maximum deviatoric stress is shown as a function of relative densification
γ = εplV

/
εpl,max
V where εplV is the permanent volumetric strain and εpl,max

V is

the maximum value reachable using hydrostatic compression. In the same
figure, isodensification curves taken from Fig. A.5 illustrate the transforma-
tion of the initial yield surface into the final one: as permanent volumetric
strain increases, the positive yield pressure increases, the deviatoric yield
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strength decreases and the yield curve becomes flatter. Most importantly,
Fig. A.6 shows that once the dependence upon density has been explicitly
taken into account, the yield surfaces for each given density are convex so
that Drucker’s postulate is indeed satisfied [65].

The evolution of the yield surfaces does not only depend upon pre-
densification but also upon composition. With increasing sodium content
the difference between initial and final deviatoric yield strength reduces: for
NSx5 yield strength is strongly affected by densification while for NSx30 den-
sification has almost no effect on maximum strength. However, in all cases
the final yield strength increases linearly at high pressure, but curves down
to zero as a power law near the tensile threshold.

We also found that the third stress invariant (meridian angle) affects
deviatoric strength. In Fig. A.7 the yield strength is shown at pressure
p = 0 GPa (in the π−plane) for the three different compositions. For pristine
samples (γ ≈ 0 %, in red) the plots are not circular, which denotes an
impact of meridian angle on shear strength. The shear strength is lower
under compression dominated shear (ϑ = 60◦) than under tension dominated
shear (ϑ = 0◦). For fully densified samples (γ = 100 %), The strength
curves at p = 0 GPa are shown in black. Upon densification, for NSx5, the
deviatoric strength remains almost unchanged. This is an accident connected
to this specific pressure value p = 0 GPa, as can be seen in Fig. A.6. With
more sodium, pre-densification not only reduces deviatoric strength but also
suppresses anisotropy of the yield surface in the π-plane. Generally speaking,
we find that yield stress in shear is lower for a compression dominated stress
state (ϑ = 60◦) and higher for a tension dominated stress state (ϑ = 0◦).
This response can tentatively be related to the impact of compression which
is known to lower yield stress in open structure materials. Indeed, for fully
densified samples, the yield stress becomes independent of meridian angle, as
in the Drucker-Prager scheme. This observation is consistent with the idea
that the response of these materials generally transforms from a compression
to a deviatoric stress sensitive yield criteria as the material densifies.

4. Constitutive model

Using microscopic experiments, such as micro-pillar compression and in-
dentation, Kermouche et al. [19] showed that silica can be modeled appro-
priately using an elliptic yield surface (i.e. a prolate spheroidal surface in
HW space). Permanent densification gradually transforms this initial yield
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function into a pressure insensitive von Mises criterion [66] (i.e. a cylinder
in HW space). Molecular dynamics simulation on silica-like materials have
confirmed the overall curvature of the yield surface [67].

Our present atomistic results confirm this hypothesis. They also suggest a
more appropriate model for amorphous silicates. Our simulations show that
the yield function transforms gradually from an initial elliptic to a Drucker-
Prager-like shape as densification increases. As a result we can propose a
density dependent yield function to capture this evolution as a function of
permanent volumetric strain (Fig. A.8a).

The yield function (referred as DP-cap in the following) is compiled from
two parts: an extended Drucker-Prager-like model and an elliptic cap. The
tension side, from ρy,+ to ρint is described with the extended Drucker-Prager
function [64]:

FPD =

(
s

c (γ)

)b(γ)
+
ρ− ρy,+ (γ)

a (γ)
. (8)

In eq. (8) 1/a is similar to the slope found in the original Drucker-Prager
model [63], b and c are empirical material constants and ρy,+ is the hydro-
static tensile strength. All material constants are linear functions of relative

permanent volume change (γ = εplV

/
εpl,max
V , where εplV is the volumetric plastic

strain).
The elliptic cap is defined for the compression side between ρint and ρy,−

as follows:

FEll =

(
ρ− h
d

)2

+
(s
e

)2
− 1, (9)

where d, e are the radii and h is the center of the ellipse on the hydrostatic
axis. The cap is always fitted in connection to the power function by the
following three criteria: 1) the values of both functions (8) and (9) have to be
equal at ρint; 2) the connection needs to be smooth, therefore the derivatives
of s respect to ρ for both functions have to be continuous at P(ρint, sint) and
finally ρy,− = h − d, where ρy,− is the compressive yield pressure calculated
as the inverse of equation (7):

ρy,− = −
√

3pc

(
γ

1− γ

)1/m

. (10)
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Composition NSx5 NSx15 NSx30

γ [%] 0 100 0 100 0 100

ρy,+ [GPa] 22.79 16.94 15.31 13.16 2.51 6.00
ρy,− [GPa] Shown by eq. (10) and Tab. 2
ρint [GPa] 20.0 + ρy,− 15.0 + ρy,− 6.5 + ρy,−

a [GPa] 13.0 20.0 24.0
b [-] 1.5 4.4 1.5 3.7 1.5 3.4
c [GPa] 14.0 7.0 20.0 7.0 24.0 6.4

Table 3: Material constants for the DP-cap model as a function of composition and relative
permanent volumetric strain. The curves were fitted to the results presented in Fig. A.6.

Of course, although the results of the numerical simulations were best
fitted with function (10), this equation can be replaced with any other sig-
moidal curve used in the literature [6, 20] if it fits experimental results better.
From the three independent criteria, the three parameters of the ellipse can
be calculated. Computational details concerning the relationship between
the elliptic cap and the power function can be found in Appendix A.

The DP-cap yield function changes only with relative densification, which
can result both from hydrostatic and deviatoric loading. It handles hydro-
static hardening as well as shear softening at constant pressure (Fig. A.4).

Fig. A.8b shows the DP-cap model fitted on the results obtained for NSx5.
All material constants are summarized in Tab. 3.

The advantage of the DP-cap yield function is that it is capable of mod-
eling not only one directional but cyclic loading as well, using density as an
internal variable. As to the tensile side of the ellipse, for samples with small
sodium content, negative volume variation can be applied in a very restricted
way only. The sample loses its load bearing capacity very early and then a
macroscopic crack appears, from which point tensile side of the strength curve
was defined. Of course it is doubtful that this model can describe rupture
adequately. Therefore, to give a physical meaning to parameters (b and c)
which effect the tensile side of the power law is difficult. To provide a better
brittle response to the model, a different method (e.g. phase-field method,
XFEM or a hybrid discrete and finite element method) should be used in
parallel to this yield criterion. Note also that, to a lesser extent, the sam-
ples are affected by irreversible shear strain and the meridian angle as well.
Therefore, both deviatoric strain hardening and the Lode parameter should
be taken into account for a better representation of the atomistic results.
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5. Conclusion and remarks on future work

Molecular statics simulations were performed to investigate the mechan-
ical response of silicate glasses with increasing network depolymerization.
Multiaxial loading conditions were used, where the samples were first de-
formed hydrostatically, then sheared. After relaxing the pressure and shear
stress to zero, permanent volumetric strains were computed from initial and
final volumes. The results show that densification not only affects hydro-
static hardening, but also has significant impact on shear yield strength as
well. Sizable loss of free volume is also registered for large amplitude shear
deformations. Under these conditions, densification can be interpreted as a
microstructural change caused by the collapse of large rings upon shear [62].

We find that shear strength is larger for more polymerized samples (i.e.
with low sodium content). Larger amounts of sodium facilitate early plas-
tification, with less softening and more ductility. This result is consistent
with the observation that sodium rich silicates undergo more shear flow and
less densification. Low sodium content samples enter a softening regime con-
trolled by volumetric strain while sodium rich silicates can reach their shear
strength at zero pressure without densification. However, a similar transition
can also be achieved in low sodium samples by pre-densification: from an el-
liptic model, the response transforms into a Drucker-Prager behavior when
density increases, confirming the tendency observed in experiments [15].

Based on our numerical results, we have proposed a density dependent
yield function. Considering the complex hardening of the material, density is
introduced as an internal variable taking into account the permanent volume
changes for both hydrostatic and shear deformation. The yield function is
initially elliptic and gradually evolves into a Drucker-Prager criterion when
densification saturates.

In principle, using numerical experiments to derive constitutive equa-
tions, as presented in this paper, has two advantages: 1) it is easier and
much more cost efficient to conduct experiments virtually; 2) for silicate
glasses, it is difficult/impossible to conduct multiaxial tests experimentally.
For instance, yield stress as a function of meridian angle can certainly not
be measured in the present state of experimental development. Therefore,
simulations should be a powerful tool to derive shapes of yield functions and
identify essential material parameters. However, the technique is of course
still very limited by the problem of definition and calibration of the interac-
tion potentials. For example, in our results, although the potential provides
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accurate static structures, the density at saturation after deformation cer-
tainly overestimates expected experimental values. This is why, at present,
conclusions can be derived only in a qualitative way. To actually implement
such a constitutive model, it is necessary to determine material constants by
comparing the simulated data with a variety of experimental results, under
as many different loading conditions as possible.
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Appendix A. Cap fitting

To fit the three parameters of the elliptic cap to the power function, three
independent criteria is used:

• The deviatoric stress values of both elliptic and power function have to
be equal at the intersection point (ρint): sEll = sPD.

• The connection needs to be smooth, therefore the derivatives of s re-
spect to ρ for both functions again have to be the same at P(ρint, sint).

• Finally ρy,− = h − d, where ρy,− is the compressive yield pressure
calculated as the inverse of equation (7).

To satisfy the fist criteria the deviatoric stress value (sint) at ρint can
be calculated from equation (8). Then both ρint and sint has to be
substituted into equation (9):

(
ρint − h

d

)2

+

(
sint

e

)2

= 1, (A.1)

where ρint and sint are known and e, d and h are the unknowns.

The derivative of the power function (8) at the intersection point can
be expressed as:

dsPD
dρ

= − c

ab

(
ρy,+ − ρint

a

)1/b−1

. (A.2)

Using implicit differentiation the same slope can be expressed for the
elliptic cap as well:

dsEll
dρ

= −e
2

d2
ρint − h
sint

. (A.3)

Knowing that (A.2) and (A.3) has to be equal, the second equation
can be expressed. Using the third condition (ρy,− = h − d), the three
parameters of the ellipse (e, d and h) can be calculated from three
independent equations.

23



List of Figures

A.1 To calculate permanent volumetric strains at different
stress states, the samples were first deformed hydrostat-
ically (step 1), then pure deviatoric stress was applied
following eq. (4) (step 2) and finally deviatoric stress
(step 3) and pressure (step 4) were relaxed to zero. The
final shape of the simulation box was compared to the
original one to compute permanent volumetric strain εplV
as a function of applied stresses ρ, s. The figure also
shows both initial (quasi-elastic region) and final (fully
densified) yield strength. The thin lines show the evo-
lution of the yield surface during gradual densification
upon hydrostatic and shear deformation. . . . . . . . . 26

A.2 Principal stresses and principal strains as a function of
load step for deformation in the pure shear meridian
(ϑ = 30◦). A constant strain increment dε1 = 10−4

was used and the other two principal strain steps (dε2
and dε3) were iteratively adjusted to match the desired
relations between principal stresses (eq. (4)). . . . . . . 27

A.3 Permanent volumetric strain (εplV ) as a function of ap-
plied hydrostatic pressure for different compositions. The
results are fitted using a sigmoidal fit (see eq. (7)). The
parameters of the fit can be found in Tab. 2. . . . . . . 28

A.4 Top: deviatoric stress (k) as a function of applied de-
viatoric strain (εs) under constant hydrostatic tension
p = −2 GPa for NSx5. The results are shown for three
levels of pre-densification defined by the initial perma-
nent volumetric strain (εpl,iniV ). Bottom: permanent vol-
umetric strain εplV . The results demonstrate that shear
at constant pressure induces densification at large shear
deformations. . . . . . . . . . . . . . . . . . . . . . . . 29

24



A.5 Residual volumetric strain as a function of applied pres-
sure (or hydrostatic stress) and deviatoric stress for three
different compositions (see section 2). The open symbols
shown the maximum yield strength reached. In the re-
gion in red permanent volume increase for NSx30 was
found. Other compositions initially did not show any
permanent plastic extension. The quasi-elastic regime is
found in region in white. . . . . . . . . . . . . . . . . . 30

A.6 Interpolated curves using the results presented in Fig. A.5.
All yield surfaces are shown as a function of relative
densification (γ = εplV /ε

pl,max
V ) at ϑ = 30◦ (pure shear

meridian). The dotted lines show intermediate stages of
volumetric densification. The solid lines with different
symbols represent initially densified samples (see Fig. A.4). 31

A.7 Maximum yield surface shown in the π-plane (p = 0 GPa)
as a function of densification for different compositions.
Red curve shows the yield strength for pristine samples
(γ = 0 %). Black curve shows the yield strength for
fully densified samples (γ = 100 %). Each symbol shows
a simulated case. . . . . . . . . . . . . . . . . . . . . . 32

A.8 a) Schematic illustration of the proposed yield function
which combines extended Drucker-Prager model (see eq. (8)
– in black) and elliptic cap (see eq. (9) – in red). The
connecting point is shown by ρint and sint. The positive
and the negative yield point on the hydrostatic stress
axis are shown by ρy,+ and ρy,−. b) Fitted yield func-
tions for NSx5 for the initial, undensified state (γ = 0 %;
model: solid line; numerical results: squares) and final,
fully densified state (γ = 100 %; model: dashed line; nu-
merical results: triangles). Dotted lines show the grad-
ual transformation between the two. . . . . . . . . . . . 33

25



Figure A.1: To calculate permanent volumetric strains at different stress states, the sam-
ples were first deformed hydrostatically (step 1), then pure deviatoric stress was applied
following eq. (4) (step 2) and finally deviatoric stress (step 3) and pressure (step 4) were
relaxed to zero. The final shape of the simulation box was compared to the original one
to compute permanent volumetric strain εplV as a function of applied stresses ρ, s. The fig-
ure also shows both initial (quasi-elastic region) and final (fully densified) yield strength.
The thin lines show the evolution of the yield surface during gradual densification upon
hydrostatic and shear deformation.
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Figure A.2: Principal stresses and principal strains as a function of load step for deforma-
tion in the pure shear meridian (ϑ = 30◦). A constant strain increment dε1 = 10−4 was
used and the other two principal strain steps (dε2 and dε3) were iteratively adjusted to
match the desired relations between principal stresses (eq. (4)).
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Figure A.3: Permanent volumetric strain (εplV ) as a function of applied hydrostatic pressure
for different compositions. The results are fitted using a sigmoidal fit (see eq. (7)). The
parameters of the fit can be found in Tab. 2.
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Figure A.4: Top: deviatoric stress (k) as a function of applied deviatoric strain (εs) under
constant hydrostatic tension p = −2 GPa for NSx5. The results are shown for three levels
of pre-densification defined by the initial permanent volumetric strain (εpl,iniV ). Bottom:

permanent volumetric strain εplV . The results demonstrate that shear at constant pressure
induces densification at large shear deformations.
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Figure A.5: Residual volumetric strain as a function of applied pressure (or hydrostatic
stress) and deviatoric stress for three different compositions (see section 2). The open
symbols shown the maximum yield strength reached. In the region in red permanent
volume increase for NSx30 was found. Other compositions initially did not show any
permanent plastic extension. The quasi-elastic regime is found in region in white.
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Figure A.6: Interpolated curves using the results presented in Fig. A.5. All yield surfaces
are shown as a function of relative densification (γ = εplV /ε

pl,max
V ) at ϑ = 30◦ (pure shear

meridian). The dotted lines show intermediate stages of volumetric densification. The
solid lines with different symbols represent initially densified samples (see Fig. A.4).
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Figure A.7: Maximum yield surface shown in the π-plane (p = 0 GPa) as a function of
densification for different compositions. Red curve shows the yield strength for pristine
samples (γ = 0 %). Black curve shows the yield strength for fully densified samples
(γ = 100 %). Each symbol shows a simulated case.
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Figure A.8: a) Schematic illustration of the proposed yield function which combines ex-
tended Drucker-Prager model (see eq. (8) – in black) and elliptic cap (see eq. (9) – in
red). The connecting point is shown by ρint and sint. The positive and the negative yield
point on the hydrostatic stress axis are shown by ρy,+ and ρy,−. b) Fitted yield functions
for NSx5 for the initial, undensified state (γ = 0 %; model: solid line; numerical results:
squares) and final, fully densified state (γ = 100 %; model: dashed line; numerical results:
triangles). Dotted lines show the gradual transformation between the two.
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