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3 École des Mines de Nantes, IRCCYN, UMR CNRS 6597, La Chantrerie, 4, rue Alfred Kastler

- B.P. 20722, F-44307 Nantes Cedex 3, France, e-mail: alexandre.dolgui@mines-nantes.fr

4University of Lorraine, Ile de Saulcy, 57045 Metz, France, e-mail: ammar.oulamara@loria.fr

Abstract

In the problem under study, a paced unidirectional machining line, consisting of a number
of stations, has to be configured to produce parts of several types. A given set of operations
is required for each part type and the same operation can be required for different part
types. Re-assignment of operations, when switching from one part type to another, is not
allowed. All operations assigned to the same station are performed simultaneously. The
objective is to assign operations to stations in order to minimize the number of stations
and the station activation costs, with respect to precedence and zoning constraints. The
two objectives are considered in a lexicographic order, the former being the primary ob-
jective. Activation costs refer to the costs induced by the energy consumption, equipment
maintenance, setup activities or labor requirement which occur whenever a station is used.
Computational complexity for various special cases is established. Heuristic algorithms, in-
teger linear programming formulations, and computer experiments are presented. Instances
of practical dimension, with 40 to 80 operations, are solved in an hour on a conventional
computer.

Keywords: Line balancing; Scheduling; Computational complexity; Integer linear program-

ming; Heuristics.
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1 Introduction and literature review

We study a line balancing problem whose peculiarity is the consideration of the station activation

costs in addition to the usual minimization of the number of stations. The line to be configured

is intended for a large series production of several types of parts. It is paced, unidirectional and

consists of a number of stations. Parts move along the stations one after another and, at each time

instant, any station is occupied by at most one part. In the real production case, which motivates

our studies, each station is equipped with a single multi-spindle head where rotating tools such as

borers, milling cutters, grinding heads and chamfering mills are mounted to perform operations

which are required for all part types. The line balancing decision specifies an assignment of the

required operations to the stations. When a blank or a partially processed part of a certain type

arrives at a station and there are operations to be performed on this station for this part type,

the station is activated and the required operations are performed in parallel.

The station activation includes cleaning the working zone, loading, positioning and unloading

of the part. It induces a cost associated with energy, equipment maintenance and labor, see

Borgia et al. [6]. Over a long production period, the total station activation cost for a given part

type is proportional to the quantity of parts of this type to be produced, or its relative quantity

among all types, multiplied by the number of stations which have some assigned operations on

parts of this type. The costs associated with characteristics of operations other than the type,

such as the number of required tools, sum up to a constant and they do not depend on the line

balancing decision. Therefore, the station activation costs are assumed to be dependent only on

the part type.

For the type of lines which has motivated this study, the multi-spindle heads are very expensive

which often leads decision-makers to focus primarily on the minimization of investment costs. The

primary criterion for the line design is thus to minimize the number of stations. However, there

are often many solutions with the same minimum number of stations. Therefore, we consider a

secondary objective, which is to minimize the total station activation cost.

The line takt time can be common for all types or it can be type dependent. If it is type

dependent, then, due to the parallel execution of operations, it is equal to the maximum operation

time plus the station activation time, among parts of a given type. If it is common for all types,

then it is equal to the maximum operation time plus the corresponding station activation time,

among parts of all types. Thus, the line takt time depends on the input data of the problem and
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it does not depend on the line balancing and part sequencing decisions. The studied lines can

be used in a mixed-model mode, where parts of different types are produced interchangeably, see

Figure 1, or in a multi-model mode, where parts are produced in batches of the same type, see

Figure 2.

A formal definition of the problem under study can be given as follows. A paced production

line consisting of several stations has to be configured to produce parts of f types. Parts move

along the stations in the same direction in a given sequence. Let F = {1, . . . , v, . . . , f} be

the set of part types. Each part of type v ∈ F requires each operation of a given set Nv to be

executed exactly once on the line. Operations of the set Nv are called type v operations. The same

operation can be performed on parts of different types, thus, different sets Nv can contain common

operations. Let N := ∪fv=1Nv = {1, . . . , n} denote the superset of all the required operations,

and let Ti denote the set of types of the operation i ∈ N , i.e., Ti = {v | i ∈ Nv, v ∈ F}. Re-

design, i.e., re-assignment of operations when switching from the production of one type part to

another, is not allowed. Operations of the same type assigned to the same station are performed

simultaneously. Examples of simultaneous execution of operations in the mechanical industry are

given by Dolgui et al. [19], Belmokhtar et al. [5], Battaia and Dolgui [3] and Falkenauer [23].

Binary precedence relations are given on the superset N . If operation i ∈ N precedes operation

j ∈ N , then j cannot be assigned to the station of i or any preceding station. Precedence relations

are transitive and irreflexive. They are represented by a directed acyclic graph G = G(N,A), in

which there is an arc (i, j) ∈ A if and only if i precedes j. Precedence relations characterize the

technological process. They can be defined separately for each part type, but since re-design is

not allowed, they must be consistent and can therefore be given on the superset N .

Plural exclusion relations are defined on the superset N . They are represented by a collection

E of sets E ′ ⊂ N such that all operations of E ′ cannot be assigned to the same station, but any

proper subset of E ′ can be assigned to the same station. If the simultaneous utilization of some

tools at the same station is not possible, exclusion relations prevent this from happening. For

example, a set E ′ = {1, 2, 3} of three drilling operations cannot be performed simultaneously,

because the total weight of the corresponding drilling heads is unacceptable for the same station.

However, operations of any proper subset of E ′, which may include one or two arbitrary operations

from E ′, can be assigned to the same station. The total weight of one or two drilling heads

associated with operations from E ′ is acceptable. Only the installation of all three drilling heads
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Station 1
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Station 3

Time

Part type 1

Part type 2

Part type 3

Setup time
Common takt time
for each part type

Figure 1: Mixed-model mode. No operation for part type 3 is assigned to station 2 and this
station is not activated when part of type 3 is processed
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part type 1
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part type 2
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Figure 2: Multi-model mode. Takt time is adjusted for each part type. When takt time decreases,
the production of parts of the next type - type 2 in this example - starts before the change of the
takt time
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at the same station is not acceptable. Without loss of generality it can be assumed that there

are no two sets in E containing one another. For example, if there are two exclusion sets {1, 2, 3}

and {1, 3}, then {1, 2, 3} can be removed from the input since the fact that operations 1 and 3

will never be assigned to the same station implies that 1, 2 and 3 will do the same. Exclusion

relations can be defined separately for each part type. However, since re-assignment of operations

when switching from the production of one type part to another, is not allowed, they must be

consistent and can therefore be given on the superset N .

Each operation i has its size si which can be viewed as the number of tools required simulta-

neously to perform this operation. The total size of all operations, i.e., the total number of tools

assigned to the same station should not exceed the given station capacity r. Since each tool is

associated with an elementary operation, each operation i can be viewed as a block of elementary

operations to be executed simultaneously on the same station, with si as the cardinality of this

block and N as a set of blocks. Therefore, operations with non-unit sizes are similar to the

inclusion sets such that all elementary operations of the same inclusion set must be assigned to

the same station. For example, a set I = {4, 5} of two drilling operations can be required to be

performed on the same station because the distance between the corresponding holes must be

precise. The required precision will be lost if the drilling operations are performed on different

stations. Therefore, set I can be viewed as an operation of size two. See Dolgui et al. [20] for an

inclusion sets formulation of a transfer line balancing problem.

Exclusion and inclusion relations refer to what is called zoning constraints in line balancing,

see Akpinar and Mirac Bayhan [1] and Falkenauer [23]. Zoning constraints are called positive

if a specific set of operations must be assigned either to the same station or to a specific set

of stations. Negative zoning constraints forbid operations of a specific set to be assigned either

to the same station or to a specific set of stations. In our case, exclusion relations correspond

to negative zoning constraints while inclusion relations represented by operation sizes refer to

positive zoning constraints.

A station is activated for part processing if at least one operation on this part will be processed

on this station. An activation cost av is associated with part type v, v = 1, . . . , f . Let xv denote

the number of stations activated for any single part of type v, v = 1, . . . , f . A decision has to be

made about the total number of stations, k, and an assignment of the operations to the stations

1, . . . , k. The primary criterion is to minimize the total number of stations, and the secondary
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criterion is to minimize the total activation cost, a1x1 + · · ·+ afxf . We denote the problem with

the single primary criterion as P (prec, excl, si | k) and the problem with the two lexicographically

ordered criteria as P (prec, excl, si | lex(k, cost)). Note that the two criteria are not redundant

in the sense that minimizing the total activation cost is not sufficient to minimize the number of

stations and vice versa. Let (k∗, c∗) denote the lexicographical minimum of the objective function

values for the problem P (prec, excl, si | lex(k, cost)). Thus, k∗ is the global minimum of the

number of stations, and c∗ is the minimum cost, provided that the number of stations is k∗.

For an illustration of the effect of station activations, assume that there are three stations,

each having capacity 2, and two part types. Any part of type 1 requires unit size operations 1,

2 and 3 and any part of type 2 requires unit size operations 4, 5 and 6. Assume that the other

constraints are not effective. Two feasible assignments of the six operations are given in Figure 3.

Assignment 2: 1
4

2
5

3
6

- -• • •
Part move

Assignment 1: 1
2

3
4

5
6

- -• • •
Part move

Part type 1

Part type 2

Station 1 Station 2 Station 3

Figure 3: Two assignments of operations

Consider assignment 1. When a part of type 1 is processed, station 1 performs operations 1

and 2, and station 2 performs operation 3. Station 3 is not activated. This contributes 2a1 to the

total station activation cost. When a part of type 2 is processed, station 2 performs operation

4, and station 3 performs operations 5 and 6. Station 1 is not activated. This contributes 2a2

to the total station activation cost, which is equal to 2a1 + 2a2 for the assignment 1. Now

consider assignment 2. When a part of type 1 is processed, station 1 performs operation 1,

station 2 performs operation 2 and station 3 performs operation 3. This contributes 3a1 to the

total station activation cost. When a part of type 2 is processed, station 2 performs operation 4,

station 2 performs operation 5 and station 3 performs operation 6. This contributes 3a2 to the

total station activation cost, which is equal to 3a1 + 3a2 for the assignment 2.
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Kovalev et al. [34] studied a special case of the problem P (prec, excl, si | lex(k, cost)) with

unit size operations and no precedence or exclusion relation, which we denote as P (si = 1 |

lex(k, cost)). They suggested a solution procedure with running time depending solely on the

number of part types f . This procedure combines the enumeration of different assignments of part

types with the solution of a system of linear inequalities. Dolgui et al. [17] investigated a problem

similar to P (prec, excl, si | lex(k, cost)), in which operations of the same type assigned to the same

station are performed sequentially and there are no exclusion relations. The takt time constraints

were explicitly present in the formulation of this problem because of the sequential execution of

operations at the same station. NP-hardness proofs, polynomial time algorithms for special cases,

heuristics and integer linear programming formulations for the general problem were suggested

in [17]. These results cannot be applied to the problem P (prec, excl, si | lex(k, cost)) because

the difference between sequential and simultaneous processing makes the solution structures and

feasible domains of these problems substantially different. The fact that the type of processing

drastically changes the mathematical model and affects solution methods is widely observed in

the line balancing problems.

Problem P (prec, excl, si | k) is related to multi-product line balancing problems, which are

studied by Sawik [41], Kabir and Tabucanon [32], Bukchin and Rabinowitch [11], Vilarinho and

Simaria [45], Andres et al. [2], Yuan et al. [47], among others. Surveys of line balancing research

are given by Erel and Sarin [22], Rekiek et al. [40], Boysen et al. [9], Dolgui and Proth [21],

Boysen et al. [10], Battaia and Dolgui [4] and Sivasankaran and Shahabudeen [42]. Results on

multi-objective line balancing problems can be found in Gamberini et al. [26], McMullen and

Tarasewich [36, 37], Suwannarongsri and Puangdownreong [43], Ramezanian and Ezzatpanah

[39], Chica et al. [14]. Setup time and setup cost models are well known in scheduling and

lot-sizing research, see, for example, Potts and Kovalyov [38] and Dolgui et al. [18].

The rest of the paper is organized as follows. In Section 2, we focus on the problem with the

sole primary criterion. The computational complexity of this problem, which is NP-hard in the

strong sense in the general case, is analyzed. Two greedy randomized heuristics and an integer

linear programming (ILP) formulation are suggested. In Section 3, the lexicographic bi-criteria

problem is studied. Again, the computational complexity of this problem is analyzed, and two

greedy randomized heuristics as well as an ILP formulation are suggested. Computer experiments

with the suggested heuristics and ILP formulations are given in Section 4. A solution procedure
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for the bi-criteria problem, which dichotomically enumerates the number of stations, is proposed

in Section 5. The paper concludes with a summary of the results.

2 Minimizing the number of stations

In this section, the single criterion problem P (prec, excl, si | k) to minimize the number of stations

is studied. The simplest case with unit size operations and no exclusion or precedence relations

is easily solvable: k∗ = dn
r
e. In the following subsections, more complex cases are considered.

2.1 Given precedence relations, no exclusion relation and unit sizes

The special case in this subsection is denoted as P (prec, si = 1 | k). We will show that it is

equivalent to the scheduling problem Pm | pi = 1, prec | Cmax.

Problem Pm | pi = 1, prec | Cmax: There are n unit-time jobs to be scheduled on m identical

parallel machines. Precedence relations are given on the set of jobs such that if job i precedes job

j then j cannot be processed in the unit-time processing interval of i or any preceding unit-time

interval. No preemption of job processing is allowed and no two jobs can be processed by the

same machine simultaneously. The objective is to assign jobs to the unit-time intervals on the

machines so that the precedence relations are satisfied and the completion time of the latest job,

Cmax, is minimized. Denote the minimum Cmax value as C∗max.

For problem P (prec, si = 1 | k), let us interpret operations as jobs, the station capacity

bound r as the number of machines m, and stations 1, 2, . . . as unit-time intervals [0, 1], [1, 2], . . .

in the problem Pm | pi = 1, prec | Cmax. It can be seen that any feasible solution of problem

P (prec, si = 1 | k) with the number of stations k can be represented as a feasible solution of the

corresponding scheduling problem with the objective value Cmax = k and vice versa. Therefore,

the two problems are equivalent and k∗ = C∗max.

If precedence relations are arbitrary, then problem Pm | pi = 1, prec | Cmax is NP-hard

in the strong sense for a variable number of machines m (Ullman [44]), and its computational

complexity status is open if m is a constant greater than two (Brucker and Knust [12]). Problem

Pm | pi = 1, prec | Cmax is solvable in O(n) time if the precedence graph, G, is a collection of

in-trees (Hu [31]) or a collection of out-trees (Davida and Linton [15]), and it is solvable in O(n2)

time, if G is arbitrary and m = 2 (the best known algorithm is by Gabow [25]).

Thus, problem P (prec, si = 1 | k) is NP-hard in the strong sense for variable station capacity
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bound r and arbitrary precedence graph G. It is solvable in O(n) time if G is a collection of

in-trees or a collection of out-trees, and in O(n2) time if G is arbitrary and r = 2. The chain-like

and tree-like precedence relations are typical for machining and assembly operations.

2.2 Arbitrary operation sizes and no exclusion or precedence relation

Denote the special case in this subsection as P (si | k). The problem P (si | k) can be interpreted

as the well-known bin packing problem, in which there are n items of sizes s1, . . . , sn to be packed

into the minimum number of bins, each having capacity r. The minimum number of stations k∗

is equal to the minimum number of the required bins.

The bin packing problem is NP-hard in the strong sense. It is solvable in O(nKL
) time if

there is at most K distinct item sizes and at most L items can fit in one bin; see, for example,

Fernandez de la Vega and Lueker [24]. If r is a constant, then K and L are constants as well,

and the bin packing problem is polynomially solvable. It can be reduced to solving n parallel

machine scheduling problems Pm | dj = r | ·, m = 1, . . . , n. In the problem Pm | dj = r | ·,

there are n non-preemptive jobs with processing times s1, . . . , sn to be scheduled on m identical

parallel machines, and the question is whether all the jobs can be completed by the common

deadline r. We have k∗ = m∗ where m∗ is the minimum m for which the question in the problem

Pm | dj = r | · has the affirmative answer. The problem Pm | dj = r | · can be solved in

O(nmrm−1) time by a dynamic programming algorithm. Hence, the problem P (si | k) can be

solved in O(n2rn−1 log2 n) time by a bisection search over the range 1, . . . , n of values m.

From the above discussion we deduce that the problem P (si | k) is NP-hard in the strong

sense. It is polynomially solvable if the number of operations is a constant or if the station

capacity r is a constant.

2.3 Given exclusion relations, no precedence relation and unit sizes

Denote the special case in this subsection as P (excl, si = 1 | k).

Theorem 1 The problem P (excl, si = 1 | k) is NP-hard in the strong sense if |E ′| = 2 for each

E ′ ∈ E.

Proof: We use a reduction from the problem Exact Cover by 3-Sets (X3C); see Garey and

Johnson [27]: Given a family A = {A1, . . . , Aa} of 3-element subsets of the set B = {1, . . . , 3b},
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does A contain an exact cover of B, i.e., a subfamily S ⊆ A such that each i ∈ B belongs to

exactly one 3-element set in S? Assume a > b because otherwise there exists a trivial solution.

Given an instance of X3C, construct the following instance of the decision version of the

problem P (excl, si = 1 | k). Define the number of operations n = (b + 1)(a − b + 1) and the

station capacity r = b + 1. The set of operations includes a single X-operation, b number of the

same Yi-operations, i = 1, . . . , a−b, and Ai-operations associated with the subsets Ai, i = 1, . . . , a.

All operations are of the same type. The exclusion relations are given as follows. The X-

operation excludes any Yi-operation, i.e., {X, j} ∈ E for every Yi-operation j, i = 1, . . . , a − b.

Any Yi-operation excludes any Yq-operation, i.e., {j, l} ∈ E for every Yi-operation j and every

Yq-operation l, i 6= q. The Ai-operation and the Aq-operation exclude each other if subsets Ai

and Aq share the same element, i.e., if Ai ∩ Aq 6= φ, i 6= q.

We will show that for the constructed instance, a solution to X3C exists if and only if there

exists a feasible solution to this instance of the problem P (excl, si = 1 | k) with at most a− b+ 1

stations. It is obvious that the instance construction is pseudo-polynomial.

Part “if”. Assume that there exists a feasible solution to the constructed instance of the

problem P (excl, si = 1 | k) with at most a − b + 1 stations. Observe that there are a − b + 1

mutually exclusive operations: the X-operation and one Yi-operation for each i = 1, . . . , a − b.

Hence, there must be exactly a − b + 1 stations. Without loss of generality assume that an Yi-

operation is assigned to station i, i = 1, . . . , a− b, and the X-operation is assigned to the station

a − b + 1. Since any Yi-operation excludes any Yq-operation for i 6= q, and there are a − b + 1

stations, all the Yi-operations must be assigned to station i, i = 1, . . . , a − b. Therefore, the

Ai-operation, i ∈ {1, . . . , a}, can be assigned to one of the remaining b positions of the station

a−b+1 or to the single position of any of the stations 1, . . . , a−b. The structure of such a solution

is given in Table 1 where columns represent stations and symbols ”•” represent Ai-operations.

Table 1: Structure of a feasible solution with a− b+ 1 stations.

Y1 Y2 • · · · Ya−b X
• Y2 Y3 · · · Ya−b •
Y1 • Y3 · · · • •
Y1 Y2 Y3 · · · Ya−b •
· · · · · · · · · · · · · · · · · ·
Y1 Y2 Y3 · · · Ya−b •
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The b number of Ai-operations at the station a− b+ 1 must be mutually non-exclusive, which

means that no two subsets Ai and Aq corresponding to these operations must share the same

element. We deduce that the subsets Ai corresponding to the Ai-operations assigned to station

a− b+ 1 constitute an exact cover of B, as required for the proof of the part “if”.

Part “only if”. If there exists a solution S to the problem X3C, then construct a solution to

the problem P (excl, si = 1 | k) with the structure given in Table 1 and assign the Ai-operation to

the station a− b+ 1 if and only if Ai ∈ S. Such a solution is feasible and the number of stations

is equal to a− b+ 1, as required for the proof of the part “only if”.

2.4 ILP formulation for the general case of P (prec, excl, si | k)

Let us now formulate this problem as an Integer Linear Program (ILP). In this model, we assume

that an upper bound k0 ≥ k∗ on the number of stations is given, i.e. there are k0 stations to

be opened or not. In practice, the number k0 can be obtained by heuristics (see section 2.5). A

station is called open if at least one operation is assigned to it.

Introduce 0-1 variables xij such that xij = 1 if and only if operation i is assigned to station j,

and 0-1 variables yj such that yj = 1 if and only if station j is open. Recall that the directed

graph G = G(N,A) represents the precedence constraints.

Calculate the following lower bound LB1 on the minimum number of stations:

LB1 = max
{
lmax,

⌈∑n
i=1 si
r

⌉}
, where lmax is the number of vertices in the longest chain of G.

The problem P (prec, excl, si | k) can be re-formulated as the following ILP problem, which we

denote as Min#.

Problem Min#:

min
k0∑
j=1

yj, (1)
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subject to

k0∑
j=1

yj ≥ LB1, (2)

j∑
i=1

yi ≥ jyj, j = 2, . . . , k0, (3)

n∑
i=1

xij ≥ yj, j = 1, . . . , k0, (4)

k0∑
j=1

xij = 1, i = 1, . . . , n, (5)

n∑
i=1

sixij ≤ ryj, j = 1, . . . , k0, (6)∑
i∈E′

xij ≤ |E ′| − 1, ∀E ′ ∈ E, j = 1, . . . , k0, (7)

h∑
j=1

xbj +
k0∑
j=h

xaj ≤ 1, ∀(a, b) ∈ A, h = 1, . . . , k0, (8)

xij, yj ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , k0. (9)

In the problem Min#, there are k0 + nk0 variables and n + k0(3 + |E| + |A|) constraints

without the 0-1 constraints. Barring the exclusion constraints (7), this problem is similar to the

simple assembly line balancing problem, SALBP-1, see, for example, Boysen and Fliedner [8].

Constraint (2) incorporates the lower bound LB1. Constraints (3) ensure that the stations are

opened consecutively in the increasing order of their indices and (4) that at least one operation

is assigned to an open station. Note that constraints (2)-(4) are not necessary for the model to

be correct but they accelerate the solution process when using an ILP solver. Constraints (5)

ensure that each operation is assigned to a station. Constraints (6) guarantee that the capacity

of each station is not exceeded and that any operation can be assigned only to an open station.

Constraints (7) prevent operations of the same exclusion set to be all assigned to the same station.

Constraints (8) together with (5) guarantee that the station index of a is strictly smaller than

that of b for (a, b) ∈ A, which is the requirement of the precedence constraints.

The minimum number of stations can be calculated as k∗ =
∑k0

j=1 y
∗
j where y∗j are optimal yj

values in the problem Min#.
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2.5 Heuristics for the general case of P (prec, excl, si | k)

As indicated, the problem considered in this paper is NP-hard. In addition, the ILP proposed

requires an upper bound on the number of stations. Thus, in this section we suggest two random-

ized greedy heuristics to solve the problem P (prec, excl, si | k) approximately. Let the stations

be numbered t = 1, 2, . . .

Heuristic GreedyNumber1 for the problem P (prec, excl, si | k):

Step 1 (Elimination of exclusion relations) If there is no exclusion set (E = φ), then set

t = 1 and go to Step 2. Otherwise, select a set E ′ ∈ E. Randomly select a pair of

operations in E ′ and introduce an arbitrary precedence relation between them. Note that

if this precedence relation is satisfied, then the exclusion relation given by E ′ is satisfied as

well. Update the precedence graph G = G(N,A). Update E by removing E ′ and any other

exclusion set which contains a pair of operations with a directed path between them in the

new graph G. Repeat Step 1.

Step 2 (Operation assignment by solving Subset Sum problem) Calculate the set N+ of

vertices of the precedence graph G which have no predecessor. Assign to station t operations

of a subset X ∈ N+, which is selected by solving the following Subset Sum problem:

max
X∈N+

∑
i∈X

si, subject to
∑
i∈X

si ≤ r.

Update graph G by removing vertices of the set X and their outgoing arcs. If G is empty,

then stop: a feasible solution is constructed. Otherwise, re-set t := t+ 1 and repeat Step 2.

Let us illustrate heuristic GreedyNumber1 on the example with 5 operations, whose sizes are

s1 = 1, s2 = 2, s3 = 3, s4 = 2 and s5 = 1. Further, station capacity is r = 4, exclusion relations

are given by E = {E1, E2}, where E1 = {1, 3} and E2 = {1, 4}, and precedence relations are

given by arcs (1, 2), (1, 3), (3, 4), (3, 5) and (4, 5) in graph G with 5 vertices. According to the

heuristic, exclusion relation {1, 3} can be eliminated by introducing precedence relation (1, 3).

Since directed path (1, 3, 4) appeared, exclusion relation {1, 4} can be eliminated as well. Then,

t = 1, and operations are assigned to station 1. Since set N+ = {1} and s1 ≤ r, operation 1 is

assigned to station 1. It is removed from G, and t := 2. Operations are assigned to station 2. Now,

N+ = {2, 3} and s2 + s3 > r. Solution of the Subset Sum problem is X = {3}. Operation 3 is
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assigned to station 2. It is removed from G, and t := 3. Operations are assigned to station 3. Now,

N+ = {2, 4} and s2 + s4 ≤ r. Solution of the Subset Sum problem is X = {2, 4}. Operations 2

and 4 is assigned to station 3. Only operation 5 with s5 ≤ r remains unassigned. It is assigned

to station 5.

Iterative solving of the Subset Sum problem is proven to be an efficient solution approach

for the bin packing problems; see, for example, Caprara and Pferschy [13] and Haouari and

Serairi [28]. To solve the Subset Sum problem, we use the standard dynamic programming

algorithm, which requires O(|N+|r) time.

Heuristic GreedyNumber1 can be independently run several times to increase the probability

to obtain a feasible solution with a small number of stations.

Heuristic GreedyNumber2 differs from GreedyNumber1 in that in Step 2, instead of solving

the Subset Sum problem, the subset X ∈ N+ such that
∑

i∈X si ≤ r is generated by selecting its

elements by random.

3 Minimizing the total activation cost

In this section, we establish computational complexity and present heuristics and an ILP formu-

lation for the problem P (prec, excl, si | lex(k, cost)).

3.1 Computational complexity

Note that any special case of the problem P (prec, excl, si | lex(k, cost)) is not easier than the

same special case of the problem P (prec, excl, si | k). Therefore, NP-hardness results for the

problem P (prec, excl, si | k) apply for the problem P (prec, excl, si | lex(k, cost)).

Kovalev et al. [34] presented a solution algorithm for the problem with unit size operations

and no precedence or exclusion relation, which we denote as P (si = 1 | lex(k, cost)). The run

time of this algorithm depends solely on the number f of part types. Therefore, the problem

P (si = 1 | lex(k, cost)) is polynomially solvable for a constant number of part types. We now

show that the problem P (si = 1 | lex(k, cost)) is NP-hard in the strong sense if f is variable (a

part of the problem instance) even if all the cost coefficients are unit.

Theorem 2 The problem P (si = 1 | lex(k, cost)) is NP-hard in the strong sense even if av = 1,

v = 1, . . . , f .
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Proof: We use a reduction from the strongly NP-complete problem 3-Partition; see Garey and

Johnson [27]: Given 3q+ 1 positive integer numbers b1, . . . , b3q and B such that B/4 < bi < B/2,

i = 1, . . . , 3q, and
∑3q

i=1 bi = qB, is there a partition of the set {1, . . . , 3q} into q disjoint sets

X1, . . . , Xq such that
∑

i∈Xl
bi = B for l = 1, . . . , q?

Given an instance of 3-Partition, construct the following instance of the problem P (si =

1 | lex(k, cost)). Define the number of operations n = qB and the station capacity r = B. There

are f = 3q types of operations, each operation has a single type and a unit size, and there are

bi operations of type i, i = 1, . . . , 3q. Thus, there are qB operations in total. We show that for

the constructed instance, a solution to 3-Partition exists if and only if there exists a feasible

solution to the constructed instance of the problem P (si = 1 | lex(k, cost)) with q stations and

total activation cost equal to 3q. It is obvious that the construction is pseudo-polynomial.

Part “if”. Assume that there exists a feasible solution to the constructed instance of the

problem P (si = 1 | lex(k, cost)) with at most q stations and at most 3q activation cost. It is

easy to see that the minimum number of stations is equal to q. Since there are 3q part types,

operations of the same type must be assigned to the same station. Let Xh denote the set of part

types assigned to station h. We must have
∑

i∈Xh
bi ≤ r = B, h = 1, . . . , q, which, together with

the equality
∑q

h=1

∑
i∈Xh

bi =
∑3q

i=1 bi = qB implies
∑

i∈Xh
bi = B, h = 1, . . . , q, as required for

the proof of the part “if”.

Part “only if”. If there exists a solution X1, . . . , Xq to the problem 3-Partition, then

construct a solution to the problem P (si = 1 | lex(k, cost)) in which all the operations of the

types from the set Xh are assigned to the station h, h = 1, . . . , q. This solution has q stations

and the total cost of 3q, as required for the proof of the part “only if”.

3.2 ILP formulation

We now present an ILP formulation for the general case of the problem P (prec, excl, si |

lex(k, cost)). Assume that the minimum number of stations k∗ has been found. Introduce 0-

1 variables zvj such that zvj = 1 if and only if at least one operation of type v is assigned to

station j. As before for the problem Min#, xij are 0-1 variables such that xij = 1 if and only if

operation i is assigned to station j.

Calculate the following lower bound LB2 on the minimum total cost:

LB2 =
∑f

v=1 av max
{
l
(v)
max,

⌈∑
i∈Nv

si

r

⌉}
, where l

(v)
max is the maximum number of type v op-

15



erations in any chain of G. The problem P (prec, excl, si | lex(k, cost)) can be re-formulated as

the following ILP problem, which is denoted as MinAct.

Problem MinAct:

min
k∗∑
j=1

f∑
v=1

avzvj, (10)

subject to

k∗∑
j=1

f∑
v=1

avzvj ≥ LB2, (11)∑
i∈Nv

xij ≥ zvj, v = 1, . . . , f, j = 1, . . . , k∗, (12)

n∑
i=1

sixij ≤ r, j = 1, . . . , k∗, (13)∑
i∈Nv

xij ≤ |Nv|zvj, v = 1, . . . , f, j = 1, . . . , k∗, (14)

k∗∑
j=1

xij = 1, i = 1, . . . , n, (15)∑
i∈E′

xij ≤ |E ′| − 1, ∀E ′ ∈ E, j = 1, . . . , k∗, (16)

h∑
j=1

xbj +
k∗∑
j=h

xaj ≤ 1, ∀(a, b) ∈ A, h = 1, . . . , k∗, (17)

xij, zvj ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , k∗, v = 1, . . . , f. (18)

In the problem MinAct, there are k∗(f+n) variables and 1+n+k∗(1+2f+ |E|+ |A|) constraints

without the 0-1 constraints.

Constraint (11) incorporates the lower bound LB2. Constraints (12), though redundant be-

cause zvj will be set to zero in an optimal solution if xij = 0 for all i ∈ Nv, are included to be used

by a solver in the solution process. Constraints (13) address the station capacities. Constraints

(14) guarantee that any operation of a certain type can be assigned to a station only if this station

is open for this type. Constraints (15) - (17) have the same meaning as in the problem Min#.

3.3 Heuristics

For the problem P (prec, excl, si | lex(k, cost)), we also suggest a randomized greedy heuristic,

denoted as GreedyCost, to provide an upper bound. Let ci denote the total activation cost of

the operation i ∈ N : ci =
∑

v∈Ti
av. The only difference between the heuristics GreedyCost
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and GreedyNumber1 is that in GreedyCost, instead of solving the Subset Sum problem, the

following Knapsack problem is solved:

max
X∈N+

∑
i∈X

ci, subject to
∑
i∈X

si ≤ r.

An optimal solution of this problem assigns operations of maximum total cost to the same station.

Again, we use the standard dynamic programming algorithm to solve the Knapsack problem.

It requires O(|N+|r) time. Heuristic GreedyCost can be independently run several times to

increase the probability to obtain a feasible solution with a low cost.

Note that heuristic GreedyCost can also be used to solve the problem P (prec, excl, si | k)

approximately, and heuristics GreedyNumber1 and GreedyNumber2 can be used to solve the

problem P (prec, excl, si | lex(k, cost)) approximately.

4 Computer experiments

We used ILOG CPLEX version 12.4 to solve the problems Min# and MinAct. The experiments

were run on PC with Intel(R) Core(TM) Quad 2.83 Mhz processor and 8 Gb of RAM under MS

Windows 7 Professional (64 bit). The data generation algorithm for CPLEX and the heuristics

were coded in C++. In the experiments, the time limit for solving each instance of Min# or

MinAct was set to one hour.

Three families of instances were randomly generated. A family is associated with the number

of operations n ∈ {40, 60, 80}. For all instances, there are three part types, the activation costs

are a1 = 3, a2 = 2 and a3 = 1 and the station capacity is equal to r = 10. Three part types

are chosen because two or three modifications of the same product are typical in the application

we are concerned with. Values of activation costs are determined based on a possible proportion

3 : 2 : 1 between the quantities of parts of three types in their mass production. Station capacity

10 is one of possible station capacities in the application.

Each operation i ∈ N is randomly assigned its size si ∈ {1, 2, 3} and a set of types

Ti ∈
{
{1, 2, 3}, {1, 2}, {1, 3}, {2, 3}, {1}, {2}, {3}

}
with uniform probability distribution. The

exclusion sets are defined as follows. For each pair (a, b) of operations such that they have at

least one common type, it is decided with probability 1/3 that a excludes b. Thus, all the exclusion

sets are of cardinality two.

Each family is subdivided into four series nS, nM , nL and nX with small, medium, large and
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very large density of precedence constraints, respectively. For each series nJ , J ∈ {S,M,L,X},

and each pair (a, b) of operations such that a < b and a and b have at least one common type, it

is decided with probability pJ that a precedes b. The corresponding probabilities are pS = 0.2,

pM = 0.4, pL = 0.6 and pX = 0.8. Since each arc in the obtained precedence graph always goes

from a vertex with smaller index to a vertex with larger index, this graph is acyclic.

Each series consists of 20 instances. Their average numerical characteristics are given in

Table 2. There, %Prec is the density of the precedence constraints defined as |A|
max # arcs

×

100%= 2|A|
n2−n × 100%.

Table 2: Average numerical characteristics
Series nJ 40S 40M 40L 40X 60S 60M 60L 60X 80S 80M 80L 80X

%Prec 9.35% 19.25% 29.74% 40.25% 9.88% 19.74% 29.74% 41.24% 10.09% 19.93% 30.09% 39.43%∑n
i=1 si 78 79 79 80 117 120 120 120 160 160 158 159

|E| 189 186 202 199 444 451 443 458 797 790 791 786

The idea of these experiments is in line with similar studies on the transfer line balancing

problems, see, e.g., Belmokhtar et al. [5], Borisovsky et al. [7] and Dolgui et al. [17]. There are

no benchmark instances, however, because problems Min# and MinAct have never been studied

before.

The following procedure is used to solve any generated instance.

Solution procedure for the problem P (prec, excl, si | lex(k, cost)):

Step 1 Apply heuristics GreedyNumber1, GreedyNumber2 and GreedyCost 1000 number of

times each. Determine the minimum number of stations, k0, delivered by these heuristics.

Step 2 Apply CPLEX to solve the problem Min# with upper bound k0 on the number of

stations. Determine the minimum number of stations k∗.

Step 3 Apply CPLEX to solve the problem MinAct with the number of stations k∗.

Step 4 Select the best solution for the problem P (prec, excl, si | lex(k, cost)) among the solutions

obtained in Steps 1, 2 and 3.

The possible outputs of each CPLEX run for an instance I are: 1) an optimal solution with

value Opt(I) is found, 2) an approximate solution with value Appr(I) with a known relative

error %Gap(I) and a lower bound LB(I) are obtained, 3) no feasible solution is found when the
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time limit is achieved. The relative error %Gap(I) is defined as Appr(I)−LB(I)
LB(I)

× 100%. In our

experiments case 3) never happened.

Table 3 shows the number of instances of problems Min# and MinAct solved by CPLEX

to optimality (row “Opt”) and approximately (row “Appr”), for each series. Furthermore, the

average (row “Avg.Gap”) and the worst (row “Worst Gap”) relative errors are listed for Min#

problem. The average relative error Avg.Gap is defined as 1
|nJ |
∑

I∈nJ
%Gap(I) and the worst

relative error Worst Gap as maxI∈nJ
{%Gap(I)} for each series nJ , J ∈ {S,M,L,X}. For the

problem Min#, 237 instances out of 240 were solved optimally and the remaining 3 instances were

solved approximately with an acceptable relative error. As for the problem MinAct, all instances

were solved to optimality for all series. Table 3 also provides average (row “Avg.T ime”) and

maximal (row “Max.T ime”) computational times of CPLEX application to problems Min# and

MinAct for all series.

Table 3: CPEX: solution quality and run time
Series nJ 40S 40M 40L 40X 60S 60M 60L 60X 80S 80M 80L 80X

Min#
Opt 20 20 20 20 20 20 20 20 18 19 20 20
Appr 0 0 0 0 0 0 0 0 2 1 0 0
Avg.Gap - - - - - - - - 11.03 16.67 - -
Worst Gap - - - - - - - - 13.1 16.67 - -
Avg.T ime (sec) 5.99 4.91 3.06 2.08 151.80 94.58 27.20 26.61 1416.60 1144.04 718.22 249.84
Max.T ime (sec) 18.11 13.00 12.18 7.02 312.19 280.97 68.95 173.29 3600 3600 3137.18 1312.09

MinAct
Opt 20 20 20 20 20 20 20 20 20 20 20 20
Appr 0 0 0 0 0 0 0 0 0 0 0 0
Avg.T ime (sec) 0.84 0.30 0.37 0.82 5.08 1.41 1.96 5.83 145.56 65.45 9.43 38.86
Max.T ime (sec) 2.31 0.86 0.64 2.11 17.96 3.26 3.9 28.77 1037.45 1182.77 18.63 309.05

Performance of the heuristics GreedyNumber1, GreedyNumber2 and GreedyCost is presented in

Table 4. More precisely, the row GreedyNumber AvgGap (GreedyNumber Worst.Gap) provides the

average gap (worst gap) of the best results found on each instance with heuristics GreedyNumber1,

GreedyNumber2. The section Min# of Table 4 contains the best results of the two heuristics,

GreedyNumber1 and GreedyNumber2, with respect to the number of stations. The section MinAct

of Table 4 shows the results of the heuristics GreedyCost with respect to the total activation cost.

Two conclusions can be drawn from these results. First, for almost all instances where optimal

solutions were found by CPLEX, values of heuristic solutions range between 10% and 40% of

the optimum. Second, there is a high correlation between density of precedence constraints and

heuristic solution quality. The higher the density, the better is the solution. It is logical since the
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higher density means a fewer number of alternate assignments to evaluate.

Table 4: Heuristics GreedyCost and GreedyNumber : solution quality and run time
Series nJ 40S 40M 40L 40X 60S 60M 60L 60X 80S 80M 80L 80X

Min#
GreedyNumber Avg.Gap (%) 42.63 21.42 20.98 11.09 32.99 23.26 19.33 11.32 31.79 22.47 16.29 09.74
GreedyNumber Worst Gap (%) 66.67 38.53 37.57 25.52 46.15 39.83 32.78 20.90 50.12 39.35 31.67 24.16
Avg.T ime (sec) 95.8 95.1 94.9 94.5 142.7 142.2 141.7 141.1 189.9 189.5 188.2 187.6

MinAct
GreedyCost Avg. Gap (%) 32.73 26.13 17.86 9.64 26.49 21.78 16.78 11.32 29.74 24.48 22.28 9.31
GreedyCost Worst Gap (%) 54.60 41.18 34.05 17.78 42.96 35.86 29.69 23.14 53.87 41.33 32.35 23.60
Avg.T ime (sec) 125.6 125.2 124.7 124.3 202.8 202.3 201.9 201.4 342.1 341.6 341.1 340.8

General observations derived from the computer experiments are the following. First of all,

CPLEX solves large scale instances of the problem P (prec, excl, si | lex(k, cost)) in a short time.

On average, problems are solved within 25 minutes. Secondly, problem Min# needs more com-

putation effort than MinAct. It may be related to the high values of k0 provided by the heuristics

GreedyNumber. The third observation concerns the density of precedence constraints. More com-

putation time is usually needed to solve instances with smaller density of precedence constraints.

We deduce that CPLEX can be used to solve instances of practical dimensions in acceptable

time. Heuristics GreedyNumber1 and GreedyNumber2 can be used to obtain an initial number of

stations k0. All the heuristics can be used to obtain an approximate solution if the solution time

is important. This is the case when there is a highly qualified and well paid expert whose job is

to evaluate variants of the optimal line design for different types of equipment. Faster solutions

save working time for the expert.

Note that earlier methods developed for similar problems observed in the line manufacturing

industry were able to solve instances with up to 130 unit-sized operations, see, for example,

Borisovsky et al. [7]. Since the average size of operations in the experiments of the current paper

is two, the largest instances solved in this paper include about 160 unit size operations.

5 Dichotomic procedure

In this section, we show how to take advantage of the difference in computational times observed

between both problems. As shown in the previous section, when CPLEX could not find the

optimal solution for problem Min#, it provided a lower bound on the minimum number of

stations and an approximate solution, which delivers an upper bound on this value. Therefore,

an optimal solution for the problem P (prec, excl, si | lex(k, cost)) can be found by solving the
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problem MinAct for each number of stations between these two bounds. In order to solve problem

P (prec, excl, si | lex(k, cost)) more efficiently in this case, we suggest the following dichotomic

procedure.

Dichotomic solution procedure for the problem P (prec, excl, si | lex(k, cost)) with a lower

bound LB and an upper bound UB on the minimum number of stations:

Step 1 Apply CPLEX to solve the problem MinAct with the number of stations
⌈
LB+UB

2

⌉
.

Step 2 Consider the following cases.

(a) A feasible solution (either optimal or with a known gap) is found. If LB 6= UB, then

reset UB:=
⌈
LB+UB

2

⌉
− 1 and go to Step 1.

(b) CPLEX proves that there is no feasible solution. If LB 6= UB, then reset LB:=⌈
LB+UB

2

⌉
+ 1 and go to Step 1.

(c) No feasible solution is found when the time limit is achieved. We have now two

problems to solve:

(c1) If LB 6=
⌈
LB+UB

2

⌉
, then apply a new dichotomic procedure with a lower bound

LB and an upper bound
⌈
LB+UB

2

⌉
− 1.

(c2) If
⌈
LB+UB

2

⌉
6= UB, then apply a new dichotomic procedure with a lower bound⌈

LB+UB
2

⌉
+ 1 and an upper bound UB.

Step 3 Among the solutions obtained in Step 1 and 2, select the best solution for the problem

P (prec, excl, si | lex(k, cost)), which has the minimum cost among the solutions with the

minimum number of stations.

The possible outputs of this procedure for an instance I of the problem P (prec, excl, si |

lex(k, cost)) are: 1) an optimal solution is found, 2) an approximate solution with a known

relative error on the number of stations, or on the total cost, or on both criteria is obtained, 3)

no new feasible solution is found when the time limit is achieved. In the latter case, however, the

relative error can possibly be reduced if CPLEX proves that no feasible solution exists for some

of the numbers of stations considered.

Let us now illustrate this procedure on the three instances that remained unsolved in the

previous section (see Tables 5, 6, 7).
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Table 5: Illustration of dichotomic procedure on the first instance unsolved for the series 80S

Employ dichotomic procedure with LB = 18 and UB = 19:
Apply CPLEX to solve MinAct with 19 stations

Output: optimal solution for 19 stations in 318 sec
Employ dichotomic procedure with LB = 18 and UB = 18:

Apply CPLEX to solve the problem MinAct with 18 stations
Output: optimal solution for 18 stations in 389 sec

Output: optimal solution in 707 sec

Table 6: Illustration of dichotomic procedure on the second instance unsolved for the series 80S

Employ dichotomic procedure with LB = 18 and UB = 20:
Apply CPLEX to solve MinAct 19 stations

Output: optimal solution is for 19 stations found in 679 sec
Employ dichotomic procedure with LB = 18 and UB = 18:

Apply CPLEX to solve MinAct with 18 stations
Output: no feasible solution for 18 stations within the time limit

Output:
Approximate solution with 19 stations in 4,279 sec
A gap of 1 station (5.56%)
For 19 stations, solution with minimum total cost

As shown in these three examples, this dichotomic procedure can in some cases provide better

solutions. However, the resolution of the problem MinAct appears much more difficult when

CPLEX cannot find a feasible solution. Overall, the procedures described in this paper have

permitted to solve optimally 238 instances out of 240, and the 2 remaining instances were solved

approximately with a gap of 1 and 2 workstations respectively (and the optimal total cost for the

corresponding number of stations).

6 Conclusions

In this paper, we studied the line balancing problem P (prec, excl, si | lex(k, cost)) in which a line

has to be configured to produce parts of different types. Each part of a specific type moves between

stations in the same direction and a station is activated if at least one operation is assigned

to it. Operations on the same part assigned to the same station are launched simultaneously

and executed in parallel. The primary objective is to minimize the number of stations and the

secondary objective is to minimize the total activation cost. Several results on computational

complexity have been presented for this problem and are summarized in Table 8.

In order to solve the general case of the problem P (prec, excl, si | lex(k, cost)), we suggested
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Table 7: Illustration of dichotomic procedure on the instance unsolved for the series 80M

Employ dichotomic procedure with LB = 26 and UB = 30:
Apply CPLEX to solve MinAct with 28 stations

Output: optimal solution for 28 stations is found in 1,233 sec
Employ dichotomic procedure with LB = 26 and UB = 27:

Apply CPLEX to solve MinAct with 27 stations
Output: no feasible solution for 27 stations within the time limit

Employ dichotomic procedure with LB = 26 and UB = 26:
Apply CPLEX to solve MinAct with 26 stations

Output: no feasible solution for 26 stations within the time limit
Output:

Approximate solution with 28 stations in 8,433 sec
A gap of 2 stations (7.69%)
For 28 stations, solution with minimum total cost

Table 8: Computational complexity
Problem Complexity
P (prec, si = 1 | k), arbitrary r strongly NP-hard
P (prec, si = 1 | k), constant r open
P (in− tree, si = 1 | k) O(n)
P (out− tree, si = 1 | k) O(n)
P (prec, si = 1 | k), r = 2 O(n2)
P (si | k), arbitrary r strongly NP-hard
P (si | k), constant r O(nconst)
P (excl, si = 1 | k) strongly NP-hard
P (si = 1 | lex(k, cost)) strongly NP-hard

a four-stage solution approach, which combines heuristic algorithms with integer linear program-

ming. Computer experiments show that this approach is able to solve instances of practical sizes.

A dichotomic procedure has also been presented and has permitted to obtain better solutions

in the few cases where the four-stage solution approach was not able to solve the problem to

optimality.

It is also interesting to note that the proposed dichotomic procedure can be used for solving

the problem P (prec, excl, si | lex(k, cost)) without solving the problem Min#. For example,

LB1 or the optimal value of the continuous relaxation of Min# can be used as a lower bound,

and the best solution provided by the heuristics can be used as an upper bound. In this case,

the dichotomic procedure can possibly require the resolution of a few more MinAct problems,

but these additional resolutions can consume less time. Considering the results obtained for the

examples presented in Section 5, it appears that the quality of the lower bound is more critical
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for the computational time of the dichotomic procedure than the quality of the upper bound. As

a consequence, besides a search for more efficient heuristics, improvement of the lower bound for

the problem Min# seems to be a more promising way to solve problems of larger dimensions.

Finally, the aforementioned dichotomic procedure could be easily extended to deal with a

multiobjective version P (prec, excl, si | k, cost) of this problem. In this case, the procedure would

allow to generate a minimal complete set of efficient solutions in the sense of Pareto.
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