
HAL Id: emse-01372223
https://hal-emse.ccsd.cnrs.fr/emse-01372223

Submitted on 4 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Runtime Code Polymorphism as a Protection Against
Side Channel Attacks

Damien Couroussé, Thierno Barry, Bruno Robisson, Philippe Jaillon, Olivier
Potin, Jean-Louis Lanet

To cite this version:
Damien Couroussé, Thierno Barry, Bruno Robisson, Philippe Jaillon, Olivier Potin, et al.. Runtime
Code Polymorphism as a Protection Against Side Channel Attacks. 10th IFIP International Confer-
ence on Information Security Theory and Practice (WISTP), Sep 2016, Heraklion, Greece. pp.136-152,
�10.1007/978-3-319-45931-8_9�. �emse-01372223�

https://hal-emse.ccsd.cnrs.fr/emse-01372223
https://hal.archives-ouvertes.fr

Runtime Code Polymorphism as a
Protection against Side Channel Attacks

Damien Couroussé1, Thierno Barry1, Bruno Robisson2, Philippe Jaillon3,
Olivier Potin3, and Jean-Louis Lanet4

1 Univ. Grenoble Alpes, F-38000 Grenoble, France
CEA, LIST, MINATEC Campus, F-38054 Grenoble, France

2 CEA-Tech DPACA, Gardanne, France
3 École Nationale Suprieure des Mines de Saint-Etienne, France

4 INRIA de Rennes

Abstract. We present a generic framework for runtime code polymor-
phism, applicable to a broad range of computing platforms including em-
bedded systems with low computing resources (e.g. microcontrollers with
few kilo-bytes of memory). Code polymorphism is defined as the ability to
change the observable behaviour of a software component without chang-
ing its functional properties. In this paper we present the implementation
of code polymorphism with runtime code generation, which offers many
code transformation possibilities: we describe the use of random register
allocation, random instruction selection, instruction shuffling and inser-
tion of noise instructions. We evaluate the effectiveness of our framework
against correlation power analysis: as compared to an unprotected im-
plementation of AES where the secret key could be recovered in less than
50 traces in average, in our protected implementation, we increased the
number of traces necessary to achieve the same attack by more than
20000×. With regards to the state of the art, our implementation shows
a moderate impact in terms of performance overhead.

1 Introduction

Side channel attacks are an effective means to recover a secret, by the observa-
tion of physical phenomena related to the secured activity. From the knowledge
of the program under attack (e.g. the AES cipher), the attacker will try to es-
tablish a correlation between the observation traces and hypothesis about the
intermediate values used during the secret computation (e.g. the output of the
first SBOX computation). The hypothesis that provides the best correlation
value is then used to recover the secret (e.g. the value of the AES key). Usually,
a few points in the observation traces exhibit good correlation values with the
hypothesis, which correspond to the leakage point, i.e. the time when the secret
is observable during the computation.

Two main protection schemes are effective against side channel attacks: hid-
ing and masking. The key idea of masking is to split the sensitive values of the
secured computation in several shares, in order to break the correlation between

the observations and the hypothetical intermediate values. To recover the secret
key from a masked implementation, and provided that the shares are computed
at different times, an attacker needs correlation analysis of higher orders, i.e.
analysis involving several observation points simultaneously. However, higher
order attacks present a computational complexity that grows exponentially with
the order of the attack; they are therefore more difficult to use in practice. Hid-
ing consists in moving the point of information leakage both in time (during
the secured activity) and in space (location of the activity on the chip), and in
reducing the amplitude of the observable leakage. Indeed, side channel correla-
tion analysis relies on precise spatial and temporal control of the target, and the
effectiveness of the attack is strongly correlated to the amount of spatial and
temporal variation in the observation signal [13]. Spreading the point of leakage
over different times or places over many executions will drastically reduce the
effectiveness of the attack, requiring more observation traces and/or more pow-
erful analyses to recover the secret. In practice, robustness against side channel
attacks is provided by a combination of hiding and masking countermeasures.

We define polymorphism as the capability to regularly change the behaviour
of a secured component at runtime without altering its functional properties.
By modifying the temporal and spatial properties of the observations of the
attacked target, polymorphism increases the difficulty to perform the correlation
analysis used in side channel attacks. Hence, it can be understood as a hiding
countermeasure.

Non-deterministic processors [15] achieve what we call polymorphic execu-
tion, i.e. the shuffled execution of a program from a static binary input residing
in program memory. May et al. achieve dynamic instruction shuffling [15] and
random register renaming [14]. Bayrak et al. [6] describe an instruction shuffler: a
dedicated IP inserted between the processor and the program memory (instruc-
tion cache). Nowadays, many Secure Elements integrate similar features in order
to de-synchronise observation traces and to decrease the signal to noise ratio.
Dedicated hardware designs offer a better security to performance ratio, at the
expense of a higher cost. With the fast growing market of the Internet of Things,
software-only solutions are appealing since they could be more easily adapted to
the wide range of product architectures available, and are upgradeable.

By software means only, [1,10] propose to compile a program that contains
several functionally equivalent execution paths, where one of the execution paths
is randomly selected at runtime. This approach reduces the overhead on execu-
tion time at the expense of an increased program size. Amarilli et al. [3] were the
first of our knowledge to exploit compilation of code variants against side chan-
nel attacks. The program is compiled before each execution thanks to a modified
static compiler, in order to shuffle instructions and basic blocks at runtime. Their
approach is shown to increase the number of traces of DPA on AES by a factor
of 20. The work of Agosta et al. [2] is the closest of our work. They present a
code morphing runtime framework that involves register renaming, instruction
shuffling and the production of semantically equivalent code fragments.

In this paper, polymorphism is implemented with runtime code generation
driven by random data. The key idea is to regularly generate new versions of
the secured binary code on the target. Each program version is functionally
equivalent but has a different implementation, so that each execution would
lead to a different observation. The polymorphic code generator is produced by
a framework for runtime code generation adapted to the constraints of embed-
ded systems (section 2). We detail the mechanisms used to bring variability in
the generated code by selecting random registers, randomly selecting semanti-
cally equivalent instructions, reordering instructions, and inserting noise instruc-
tions. We provide an experimental evaluation of the effectiveness of our approach
against Correlation Power Analysis (CPA) on a software implementation of AES,
and show that execution time and code size overheads are compatible with the
memory and computation capabilities of constrained embedded targets (sec-
tion 3). We present related works of our knowledge in section 4, and conclude in
section 5.

2 Runtime code polymorphism for embedded systems

2.1 Overview of deGoal

deGoal is a framework for runtime code generation. Its initial motivation is
the use of runtime code specialisation to improve program performance, e.g.
execution time, energy consumption or memory footprint. In this section, we
first sketch the characteristics of deGoal and then present how we extended it
for the purpose of security.

In classical frameworks for runtime code generation such as interpreters and
dynamic compilers, the aim is to provide a generic infrastructure for code gen-
eration, bounded by the syntactic and semantic definition of a programming
language. The generality of such solutions comes at the expense of an impor-
tant overhead in runtime code generation, both in terms of memory footprint
and computing time and computing energy. In deGoal, a different approach is
used: code segments (thereafter called kernels) are generated and tuned at run-
time by ad hoc runtime code generators, called compilettes. Each compilette is
specialised to produce the machine code of one kernel. Syntactic and semantic
analyses are performed at the time of static compilation, and compilettes embed
only the processing knowledge that is required for the runtime optimisations se-
lected. As a consequence, compilettes offer very fast code generation (10 to 100
times faster than typical frameworks for runtime code interpretation or dynamic
compilation), present a low memory footprint, can run on small microcontroller
architectures such as 8/16-bit microcontrollers [5], and are portable [8].

The building and the execution of an application using deGoal consist in the
following steps as illustrated in Figure 1: writing the source code using a mix of
C source code and of our dedicated cdg language; compiling the binary code of
the application and the binary code of compilettes; at runtime, generating the
binary code of kernels by compilettes and in the end running the kernels.

.c

.c.cdg d
e
G
o
a
l

.c

.c.cdg.c

static
binary

compilette

runtime
binary

kernel

HW description data

p
a
l
t
f
o
r
m

c
o
m
p
i
l
e
r

c
o
m
p
i
l
e
t
t
e

RUNTIMESTATIC
COMPILATION TIME

DESIGN
TIME

compilette

Fig. 1: deGoal workflow: from the writing of application’s source code to the
execution of a kernel generated at runtime

Cdg is an assembly-like DSL. From the programmer’s perspective, it repre-
sents a major paradigm shift: Cdg expressions describe machine code that will
be generated at runtime instead of instructions to be executed. Compilettes are
implemented by using a mix of ANSI C and Cdg expressions. The C language is
used to describe the control part of the compilette that will drive code gener-
ation, while Cdg expressions perform code generation. The Cdg instruction set
includes a variable-length register set, extensible by the programmer. From this
high-level instruction set, compilettes map the Cdg expressions to machine code
according to (1) the characteristics of the data to process, (2) the characteristics
of the execution context at the time of code generation, (3) the hardware capa-
bilities of the target processor, (4) execution time and/or energy consumption
performance criteria. In all cases, code generation is fast, produces efficient code,
and is applicable to low-resource embedded systems such as micro-controllers [5].

2.2 A polymorphic SubBytes function

We introduce in this section the implementation of the SubBytes function of
AES as a tutorial introduction to deGoal, before presenting in greater details
the internals of runtime code generation. It is also the protected implementation
used in our experiment (section 3).

The code generator is implemented with Cdg like any other code generator
designed in deGoal. At this stage, polymorphic code generation is a feature
provided by the code generation framework but has no need to be explicitly
controlled by the programmer. In listing 1.1, the function gen_subBytes is a
standard C function, its implementation being translated from Cdg to plain C
source code before the static compilation.

deGoal allows to mix Cdg expressions for code generation, enclosed between
the delimiters #[and]#, and C code. Moreover, C expressions, enclosed in
#(), can be inserted inside Cdg expressions; they will be evaluated at the time
of code generation, i.e. at the time the compilette is executed. The program code
of the SubBytes routine is written in a memory buffer at the address contained
in the variable code (lines 1 and 5). Lines 6-7 declare the instantiation of typed
variables that will be mapped at the time of runtime code generation to physical

Listing 1.1: Implementation of the compilette for the SubBytes function of AES

1 void gen_subBytes (cdg_insn_t* code ,

2 uint8_t* sbox_addr , uint8_t* state_addr)

3 {

4 #[

5 Begin code Prelude

6 Type uint32 int 32

7 Alloc uint32 state , sbox , i, x, y

8 mv state , #(state_addr)

9 mv sbox , #(sbox_addr)

10 mv i, #(0)

11 loop:

12 lb x, @(state+i) // x := state[i]

13 lb y, @(sbox+x) // y := sbox[x]

14 sb @(state+i), y // state[i] := y

15 add i, i, #(1)

16 bneq loop , i, #(16)

17 rtn

18 End

19]#;

20 }

registers. The variables state and sbox store respectively the address of the
AES state and the address of the Sbox (C variables state_addr and sbox_addr

line 2). A label (loop, line 11) defines the starting location the loop over the 16
state bytes. The variable i stores the loop index. It is initialised at line 10 and
used as an offset value for the load and store instructions, respectively at lines 12
and 14, where the notation @(a+k) (lines 12 to 14) denotes an indirect memory
access to the address stored in the variable a, offseted by an address variable
k. The Sbox substitution is produced at line 14, where the temporary variable
y is loaded with the memory contents at address sbox offseted by x. The Cdg

instruction rtn (line 17) generates the termination code of the SubBytes routine,
and the Cdg instruction End (line 18) terminates the code generation: it flushes
the live instructions remaining in the instruction scheduler (section 2.3), and
emits the machine code of backward branches for which the branch destination
address cannot be calculated during the first code generation pass (not detailed
in this paper).

2.3 Implementation of code polymorphism with deGoal

In this work, we re-target the original purpose of deGoal in order to focus on
security aspects: we exploit the flexibility provided by deGoal for runtime code
generation to achieve runtime code polymorphism. A program code produced by
the polymorphic code generator is thereafter called polymorphic instance.

Input: the list of available registers regs
Input: the id of the physical register allocated reg
Output: regs
. Get a random register among the list of available registers

l←Length(regs)
i← Rand(0, l − 1)
reg ← regs[i]
. Remove register i from the list of free registers

regs← Delete(regs, i)
Algorithm 1: Random Register Allocation

Register allocation. In dynamic compilers, instruction selection and instruc-
tion scheduling are usually performed before register allocation [12]. Despite
allocation techniques used in dynamic compilers, such as linear scan [17], pro-
vide a reduced computational cost as compared to graph colouring usually used
in static compilers, they are still out of reach of the computational power avail-
able in the platforms that we target. Hence, in a compilette, register allocation
is done first, before instruction scheduling, by using a greedy algorithm (algo-
rithm 1). Our purpose is to lighten the pressure on instruction selection and
instruction scheduling: if register allocation is done first, it becomes possible to
perform instruction scheduling from a much simpler intermediate representation:
our allocator simply needs to maintain a list of the free registers available.

Instruction selection. Instruction selection is performed after register allo-
cation for the motivations detailed previously. Instruction selection is done at
the level of Cdg expressions: each expression can be mapped to one or more
machine instructions depending on the target processor architecture and code
generation options (e.g. favour code compactness or code execution time). In-
struction selection is implemented with switch ... case segments driven by
random values. For the purpose of achieving code polymorphism, we introduce
supplementary variants to provide more opportunities for polymorphism. The
semantic equivalences used in the context of the experiment presented in this
paper, that are possibly selected by instruction selection are described below (r
denotes a random value):

c := a xor b <=> c := ((a xor r) xor b) xor r

c := a xor b <=> c := (a or b) xor (a and b)

c := a - b <=> k := 1 ; c:= (a + k) + (not b)

c := a - b <=> c := ((a + r) - b) - r

We emphasize on the fact that, despite the number of semantic variants intro-
duced for random instruction selection is low in the current experiment, adding
new instruction variants will only have an impact on the memory footprint of the
code generation library embedded onto the target but not on the execution time
of code generation. In other words, adding more selection variants will grow the
size of the switch ... case segments used in instruction selection, but does

Input: the instruction buffer B (a circular buffer)
Input: the instruction to insert I
Output: B

. look for insertion slots, from the last buffer instruction

pos← Tail(B)

while I has no data dependence with B[pos] do
pos← Prev(B[pos])

end
. randomly insert the new instruction

i← Rand(pos, Tail(B))

B ← insert I at position i in B
. flush the first instruction if B is full

if Prev(Head(B)) is equal to Tail(B) then
emit instruction at Head(B)

Head(B) ← Next(Head(B))

end
Algorithm 2: Instruction Shuffling

not impact the performance of branching to one of the cases from the switch

expression.

Instruction scheduling. The process of instruction selection, presented above,
produces instructions in a bounded ordered instruction buffer that behaves like
a FIFO. At this stage, the instruction buffer contains the machine instruction
encodings, and the description of defs and uses registers (i.e. modified and read
registers, respectively). The instruction buffer is implemented with doubled-
chained lists. This clearly has a strong impact on the manipulation cost of the
data structure, but we have chosen this implementation to maximise the number
of insertion opportunities versus execution efficiency. The experimental section
shows that the performance of polymorphic code generation remains good.

In traditional compilers, instruction scheduling aims at improving the perfor-
mance of code execution: machine instructions are ordered in program memory
in order to minimise execution time, in particular the number of processor idle
cycles. The difficulty of scheduling lies in finding a possibly optimal ordering
of machine instructions without breaking the semantics of the original source
program. To achieve this, resource constraints, control-dependence and data-
dependence need to be considered.

In the case of code polymorphism, our aim is to exploit scheduling oppor-
tunities to generate many variants of the same source program, all functionally
equivalent and semantically correct. Code performance is only a secondary mat-
ter with regards to these objectives. Hence, we consider resource constraints that
impact code correctness, but not those that only impact program performance.
Instruction scheduling is performed in one pass (algorithm 2): each time a new
instruction is inserted in the instruction buffer, first the list of possible insertion
slots is computed, by comparing the defs and uses of the inserted instruction

and of the instructions already stored in the buffer. Next, the insertion position
is randomly selected among the list of insertion slots previously identified. If
no insertion slot was found, the new instruction is appended at the end of the
instruction buffer. If the instruction buffer is full, its first instruction is emitted
in program memory to free one instruction slot.

Pipeline hazards [16], which only affect program performance but not pro-
gram correctness, are not considered in our scheduling policy. Our main purpose
is to lighten the computational cost of scheduling, but this choice has an other
interesting effect: processor stalls, which are an observable effect of pipeline haz-
ards on the execution of a program, are likely to add a supplementary source of
temporal variation in the observation of program execution. Still in the aim of
fast code generation, control-dependence constraints are simply handled by con-
sidering control instructions as scheduling barriers: when a control instruction
is met, the whole instruction buffer is flushed.

Insertion of noise instructions. Noise instructions are appended to the end
of the instruction buffer before the insertion of a new instruction (section 2.3). n
noise instructions are inserted with probability p, where n is randomly selected in
a configurable uniform discrete distribution [1; N]. If needed, extra registers are
randomly selected among the free registers. If no register is available, registers are
randomly selected, pushed and popped on the stack before and after use. Several
kinds of instructions can be inserted: core arithmetic instructions that execute
in one processor cycle (e.g. integer operations add or sub) or in several processor
cycles (e.g. multiply and load mla on ARM Cortex-M cores) and memory accesses
to a data table possibly provided by the user (e.g. the SBOX lookup table).

3 Experimental evaluation

3.1 Experimental setup

We used the STM32VLDISCOVERY evaluation kit from STMicroelectronics.
The board is fitted with a Cortex-M3 core running at 24 MHz, provides only
128 kB of flash memory and 8 kB of RAM, and is not equipped with hardware se-
curity protections. All the binary programs are produced from the arm-none-eabi
GNU/gcc toolchain in version 4.8.1 provided by Code Sourcery, using the compi-
lation options -O3 -static -mthumb -mcpu=cortex-m3. Therefore, we compare
our implementation with the fastest reference implementation that we could
obtain from the target compiler.

The side-channel traces were obtained with a 2208A PicoScope, which fea-
tures a 200 MHz bandwidth and a vertical resolution of 8 bits. We use an EM
probe RF-B 3-2 from Langer, and a PA 303 preamplifier from Langer. The sam-
pling acquisition is performed at 500 Msample/s over a window of 10000 samples.

Our reference implementation is an unprotected 8-bit implementation of AES
that follows the NIST specification, and all the round functions are generated at

runtime, in RAM, by a polymorphic code generator specialised for this imple-
mentation of AES, as introduced in section 2. All the polymorphic mechanisms
presented above are activated in the code generator. The probability of inserting
noise instructions is set to p = 1/8, and the number of inserted instructions n is
selected in the uniform discrete distribution [1; 8]. A new polymorphic instance
can be generated every ω = {1, 10, 100, 1000, 10000} executions of AES, but for
the side channel attack we use the shortest code generation interval, ω = 1.

3.2 Model of attack

We perform the attack on the output of the SubBytes function in the first AES
round. On the contrary to most first order CPA analysis where the synchronisa-
tion point is put at the beginning of the AES encryption, we consider the case
where the attacker is able to create a synchronisation point at the beginning
of the SubBytes function. To ease the temporal alignment of the measurement
traces, a trigger signal is generated via a GPIO pin on the board, held high
during the execution of the SubBytes function. Using this setup, the security
evaluation is performed with stricter conditions since the execution variability
of the polymorphic AddRoundKey function does not contribute to the variations
in the observation traces.

The code generator itself could be also the target of attacks even it does not
access to the value of the secret key. Such attacks are however out of the scope
of this paper and are left for future works.

3.3 Code generation interval

The code generation interval ω, defined in equation 1, is related to the frequency
at which a new polymorphic instance is generated as compared to the number
of executions of the target kernel (in our experiment, the function SubBytes). ω
is a value with no unit, comprised between 1 and +∞. ω = 1 represents the case
where a new polymorphic instance is generated for each execution of the target
kernel, and ω → +∞ the case where a polymorphic instance is generated only
once at startup, which is equivalent to the use of statically generated code. Our
hypothesis is that, the closer ω is to 1, the more difficult a physical attack should
be, because of the lesser probability that the observation of two executions will
appear correlated. On the other hand, the overhead incurred by code generation
is more important as ω is smaller.

ω =
nb. executions

nb. code generations
(1)

3.4 Correlation power analysis

We perform a first order CPA against both unprotected and protected imple-
mentations. We model the electromagnetic emission with the Hamming weight
of one byte of the output of the first SubBytes function. The analysis computes

Fig. 2: Correlation values from the CPA attack on the unprotected AES

the sample estimation r of Pearson’s correlation coefficient ρ between each trace
and the model, for each possible hypothetical value of the involved key part.

Figure 2 presents the results of our CPA attack on the unprotected implemen-
tation. The correct key distinguishes from all the other hypothetical key values
as soon as 35 traces with correlation values above 0.8. This result validates the
experimental setup and the choice of the Hamming weight model used in the
correlation analysis. As an illustration example of the impact of polymorphism,
we show in figure 3 the results of a CPA attack on our polymorphic implemen-
tation, for a code generation interval of ω = 200, i.e. far above the number of
traces necessary to recover the AES key on the unprotected implementation. In
this case, the first 200 traces are obtained from the execution of the same poly-
morphic instance of AES, which explains why the correlation value of the correct
key clearly distinguishes from the other key hypotheses. After 200 executions,
a new polymorphic instance is generated and executed for the next 200 execu-
tions. The impact of polymorphism on the correlation traces is clearly visible:
the correlation of the correct key hypothesis suddenly decreases after 200 traces.
After 300 traces, the correct key hypothesis is no longer distinguishable from
the other key hypothesis because the correlation analysis merges the execution
traces from two AES instances that behave differently. This also illustrates the
fact that, in practice, the code generation interval ω must have a value strictly
below the number of traces required to recover the key from an unprotected
implementation. This setting is however strongly depending on the nature of the
target and the practicability of the attack on an unprotected implementation.

Fig. 3: Correlation values from the CPA attack on the polymorphic AES, ω = 200

When a new polymorphic instance is generated after each execution (ω =
1), 100000 traces are necessary to recover the key with a success rate of 50%
(Figure 4). A success rate of 100% is reached after 120000 traces.

3.5 Execution time overhead

To estimate the cost added by our protection to a reference implementation,
we measure the execution time overhead k (Equation 2), where tref, tgen and
tpoly respectively denote the average execution time of the unprotected reference
implementation, the average execution time of the polymorphic runtime code
generation and the average execution time of the polymorphic instance. Our
measure of the execution time overhead takes into account the increase of the
execution time due to the execution of the polymorphic instance (which has
a suboptimal code as compared to the reference unprotected implementation)
and due to runtime code generation. In this measurement, we consider that the
overhead incurred by code generation is distributed over ω runs.

k =
tgen + ω × tpoly

ω × tref
(2)

Table 1 compares the execution times of the unprotected AES and several
variants of the polymorphic AES. In this section, we name the full polymor-
phic AES our implementation where all the round functions are protected with
polymorphism. The unprotected version executes in 5320 processor cycles. We
observe the execution time of the polymorphic versions over 1024 runs. The full

Fig. 4: Success rate of the CPA attack on the unprotected (green, leftmost) and
the full polymorphic implementation (blue, rightmost), ω = 1.

polymorphic AES executes in 10487 to 13696 processor cycles (average 12211 cy-
cles). Table 1 also illustrates the fact that, if only one round function is protected
with polymorphism (AddRoundKey or SubBytes), the execution time overhead
is reduced. The execution time of the unprotected version is perfectly stable over
measurements because of the relative simplicity of the micro-architecture of our
experiment target. However, in contrast, the execution time of the polymorphic
versions presents important variations. Considering the stability of the execu-
tion time of the unprotected version, this variability can only be accounted to
implementation variations in each polymorphic instance.

Table 2 presents the overheads k computed for the execution time measure-
ments detailed in table 1, for different values of the code generation interval ω.
For a full polymorphic AES, in the case a new polymorphic instance is gener-
ated before each execution of AES (ω = 1), we measure an average overhead of
20.10 (worst case 26.16). However, the overhead quickly decreases when the code
generation interval is increased, because the cost of runtime code generation is
distributed over several executions of the same polymorphic instance. Consider-
ing the number of traces required to recover the key from the unprotected AES,
a code generation interval of ω = 10 could be an exploitable version. In this case,
the execution time overhead is only of 4.36 in average (worst case 4.85).

Table 2 also illustrates the cost incurred by the polymorphic instances only.
For large code generation intervals (e.g. ω = 10000), the contribution of runtime
code generation becomes negligible in the overall overhead, i.e. the overhead
only represents the cost of executing the polymorphic instances as compared to

Table 1: Execution times (in cycles, measured for 1024 executions of each con-
figuration) of the AES function (texe) and of the code generator (tgen) for the
unprotected version (Unprotected), the AES with a polymorphic AddRoundKey
function only (AddRoundKey), the AES with a polymorphic SubBytes function
only (SubBytes), and all four round functions polymorphic (All round functions).

Unprotected AddRoundKey SubBytes All round functions
min. avg. max. min. avg. max. min. avg. max. min. avg. max.

texe 5320 5320 5320 5565 5977 6269 5850 6090 6340 10487 12211 13696
tgen 0 0 0 10894 20166 27970 24922 32604 41497 95265 109842 127269

Table 2: Execution time overhead for AES in the same conditions as table 1.
The reference is the unprotected version, which runs in 5320 cycles.

AddRoundKey SubBytes All round functions
min. avg. max. min. avg. max. min. avg. max.

ω = 1 3.16 4.91 6.37 5.81 7.27 8.94 20.10 22.94 26.16
ω = 10 1.32 1.50 1.66 1.59 1.76 1.92 3.86 4.36 4.85
ω = 100 1.09 1.16 1.22 1.16 1.21 1.25 2.17 2.50 2.78
ω = 1000 1.09 1.13 1.18 1.16 1.15 1.20 2.17 2.32 2.59
ω = 10000 1.05 1.12 1.18 1.11 1.15 1.19 1.99 2.30 2.58

the reference unprotected implementation. Indeed, the code of the polymorphic
instances is less optimal, in terms of execution time, because of the mis-ordering
of instructions, the use of suboptimal (and longer) code sequences and the exe-
cution of useless instructions.

3.6 Memory footprint

Table 3 reports the memory footprint of our work, including the size of the
code generators and the memory size reserved for code generation. The full
polymorphic implementation presents an extra overhead of 16 KB of program
size, but it is possible to reduce the memory footprint by partially applying
polymorphism to AES: if only AddRoundKey and SubBytes are polymorphic,
the memory overhead is of 8 KB only.

4 Related works

The work of Agosta et al. [2] is the closest of our work: they were the first to
gather in a same runtime code transformation framework the use of semanti-
cally equivalent code sequences, random register allocation, instruction shuffling
and array permutations as a protection against side channel attacks. The code
transformations are applied to the 64 xor instructions of a 32-bit implementa-
tion of AES based on OpenSSL. Due to the higher number of traces required
to extract the key from an unprotected implementation (11600), the exploitable

Table 3: Memory footprint (in bytes) of complete programs running the un-
protected AES and the polymorphic AES in the same variants as presented in
table 1

text data bss total

Unprotected 6144 40 772 6956
AddRoundKey only 8128 56 2948 11132
SubBytes only 7540 56 2948 10544
AddRoundKey + SubBytes 10964 88 3980 15032
Full polymorphic AES 16984 88 6028 23100

code generation intervals are higher (between 100 and 3000) than in our work.
The execution times of the polymorphic code instance and of the code generator
are respectively 1.07× and 392.5× the execution time of the unprotected AES,
and they report an overhead of 5× for ω = 100. In our work, all the instructions
all the AES program are protected with polymorphism, where the overhead is
only of 2.50× in average for ω = 100; in the worst case ω = 1, code generation
is 23.9× the execution time of the reference unprotected AES.

Other works present the design of polymorphic programs without interven-
tion of runtime code generation, by random selection of functionally equivalent
execution paths. Boulet et al. [7] describe the protection of Java Cards against
side channel reverse engineering. The method applies to interpreters in virtual
machines; it describes the random association and selection of functionally equiv-
alent codes in the interpreter of the virtual machine. As compared to our work,
this work does not use random register allocation, and instruction shuffling be-
tween code sections. Similarly, Crane et al. [10] propose to randomly switch
the execution between different copies of program fragments to protect pro-
grams against cache side-channel attacks. The fragment variants are generated
offline by a modified compiler, involving the insertion of nop instructions and
random memory accesses. During program execution, the fragments are dynam-
ically selected by trampolines with table-based random indirect branches. Their
implementation targets a general-purpose multi-core desktop computer. Agosta
et al. use a modified LLVM toolchain compiler to target ARM Cortex-M4 based
microcontrollers [1]. Each instruction of the secured program section is replaced
with several functionally equivalent instruction sequences. In addition, a masking
scheme is applied for memory accesses and register spills. They report a perfor-
mance overhead of 11× for the same cipher AES-S than in our study, however
with code size overhead of 9×.

The execution of noise instructions (also called dummy instructions) is an-
other known technique to introduce random time delays in order to mitigate side-
channel attacks. In software, the execution of dummy instructions is achieved
either by branching to a dedicated routine from predefined locations in the pro-
gram (e.g. before, during and after the part of the code to protect) or by the
triggering of a random delay interrupt. The routine for example executes a loop
that decrements to zero the value of a randomly initialised register [9]. Hidden

Markov models [11] or pattern matching [18] are effective techniques to remove
in the observation traces the parts corresponding to the execution or dummy
instructions, or to create synchronisation points in the traces to cancel the mis-
alignment created by random delays. However, these analyses rely on the fact
that the inserted temporal noise presents a distinctive signature (for example
the header of the interrupt handler). Ambrose et al. [4] propose to randomly
insert a limited set of predefined instructions, similar to regular code instruc-
tions, that could also use a randomly selected register. They argue that such
instructions, which modify the internal state of the processor, are of the same
nature than the rest of the program instructions, hence causing higher power
variations due to bit flips in registers. One of the contributions of our work is to
extend this idea one step further: the noise instructions inserted in the program
are of the same nature than real program instructions (arithmetic operations,
memory operations, etc), and can target one or several free registers randomly
selected. Furthermore, thanks to runtime code generation, we are able to better
weave the noise instructions with the rest of the program as compared to the
state-of-the art technique for dummy instructions.

5 Conclusion

We have presented a framework that achieves runtime code polymorphism as a
generic protection against side channel attacks. Our implementation relies on a
lightweight runtime code generation framework suitable for embedded systems,
which usually out of reach of runtime code generation tools such as Just-In-Time
compilers because of their low computing and memory resources. To the best
of our knowledge, it is the first time that polymorphic runtime code genera-
tion could be achieved with such limited computing resources (8 kB of RAM
and 128 kB of flash memory), with acceptable runtime overheads. Nevertheless,
our implementation is applicable to cryptosystems and also to other software
components that require some protections against physical attacks (e.g. pincode
management, bootloaders, etc.), on a large range of computing platforms [8].

On our experimentation platform, we observed that the key can be recovered
in less than 50 traces on an unprotected AES. However, on many real-life plat-
forms, a side channel attack may require more traces to successfully extract a
cipher key, even on an unprotected implementation: often than 10000 or 100000
traces. This means that, in practice, polymorphism can be effectively used with
greater code generation intervals, so that the overhead of our approach becomes
more tractable. Other design parameters, such as the parameters that control
the insertion of noise instructions, will have an important impact both on the
security margin and on the execution time and code size overheads.

Finally, we emphasise on the fact that polymorphism is not an end per se,
but instead that it should be combined with other state of the art protections
(e.g. masking). Provided the genericness of our approach and the lightness of
our implementation, we consider that its integration in a more global security
scheme is practical.

Acknowledgments

This work was partially funded by the French National Research Agency (ANR)
as part of the program Digital Engineering and Security (INS-2013), under grant
agreement ANR-13-INSE-0006-01.

References

1. Agosta, G., Barenghi, A., Pelosi, G., Scandale, M.: The MEET approach: Securing
cryptographic embedded software against side channel attacks. IEEE TCAD 34(8),
1320–1333 (2015)

2. Agosta, G., Barenghi, A., Pelosi, G.: A code morphing methodology to automate
power analysis countermeasures. In: DAC. pp. 77–82. ACM (2012)

3. Amarilli, A., Müller, S., Naccache, D., Page, D., Rauzy, P., Tunstall, M.: Can Code
Polymorphism Limit Information Leakage? In: WISTP. pp. 1 – 21 (2011)

4. Ambrose, J., Ragel, R., Parameswaran, S.: Rijid: Random code injection to mask
power analysis based side channel attacks. In: DAC. pp. 489–492 (2007)

5. Aracil, C., Couroussé, D.: Software acceleration of floating-point multiplication
using runtime code generation. In: ICEAC. pp. 18–23 (2013)

6. Bayrak, A.G., Velickovic, N., Ienne, P., Burleson, W.: An architecture-independent
instruction shuffler to protect against side-channel attacks. TACO 8(4), 1–19 (2012)

7. Boulet, F., Barthe, M., Le, T.H.: Protection of applets against hidden-channel
analysis (2013), WO/2012/085482

8. Charles, H.P., Couroussé, D., Lomller, V., Endo, F., Gauguey, R.: deGoal a tool
to embed dynamic code generators into applications. In: Compiler Construction,
LNCS, vol. 8409, pp. 107–112. Springer (2014)

9. Coron, J.S., Kizhvatov, I.: Analysis and improvement of the random delay coun-
termeasure of ches 2009. In: CHES. pp. 95–109. Springer (2010)

10. Crane, S., Homescu, A., Brunthaler, S., Larsen, P., Franz, M.: Thwarting cache
side-channel attacks through dynamic software diversity. In: Network And Dis-
tributed System Security Symposium, NDSS. vol. 15 (2015)

11. Durvaux, F., Renauld, M., Standaert, F.X., van Oldeneel tot Oldenzeel, L., Veyrat-
Charvillon, N.: Efficient removal of random delays from embedded software imple-
mentations using hidden markov models. In: CARDIS. pp. 123–140 (2013)

12. Kotzmann, T., Wimmer, C., Mössenböck, H., Rodriguez, T., Russell, K., Cox, D.:
Design of the Java Hotspot client compiler for Java 6. TACO 5(1), 7:1–7:32 (2008)

13. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks: Revealing the secrets
of smart cards. Springer (2007)

14. May, D., Muller, H., Smart, N.: Random register renaming to foil DPA. In: CHES,
vol. LNCS 2162, pp. 28–38. Springer (2001)

15. May, D., Muller, H.L., Smart, N.P.: Non-deterministic processors. In: ACISP’01.
pp. 115–129. Springer (2001)

16. Patterson, D.A., Hennessy, J.L.: Computer Organization and Design: The Hard-
ware/Software Interface. Morgan Kaufmann, 4th edn. (2011)

17. Poletto, M., Sarkar, V.: Linear scan register allocation. ACM Trans. Program.
Lang. Syst. 21(5), 895–913 (1999)

18. Strobel, D., Paar, C.: An Efficient Method for Eliminating Random Delays in
Power Traces of Embedded Software. In: ICISC, vol. 7259, pp. 48–60. Springer
(2012)

	Runtime Code Polymorphism as a Protection against Side Channel Attacks

