
HAL Id: emse-01412921
https://hal-emse.ccsd.cnrs.fr/emse-01412921

Submitted on 3 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Distributed Approach to Constructing Travel
Solutions by Exploiting Web Resources

Oudom Kem, Flavien Balbo, Antoine Zimmermann

To cite this version:
Oudom Kem, Flavien Balbo, Antoine Zimmermann. A Distributed Approach to Constructing Travel
Solutions by Exploiting Web Resources. 2016 IEEE/WIC/ACM International Conference on Web
Intelligence, Oct 2016, Omaha, United States. pp.713-716, �10.1109/WI.2016.0128�. �emse-01412921�

https://hal-emse.ccsd.cnrs.fr/emse-01412921
https://hal.archives-ouvertes.fr


A Distributed Approach to Constructing Travel Solutions by Exploiting Web
Resources

Oudom Kem, Flavien Balbo and Antoine Zimmermann
Univ Lyon, MINES Saint-Étienne, CNRS, Laboratoire Hubert Curien, UMR 5516, F-42023, Saint-Étienne, France

Email: {oudom.kem, flavien.balbo, zimmermann}@emse.fr

Abstract—Many advanced traveler information systems
(ATIS) provide travel solutions that are limited, by technical
obstructions or by design, in terms of geographical coverage,
transport services, and/or travel modes. However, using existing
ATIS in an integrated manner can broaden the coverage of
travel solutions, while preserving the advantages of each sys-
tem. This paper presents an approach to exploit web resources
such as ATIS, data sources and services to construct travel
solutions. More precisely, it focuses on itinerary formulation
and discovery of resources relevant to each itinerary. We
propose a semantic model for describing and interlinking
geographic entities in relation to web resources, creating a
graph of related entities. Itinerary formulation and resource
discovery are achieved via exploring the graph. To this end,
we propose an adapted version of multi-agent A* algorithm.

Keywords-Multi-agent A* algorithm; Seed graph; Semantic
Web; Travel solution

I. INTRODUCTION

Numerous advanced traveler information systems (ATIS)
are in operation. However, most ATIS are designed to cover
only certain types of travel modes, transport services, and/or
geographical areas. For instance, there are systems designed
only for private vehicles such as PersianGulf [1], for public
public transport (e.g. TCL for public transport in Lyon)
and for a specific geographical coverage (e.g. Transport for
London for the city of London). Therefore, regardless of
the significant number of existing ATIS, travelers are often
required to consult multiple ATIS and/or to seek for travel-
related information from various other sources to acquire
sufficient information for their trip. When unexpected events
such as delays or accidents occur during their trips, travelers
need to search for alternatives to adapt to those events.

Pertinent resources for building travel solutions, such as
ATIS and other data sources as well as services are available
on the Web. Using them complementarily can improve three
main aspects of travel solutions. (1) Adaptability: Solutions
can be built using resources, which are not statically prede-
fined, but are chosen according to actual requests from trav-
elers. (2) Completeness: The use of multiple existing ATIS as
well as other resources in an aggregated manner can widen
the coverage of solutions. (3) Personalization: Travelers’
preferences and constraints can be taken into account both in
the process of discovering resources and in the computation
of solutions.

The aim of our research is to design a framework that
is able to automatize the entire process of formulating
itineraries, searching for relevant web resources, accessing
them and integrating acquired information and services to
construct travel solutions tailored to each traveler’s request.
Fig. 1 illustrates the abstract model of the framework,
emphasizing the four integral components. Request analysis
component extracts essential information such as the origin,
the destination and any indicated preferences or criteria
from a given request. Discovery component searches for
an optimal itinerary between an origin and a destination as
well as resources that provide information and/or services
assisting travel along an itinerary. Taking an itinerary, its
relevant resources, and travel information as well as ser-
vices acquired previously as an input, solution construction
component’s roles comprise integrating the acquired hetero-
geneous data, coordinating services, retrieving travel-related
data and services (e.g. weather, gas stations) if necessary,
and eventually assigning information and services to relevant
segment(s) of the itinerary to build a travel solution. Solution
refinement component monitors resources associated with
a chosen itinerary for updates and unexpected events (e.g.
delays, accidents), and adapts solutions to consider changes.

The focus of this paper is the discovery component. A dis-
tributed approach to itinerary formulation and web resource
discovery is presented. In this approach, a semantic model
for describing and interlinking geographic/administrative
entities in function of web resources is proposed. We adapt
a multi-agent A* algorithm to perform resource discovery
and itinerary formulation.

II. SEED GRAPH

An itinerary is composed of one or more segments. Each
segment consists of a starting and an ending locations that
are geographic entities. Generally, geographic entities can
be under a certain hierarchy, namely administrative entities
(e.g. a city, a country). We use the notion of seed as an
intermediary between geographic/administrative entities and
resources relevant to the entities. Each seed describes an
entity in terms of resources relevant to that entity and con-
nections to other entities in function of connecting resources.

These connections link each seed to other related seeds,
and thus forming a seed graph. Seed data model consists of:



Request analysis

Solution constructionContinuous refinement and 
adaptation of the solution Solution

Request

Extracted information

Itinerary and 

relevant resources

Discovery of itinerary 
and resources

Figure 1. Abstract model of the framework

Figure 2. Example of a seed graph

• Topic refers to a geographic or administrative entity
with which the seed is associated.

• Associated resources provide information and/or ser-
vices (e.g. ATIS, hotel websites) that are relevant to a
seed’s topic. Each associated resource corresponds to a
topic, which is determined by information or services
that it offers (e.g. transport, weather, tourism).

• Connections between seeds are composed of a target
seed and one or multiple connecting resources. The
semantics of a connection is that the entity (i.e. topic)
of the target seed is accessible from the entity of
the source seed. Information and/or services on how
to travel from the source to the target entity can be
acquired from the connecting resources.

Fig. 2 illustrates an example of a small portion of a seed
graph. Let us examine one seed in the graph. The Saint-
Étienne seed is associated with the entity Saint-Étienne (i.e.
its topic). From Saint-Étienne, it is possible to go to Paris
(i.e. topic of the target seed). SNCF, AirFrance and Megabus
(i.e. connecting resources) provide information on how to
travel from Saint-Étienne to Paris.

To have a fully distributed approach, seed graph is also
distributed on the Web. Seeds are described using RDF
(Resource Description Framework) [2]. The use of IRI
(Internationalized Resource Identifier) in RDF to reference
resources in a uniform and web-compatible manner provides
a convenient and proper way to describe connections to
associated resources and to other seeds.

To model seeds, an ontology, entitled Seed ontology,
was created. As depicted in Fig. 3, the ontology consists
of two classes and four properties, and reuses a property,
primaryTopic, of FOAF vocabulary [3].

In practice, it would require a lot of resources and efforts
to collect information about available resources and create
seeds for all the geographic and administrative entities.
Therefore, ideally, from people involved in the domain (e.g.
authority of a city, transport operators) to individuals willing

Figure 3. Diagram of the Seed ontology

to contribute, anyone is able to create seeds for a set of
geographic and/or administrative entities of their interest,
link them to existing seeds, and make them available on the
Web. In the same manner as how the Web has evolved so
far, this would allow the seed graph to scale and grow.

III. ALGORITHM FOR ITINERARY FORMULATION AND
RESOURCE DISCOVERY

A. Problem description

Given a seed graph, itinerary formulation and resource
discovery are realized by exploring the graph. This explo-
ration can be formulated as a search problem as follows:

• States: A set of states S corresponds to seeds in a graph.
• Initial state: An initial state si ∈ S corresponds to the

seed whose topic is the origin of a requested itinerary.
• Actions: Actions are connecting resources of connec-

tions among seeds. In each state, there is a set of
applicable actions, referring to connecting resources of
connections to other seeds that can be found in a seed.

• Transition model: Executing an action a ∈ Actions
in a state s ∈ S leads to a resulting state s′ which
is the target seed of a connection. In our problem,
actions and their cost are initially unknown, and are
to be discovered during the search.

• Goal test: A state s is a goal state if its topic is the
destination of a requested itinerary.

• Path cost: Path cost is the actual travel cost such as
travel distance, duration, and monetary cost.

Solution consists of a path from an initial state to a goal
state (i.e. itinerary) and a sequence of actions (i.e. connecting
resources providing instructions on how to travel along the
itinerary) leading to the goal state. Referring to the graph in
Fig. 2, if the request is to travel from Saint-Étienne to New
York, the problem is to find a path between Saint-Étienne
and New York and its connecting resources. Let us suppose
that the best solution is:

Saint-Étienne SNCF−−−−→ Paris AirFrance−−−−−−−→ New York

The itinerary is to travel from Saint-Étienne to Paris,
and then to New York. Being web-based ATIS, SNCF and
AirFrance provide information on how to travel from Saint-
Étienne to Paris and from Paris to New York, respectively.



B. The discovery algorithm

The proposed algorithm is based on the classic A* al-
gorithm and multi-agent approach. Some basic parts con-
cerning the usage of agents (e.g. exchanging messages) are
inspired, with adaptations to our problem, from a generic
multi-agent version of A*, MA-A* [4]. Multi-agent systems
have been shown to be suitable for solving problems in an
open and complex environment where required resources are
distributed [5]. They are applicable in our context because
seed graph and resources are distributed over a highly
dynamic and open environment, the Web. There are some
distributed and parallel variants of A* such as [4] and
[6]. While many works address the issues of distributed
and parallel settings such as separating search spaces and
distributing knowledge, none, to our knowledge, address the
problem where actions and their cost are initially unknown
and are to be discovered during the search. In addition, in
our problem, acquiring an action cost is a time-consuming
task that also needs to be considered.

Agents involved in the algorithm are search agents (SA)
and resource agents (RA). SAs execute the discovery algo-
rithm. They communicate with RAs to request for costs to
travel between seeds. RAs act as an intermediary between
the framework and resources. An RA is responsible for a
resource, and it knows how to access the resource. RAs
accept queries from SAs. They access resources to obtain
requested information and/or services and return them to
SAs. Another role of RAs is to monitor changes in processed
resources (i.e. currently being used by travelers). In this
respect, changes can be taken into account to adapt travel
solutions for travelers (in solution refinement component).

In the algorithm (Algorithms 1-3), each agent maintains
an open-list (OL) of candidate states for expansion, a closed-
list (CL) of expanded states, an action-list (AL) containing
actions available for execution, and a pending-list (PL)
storing actions whose costs are being requested. AL is used
to divide workloads among agents, and is synchronized to
prevent different agents from executing the same action.

An execution cycle of an agent A begins by processing
received messages (A:1 L:3). Then, it selects a state s which
has the lowest cost from its OL to expand (A:1 L:5). If s
is a goal state, A initiates goal verification procedure (A:2
L:2-5). Otherwise, s is expanded. In that case, an expansion-
message about s is broadcasted. Receiving agents process
the message and react accordingly (A:3 L:15-22). If s with
a better cost is already in their OL, they suggest it to A via a
suggest-state-message. In this way, A can expand s with the
best cost currently known among agents. When expanding s,
if A discovers actions, it broadcasts a new-actions-message
containing the actions so that other agents help execute the
actions. After the expansion, A selects an action a at the top
of its AL to execute (A:1 L:6). In AL, actions are organized
in first-in, first-out fashion since action costs are unknown.

Algorithm 1 Discovery algorithm for a search agent
1: while no verified solution found do
2: for all messages m received do
3: process-message(m)
4: s← pop-min(OL)
5: expand(s)
6: a← pop(AL)
7: request-action-cost(a)
8: add a to PL
9: broadcast action-occupation-message(a)

Algorithm 2 expand(s)
1: if s is a goal state then
2: broadcast goal-verification-message(s, f(s), ID)
3: if verify-goal(s) returns false then
4: put s back into OL
5: return
6: broadcast expansion-message(s, f(s), ID)
7: add s to CL
8: actions← get-applicable-actions(s)
9: add actions to AL

10: broadcast new-actions-message(actions)

An action-occupation-message about a is broadcasted, and
receiving agents update their AL accordingly. Executing a in
s will lead to a successor s′. To calculate the cost of s′, f(s′),
it is necessary to acquire the cost of a, c(s, a, s′). A sends a
non-blocking request for c(s, a, s′) to an RA associated with
a. Once it receives the response in the form of response-
action-cost message, it computes f(s′). s′ is added to OL
if it is not in OL and CL. If s′ is in the OL, but its cost is
higher than the new s′, it is replaced by the new s′. In case
s′ has already been expanded (i.e. in CL) and the new s′

has a lower cost, s′ is reopened. Otherwise, it is discarded.
1) Goal verification procedure: When a goal state is ex-

panded, the expanding agent broadcasts a goal-verification-
message to verify the optimality of the solution. A solution
with a goal state s∗ is optimal if there exists no state s
in the entire system where f(s) < f(s∗). To verify that
property, assuming all messages in the queue are processed,
each agent checks its OL, AL and PL. If there is any
candidate state s in OL where f(s) < f(s∗), the solution
is not verified. If there are actions in AL or PL, the solution
is not verified. The cost of the actions in these two lists
are still unknown, so it is impossible to determine the cost
of their resulting states. If the solution is not verified, s∗ is
reinserted into OL. In this way, only states having lower cost
than s∗ will be expanded. If a better goal state is discovered,
it replaces the existing goal state in OL. When a solution is
verified, the expanding agent traces back for the path and
executed actions. Then, it broadcasts a terminating message.

2) Concurrent action selection: If multiple agents have
taken the same action, the first agent, determined by the
time-stamp included in the action-occupation-message, that
chose the action can execute the action. If the time-stamps



Algorithm 3 process-message(m)
1: if m is action-occupation-message(

〈
a
〉
) then

2: remove a from AL
3: else if m is new-actions-message(

〈
actions

〉
) then

4: add actions to AL
5: else if m is response-action-cost(

〈
a, cost

〉
) then

6: remove a from PL
7: compute g(s′), h(s′) where s′ is resulting state of a
8: if s′ is not in OL and s′ is not in CL then
9: add s′ to OL

10: else if s′ is in OL and f(s′) < f(s′OL) then
11: replace s′OL by s′

12: else if s′ is in CL and f(s′) < f(s′CL) then
13: move s′ to OL
14: else if m is expansion-message(

〈
s, f(s), AID

〉
) then

15: if s is in OL and f(s) > f(sOL) then
16: send suggest-state-message(sOL, f(sOL)) to AID

17: else if s is in OL and f(s) ≤ f(sOL) then
18: move s to CL
19: else if s is in CL then
20: replace sCL by s
21: else
22: add s to CL
23: else if m is suggest-state-message(

〈
s, f(s)

〉
) then

24: if s is in CL and f(s) < f(sCL) then
25: replace sCL by s
26: broadcast expansion-message(s, f(s), ID)
27: else if m is goal-verification-message(

〈
s, f(s), AID

〉
) then

28: if verify-goal(s) returns false then
29: if s is not in OL then insert s into OL
30: else if f(s) < f(sOL) then replace sOL by s
31: else
32: send goal-confirmation-message(ID) to AID

are identical, the agent with smaller ID continues the exe-
cution. Since these heuristics are known by all agents, they
can determine whether to continue or stop.

3) Concurrent expansion of the same state: If agents
detect a concurrent expansion of the same state s, they
proceed in the following way. If s has different costs, the
agent expanding s with the lowest cost continues. If s has
the same cost, the agent that has the lowest number of
states in its OL continues (this information is included in the
messages concerning concurrent expansion). If the conflict
is still not resolved, the agent with the smallest ID continues.

4) Termination: The execution of the algorithm is ter-
minated in two situations. First, a verified solution is found.
Second, the entire state space has been explored. We reach
the end of a state space when all agents have no states in
OL, no actions in AL and no pending requests in PL.

5) Optimality: The algorithm terminates by finding a
path to a goal state with an optimal cost if one exists,
assuming the following properties: (1) The heuristic function
h is consistent. (2) The search space is finite. (3) All sent
messages arrive at their destinations. (4) For every request
for an action cost, we get a response. (5) All operations
take a finite amount of time. To prove the optimality of
our algorithm, we employ the proof by contradiction by

assuming the contrary. We consider 3 following cases as
also addressed in the generic MA-A* [4]. (1) The algorithm
terminates at a non-goal state. This case is impossible
because the goal verification procedure only starts when
expanding a goal state. (2) The algorithm terminates at a
non-optimal goal state. In the goal verification procedure, a
goal state s∗ is verified only when, for every agent, it has
the lowest cost in the OL, and there exists no action in the
AL or PL that may lead to a state s where f(s) < f(s∗).
Therefore, when a non-optimal goal is being verified, there
must be a state s′ belonging to the optimal path, in the OL
or as a resulting state of an action in the AL or PL, where
f(s′) < f(s∗). In such case, s∗ is not verified. (3) The
algorithm does not terminate. First, if an optimal solution
exists, the algorithm terminates after the solution is verified.
Second, when all states in the search space are expanded,
the algorithm terminates. Third, the search space is finite,
so the number of time a state s can be reopened from the
CL is also finite.

IV. CONCLUSION

The proposed approach allows independent resources
to be described and interlinked such that they can be
discovered. The distributed and open architecture enables
flexible entries and exits of resources. Moreover, employing
multi-agent approach facilitates the use of distributed and
heterogeneous resources and the personalization process.
The feasibility of the approach depends on people’s will
to describe and interlink seeds by adhering to a common
model, but a worldwide adoption of a specification is not
uncommon on the Internet. However, the number of web
resources are immense. The scalability of the approach needs
to be ensured and will be addressed in our future work.

REFERENCES

[1] M. Khanjary, K. Faez, M. Meybodi, and M. Sabaei, “Persian-
gulf: An autonomous combined traffic signal controller and
route guidance system,” in VTC Fall, Sept 2011, pp. 1–6.

[2] R. Cyganiak, D. Wood, and M. Lanthaler, “RDF 1.1
Concepts and Abstract Syntax, W3C Recommendation
25 February 2014,” Feb. 25 2014. [Online]. Available:
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

[3] D. Brickley and L. Miller, “FOAF Vocabulary Specification
0.99, Namespace Document 14 January 2014 -
Paddington Edition,” Jan. 14 2014. [Online]. Available:
http://xmlns.com/foaf/spec/

[4] R. Nissim and R. I. Brafman, “Multi-agent A* for parallel and
distributed systems,” in Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems-
Volume 3. International Foundation for Autonomous Agents
and Multiagent Systems, 2012, pp. 1265–1266.

[5] P. Bogg, G. Beydoun, and G. Low, Intelligent Agents and
Multi-Agent Systems: PRIMA 2008, Hanoi, Vietnam, December
15-16, 2008. Proceedings. Springer Berlin Heidelberg, 2008,
ch. When to Use a Multi-Agent System?, pp. 98–108.

[6] A. Kishimoto, A. S. Fukunaga, and A. Botea, “Scalable,
parallel best-first search for optimal sequential planning,” in
ICAPS, 2009.


