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Data-driven decision-making for IT capacity: beyond 
statistical analyses

M. Lutza and X. Boucherb

aTOTAL, Puteaux, France; bDepartment GEO, Université de Lyon, Mines Saint Etienne, Institut FAYOL/UMR EVS, 
Saint-Etienne, France

This paper reports a research work piece developed in collaboration with the 
semiconductor wafer production company: STMicroelectronics. This collaborative research 
programme aimed at implementing statistical methods, so as to improve business decisions 
focusing on capacity planning for information technology. The current paper presents the 
specification, and experimentation of a method dedicated to managing the need to 
integrate rigorously complex contextualisation factors, when developing statistical-based 
Decision Support Systems (DSS). The key challenge is to increase the end-user acceptance and 
success rate for DSS developments. To ensure the successful integration of DSS within the 
user environment, the paper formalises a so-called ‘Contextualisation process’, integrated 
within a larger decision-aid development framework. This Contextualisation process is 
specified with three methodological components, respectively ‘Qualitative 
Contextualisation’, ‘Statistical Modelling and Formalisation’ and ‘User Integration’. This 
approach is applied by STMicroelectronics, to a case study focusing on a project of change 
management for the infrastructure of the Information System. Based on the demonstration of 
the case study results, the added-value of the Contextualisation process are discussed and 
further perspectives for applied research in DSS are drawn.

1. Introduction

This paper presents some results of applied research in the field of Decision Support Systems 
(DSS) applied to Information Systems (ISs), developed in collaboration with a semiconductor 
manufacturing plant by the company STMicroelectronics.1 The overall objective of the 
research work was to define a decision-aid process, aimed at better managing the coupling 
between the industrial manufacturing system on the one side and the Information 
Technology (IT) infrastructure on the other side. This problem of coupling between industrial 
and information processes is particularly important when managing the frequent changes 
affecting manufacturing plants in the microelectronics industry (Petruzzi & Garavelli, 2007). 
In such industrial environments, ISs highly contribute to the efficiency of industrial produc-
tion (Barkia, Boucher, Le Riche, Beaune, & Girard, 2013; Cardinali, 1992; Gowan and Mathieu, 
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Gowan & Mathieu, 1996; Izza, 2009; Jardim-Goncalves, Grilo, & Steiger-Garcao, 2006), notably 
for wafer production (hong, Lim, Ceong, & May, 2012; Izza, Vincent, & Burlat, 2008; Leachman 
& hodges, 1996). The performance of ISs depends on the good or bad adaptation of both 
IT architecture and infrastructure (earl, 1989). The responsibility of designing and dimen-
sioning these IT architectures and infrastructure relies on decision-makers, called IT managers 
in the rest of the paper. Such decisions are in the field of IT capacity planning, as mentioned 
in ITIL best practices (Klosterboer, 2011): IT managers are in charge of ensuring that ISs 
provide enough functional capabilities and quantitative capacities to support current and 
future industrial activities of wafer production. at STMicroelectronics, IT Managers constantly 
check that the present and future workloads of IT resources remain below the maximal 
available capacities.

In this perspective, the aim of the research was to try and develop a statistical-oriented 
approach, to provide IT managers with some decision-aid support in anticipating correctly 
the need for capacity, and then in taking the right decisions in IT technology dimensioning. 
More precisely, this paper tackles the issue of managing the contextualisation of the DSS to 
be developed. We underline that the pure statistical development, which is at the heart of 
the decision-aid, has been previously published in (Lutz, Boucher, & Roustant, 2012) then 
(Lutz, Boucher, & Roustant, 2013). Thus, the objective of the current paper is not to revisit 
the building and validation of the statistical model, but to integrate these results within their 
operational decision-aid context. Based on existing theories and frameworks in decision 
sciences, a comprehensive decision-aid process is proposed, integrating a specific contex-
tualisation process formalised in this paper, with three key steps: first, the general context 
of the decision and the decision problem are analysed then formalised; the second stage 
consists of providing quantitative answers to the decision problem, based on the statistical 
model mentioned above; the third stage integrates the statistical results in a specific user-ori-
ented decision-aid analysis, with the objective of providing the decision-makers with reliable, 
contextualised and adapted answers to their decisional needs. Finally, the last goal of the 
paper is also to demonstrate the validity of the decision-aid results developed in the context 
of STMicroelectronics application and to analyse the reactions of the final users.

The rest of this article is organised as follows. Section 2 gives more details about the 
scientific literature concerning the utilisation of statistical methods for IT capacity planning. 
We also underline the added-value of a general framework for decision-aid proposed by 
Tsoukiàs (2007). Section 3 presents the methodological contributions of the paper: the  
specification of a contextualisation process for the development and implementation of 
DSS dedicated to IT capacity planning, based on the articulation between qualitative and 
quantitative modelling approaches. This contextualisation framework is then applied to a 
specific case study at STMicroelectronics. The three key steps of the process are applied in 
Section 4, and the final results of the statistical developments are demonstrated. The  
added-value of the overall case study is discussed in Section 4.5. The final conclusions and 
perspectives highlight broader lessons learned for applied research in DSS.

2. Using statistical methods for IT capacity planning:

towards a comprehensive decision-aid process

Information Technologies management are complex and multidimensional subjects requir-
ing different kinds of decision supports (Bozdogan & zincir-heywood, 2012): some key 
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examples can be found with the management of IS failures for (Bozdogan, zincir-heywood, 
& Gokcen, 2013), the management of IT change projects with alkuraiji, Liu, oderanti, 
annansingh, and Pan (2014), or innovation decision supports developed by Shrestha,  
Cater-Steel, and Toleman (2016). Capacity management (Bauer, 2015) is a specific area of IT 
management, which is more specifically based on the use of quantitative approach, called 
capacity planning approaches. This decision-making domain addresses the design of IT 
infrastructures (nelson, 2002) which can be further refined into more specific issues: infra-
structure change management planning (Rebouças, Sauve, Moura, Bartolini, & Trastour, 
2007), alignment of IT infrastructure on business needs (Bartolini, Stefanelli, & Tortonesi, 
2011), or estimation of the optimal capacity required (Kim & Kim, 2014). Recent trends in IT 
capacity planning take into account the new features of cloud infrastructures (Ghosh, Longo, 
Xia, naik, & Trivedi, 2014). Throughout these general references, various types of techniques 
are used, depending on the precise context: clustering approaches, simulation, optimisation 
algorithms, etc. In coherence with the orientations developed at STMicroelectronics, the 
following section puts more specifically the focus on data-driven models for capacity 
planning.

2.1. The diversity of data-driven IT capacity planning models

Quantitative IT capacity studies are more and more grounded on data analysis methods 
(allspaw, 2008; Bartolini et al., 2011; Domanski, 1999; Gunther, 2007; Padonou, Roustant, & 
Lutz, 2015). Indeed, data-driven approaches are particularly well-adapted to manage com-
plex systems where planning time is limited (ahituv & Igbaria, 1988; Gunther, 2007). To 
provide an overview of the multiple data-driven IT capacity planning models, which can be 
found in the dedicated literature, we propose a classification with two dimensions.

Firstly (dimension 1), the objectives of the statistical models can differ. Mainly, two distinct 
purposes can be observed:

•  Models dedicated to IT systems performance management. Their goal is to analyse the
system’s response times, queuing phenomenon, potential bottlenecks, etc.

•  Models dedicated to IT systems capacity management. here, the objective is to understand
and anticipate the use of the IT system components: CPU and memory used, database 
sizes, etc.

Secondly (dimension 2), the methods used to build the statistical models can vary:

•  Models constituted with classic statistical approaches: usual methods, such as regression 
or time series modelling are implemented through a human-based and manual process 
(selected data choice, ‘handcrafted’ analysis, etc.).

•  Models designed through algorithmic approaches: automated methods are developed
for large-scale analysis of big data-sets.

The mindsets behind both approaches are very different. The first one puts the focus on 
each variable of the model, on the meanings of the statistical coefficients, etc.: the model 
should be linked to a ‘physical understanding’ of the functioning of the system. on the 
contrary, algorithmic approaches admit a black-box view of the system, rather interested in 
discovering general patterns in the data available.
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as summarised in Table 1, dimensions 1 and 2 are used to classify the literature dedicated 
to IT capacity planning. For instance, Kelly (2005) uses a linear regression model to explain 
the performance of a software application, using the volumes of transaction calls as predic-
tors. aguilera, Mogul, Wiener, Reynolds, and Muthitacharoen (2003) use generic data-mining 
algorithms to discover causal paths in complex IT architecture, useful for performance 
improvements. These distinctions apply to capacity management too: ahituv and Igbaria 
(1988) use linear regression modelling to anticipate IT components’ activities, Browning 
(1994) uses time series theory, whereas Jiang, Chen, and yoshihira (2008) develop automated 
invariant algorithms usable for IT capacity planning.

2.2. Limits in the operationalisation of statistical models

Despite the large range of data analysis approaches for IT capacity planning, some clear 
limitations on the operational implementations in professional fields can be raised (Bartolini 
et al., 2011). First of all, it should be mentioned that, when our research started at 
STMicroelectronics, data analysis was almost unused in the company to manage IT capacity. 
Indeed, data were collected, sometimes visualised, but neither analysed with statistical nor 
algorithmic approaches. Banerjee and Igbaria have already pinpointed such a lack of analysis 
in professional practices in 1993. Moreover, in spite of a lot of industrial frameworks designed 
to support the management of IT systems (22 major frameworks according to alford et al., 
2006), no concrete guidelines for data analysis implementation are provided for profession-
als, even if their use is recommended. This limitation is widely discussed in Lutz et al. (2013). 
Consequently, it can be said that analysing data is never a straightforward task for IT man-
agers. Klosterboer (2011) summarises this challenge: ‘you may not be able to make a direct 
correlation between the business trends and your IT capacity, but you should at least look 
at whatever your organisation publishes and see how it compares your component and 
service trends’. Moreover, constructing a model is not sufficient. as mentioned by Bartolini 
et al. (2011), investigating the human component in decision-making is an important step. 
This means being able to perform ‘what-if scenario analysis’, useful for managers. Thus, we 
highlight below two major challenges.

First, Table 1 illustrates that the data-focused literature does not propose any general 
framework to design an IT capacity model (first challenge). Rather, a collection of tools and 
heterogeneous solutions are found. all are idiosyncratically-designed, according to specific 
application backgrounds. Such local contexts wholly influence models’ forms and variables. 
This is fairly comprehensible. Indeed, regarding the complexity of today’s IT systems and 
the tremendous diversity of management situations, models as well as methods and appli-
cations are necessarily diversified and overabundant. Consequently, IT operations managers 

Table 1. Data analysis IT capacity planning literature: suggested classification and selected references.

Dimension 1 Objective

Performance Capacity

Dimension 2 Methods Classic statistics Kelly (2005) Allspaw (2008); Ahituv and Igbaria 
(1988); Browning (1994); 
Gunther (2007); Jain (1991)

Algorithms Aguilera et al. (2003); Jiang et al. 
(2008)

Jiang et al. (2008)
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are confronted with the following question: when conducting capacity planning studies, 
what kind of model and method should we select? answering this question strongly depends 
on the internal ability to understand the application background of a data-driven tool. Before 
jumping into data manipulations, managers should thoroughly understand, clarify and, if 
necessary formalise, what precise decision-making aid is expected. Understanding the deci-
sional context is a crucial preliminary exercise, essential in the process of designing a statis-
tical IT capacity planning model.

a second challenge can be raised. Table 1 pinpoints many types of models. even if we 
assume that the operation managers are able to select a proper form and build a relevant 
model, is it satisfactory enough? Beyond the development of a validated statistical model, 
comes a further question concerning the usability of the model, within its operational deci-
sion-making context. Generating a good model is of course a good and necessary start. But 
this first result, mainly based on statistical skills, remains insufficient: how to convert the 
mathematical model into an operational item, fully usable to help making in situ decisions? 
This final utilisation of a model also depends on a broad understanding of the decisional 
environment and processes, including the awareness of the preliminary application context. 
Complementary competences and methods, not focusing on statistical modelling, are 
required.

To deal with both challenges, it appears necessary to step back from the data-analysis 
work and analyse the whole decision-aid need. Thus, a comprehensive and fully operational 
IT capacity decision-aid process is required. This process should not only be focused on the 
statistical modelling phase. Rather, it should embrace all the stages of the decision-making, 
including the analysis of the application context and the usability of the mathematical model. 
This issue provides the scientific problematic of this paper: how could we conceptualise a 
contextualisation method, which would be integrated within a comprehensive and fully 
operational IT capacity decision-aid process, based on data analysis?

2.3. Towards a contextualisation process for decision-aid development

It has been explained that the question of statistical modelling is not sufficient for effective 
and concrete decision-making. a more comprehensive process is required, including all the 
stages of the decision: application context analysis, utilisation of the model. even if a lot of 
scientific literature is available on decision-aid development, very few methodologies really 
integrate both the mathematical and quantitative modelling required for a concrete DSS 
development and the qualitative analysis on the collective rationalities and action logics, as 
required by Roy (1993, 2006), Le Moigne in alcatras, Gianfaldoni, and Paché (2004) and 
Bouyssou, Dubois, Pirlot, and Prade (2006). Most of the approaches only deal with a partial 
vision. Tsoukiàs in Bouyssou, Dubois, et al. (2006), Bouyssou, Marchant, Pirlot, Tsoukiàs, and 
Vincke (2006) and Tsoukiàs (2007) proposes one of the rare methodologies for such integra-
tion. his work formalises a valuable theoretical framework derived from the basic assumption 
that a decision is based on an evaluation model. This model is linked to the problems and 
preferences of the people involved in the decision-making. Understanding these problems 
and preferences is an integral part of the decision-aid. Four artefacts can be used to analyse 
and sequence the decision-aid:
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•  Representation of the problem situation [P2], which should help to clarify the position
of the decision-makers and the role of the analyst in the decision process. It can be
represented with the following items:
○  People involved [A].
○  objects, challenges, stakes of all people in the decision process [o].
○  Resources brought by people to commit to the objects (knowledge, financial

resources, decision-making power…) [S].
•  Problem formulation [τ]: based on the representation of the problem situation, a restricted 

description of the studied reality is expressed, in order to reduce it to a clearly defined
decision problem. a decision-aid method could then be applied to this circumscribed
piece of reality. Tsoukiàs proposes to describe this artefact as follows:

○  Potential alternatives (actions) to be considered in the context of the representa-
tion of the problem situation [A].

○  Perspectives under which the potential actions should be observed, analysed,
compared [V].

○  Decision problem statement, expected ways in order to evaluate the potential
alternatives (choice, sorting, description…) [Π].

When approved by the different stakeholders, it means that the context of the decision 
is clarified. It helps switching from a fuzzy understanding to a rigorous description of the 
decision problem. a formal decision-aid can therefore be applied.

•  Evaluation model [M], which is the usual acceptation of a decision-aid model, as found in 
many scientific approaches: operations research, game theory, artificial intelligence… 
and of course, statistics. It can be described with the following:
○  alternatives to which the evaluation model will be applied [A].
○  Dimensions (attributes) to consider the alternatives [D].
○  Scales of each item of the various dimensions considered [e].
○  Criteria to evaluate the alternatives, in order to take into account the preferences 

of the decision-maker [h].
○  Uncertainty associated with the available information, related to the dimensions 

of the criteria to evaluate [U].
○  Procedure to aggregate the preferences, measures and uncertainties, in order to

obtain synthetic information about the elements associated with the alternatives [R].
•  Final recommendation: the evaluation model will lead to a result [Θ] and the final recom-

mendation is its translation into natural language. This is a return to reality, providing
an operational answer for decision-aid, consistent with the organisational context of
the decision problem and usable by managers.

By working with the decision-makers and the people that may provide valuable input to 
decisions, the analyst constructs a common representation of all artefacts of the decisional 
process. This analyst, in charge of supervising the development of the final decision-aid 
required, could be an internal or external consultant, a project manager, a researcher ...

This theoretical framework proposed by Tsoukias provides a general and clear description 
of the different stages of any decision process and can be potentially applied to analyse 
many situations. The objective of this paper is to fill the gap between this theoretical proposal 
and the operational context of DSS development, specifically for the field of IT capacity 
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planning decisions. In this perspective, Section 3 develops several methodological  
contributions articulated with Tsoukias’s framework. Section 4 will illustrate an application 
to support concrete IT capacity planning decisions at STMicroelectronics.

3. Methodological contributions of the paper

Considering Tsoukias’ framework as a generic basis to develop decision-aid systems, the 
objective of this paper is to develop an additional methodological layer, dedicated to support 
the operational application of the framework within the context of real industrial IT capacity 
planning situations. as synthesised in Figure 1 we call this new methodological layer the 
‘Contextualisation Process’, constituted by three methodological components ‘Qualitative 
contextualisation (a)’, ‘Statistical modelling and formalisation (B)’ and ‘User integration (C)’. 
This approach aims at answering the key challenges highlighted in Section 2.2, for the field 
of IT capacity planning.

The key components of this contextualisation process are introduced below. They are 
further developed in Section 4, illustrated by a case study (Figure 2).

3.1. Qualitative contextualisation

The ‘Qualitative contextualisation’ step consists of using a qualitative case study building 
procedure, in order to generate the representation of the problem situation [P] and the 
problem formulation [τ]. The objective is to avoid risks, arising when developing statistical 
tools, of jumping too fast to mathematical approaches: this usual mistake leads to designing 
mathematical models fitting to the mathematical analyst’s habits and preferences, rather 
than meeting concrete managerial decision-aid needs. To draw a clear and concrete defini-
tion of [P] and [τ], the method uses a qualitative case study building procedure. according 
to Thietart et al. (2007) and Coutelle (2005), case study methodologies are well-adapted to 
understanding a social phenomenon (decisions about IT capacity planning) in its natural 

Figure 1. Overview of the decision-aid process.
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environment (a microchip production plant). Referring to Thietart et al. (2007), Coutelle 
(2005) and Wacheux (1996), a qualitative procedure has been structured into three steps:

•  Step 1: Raw material collection. Interviews with people involved in the decision process 
(decision-makers, people that may provide valuable inputs to decisions) are conducted 
by the analyst. a semi-structured interview method is used, to favour discussion without 
being too directive. Information collection is based on an interview guide, based on
generic structure, designed to collect precise expressions of the problem situation and 
the problem formulation. Interviews are recorded and transcribed in verbatim reports. 
During the interviews, additional materials such as emails or meeting minutes may be 
collected as well.

•  Step 2: Information analysis. all interviewees may have different viewpoints about the
decision problem. a whole picture of the decisional situation, articulating these mul-
tiple point of views, has to be drawn up by organising and structuring all information
collected. The main themes raised during the interviews are identified, categorised, and 
the categories are linked to Tsoukiàs’ theory and formalisms. This analysis, often named 
‘reflexive’ analysis (Lejeune, 2010) helps in extracting and synthesising a proposal of
collective meaning of the decisional situation. at the end of this step, a full synthesis
of the case studied can be proposed, including a complete description of [P] and [τ].

•  Step 3: Validation. a common acknowledgement of the study has to be obtained
amongst all the interviewees. here again the approach is qualitative: through a vali-
dation workshop, the synthesis is communicated and discussed, potentially updated
and finally approved by decision-makers. This final output should describe as well as
possible the reality perceived by all people implicated in the decision-making.

3.2. Statistical modelling and formalisation

Based on the IT capacity problem formulation resulting from the qualitative contextualis-
ation, this second component of the contextualisation process consists of developing a 
usable quantitative model answering the requirements of the problem formulation. a 
smooth transition between the problem formulation [τ] and the evaluation model [M] should 
be ensured. Building [M] is not just a matter of mathematical and modelling skills. It is nec-
essary to have a deep understanding of the context of the data analysis to be performed 
and to build an appropriate evaluation model. [M] is built upon two types of contextualised 
information: (i) large amounts of data concerning the functioning of IT resources and 

Figure 2. Objectives of the qualitative contextualisation step.
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processes which are part of the case study IS; (ii) specific expertise of the actors (called 
‘experts’) which is integrated within the quantitative modelling procedure (Figure 3).

Confronted with a vast amount of available data and variables, a structured mod-
elling procedure is required, to efficiently converge towards useful and practical 
models. a bottom-up macroscopic process is suggested. It starts from the predicted 
IT resources and focuses only on the main influencing variables. Two modelling 
sequences are presented to find out these influencing variables: exploration and 
explanation. These sequences are divided into several modelling steps, mixing qual-
itative and quantitative work. Qualitative work involves the context experts, through 
task groups. according to the sequence, quantitative work uses exploratory statistics 
or forecasting methods.

Sequence 1: exploration

Step 1.1. Initialisation

Data related to a specific variable, for which a capacity model has to be built, are extracted, 
eventually corrected, and visualised.

Step 1.2. Map of the IT application layer

IT applications and sets of software, which are supported by the IT resources considered, are 
listed and mapped with the help of the experts.

Step 1.3. expressing the variability of the application layer

The assumption here is that, for an IT capacity problem, the application activity is the princi-
pal forecaster for the IT resource activity. as application layers might encompass hundreds of 
interrelated variables, it is crucial to have a synthetic overview of this activity, to grasp the main 
sources of variability and summarise relationships between application variables. Multivariate 
analyses are used for this purpose.

Sequence 2: explanation

Step 2.1. Finding explanatory business-related variables

The outcome of step 1.3 is the construction of synthetic variables, expressing the application 
layer variability (usually called ‘components’ or ‘latent variables’, according to the kind of multi-
variate analyses used). Such synthetic variables can be considered as underlying unobserved 
constructs, consequences of the plant’s industrial activities. These synthetic variables are dis-
cussed and interpreted with the experts. When potential explanations are found, measurable 
explanatory variables (via the capacity management IS or mined in the production activity 
databases) should be connected. Such variables should be as much as possible foreseeable, as 
well as understood by production managers.

Figure 3. Objectives of the statistical modelling and formalisation step.
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Step 2.2. Predictive modelling

The identified variables (IT resources and measurable explanatory variables) are quantitatively 
connected, through a statistical model.

Step 2.3. Validation and improvement

The model is presented to the experts and confirmed. Possible improvements are discussed.

For the interested reader, a detailed formalisation and application of this statistical mod-
elling approach has been presented in Lutz et al. (2012).

3.3. User integration

a final transition has to be achieved between [M] and [Θ] to ensure the end of the contex-
tualisation process. even when a model is properly built, its use for decision-making is rarely 
straightforward. What should be done with the model? analyse its parameters? Use it for 
simulations? These answers can only be provided with a deep understanding of the problem 
formulation [τ]. The analyst should carefully favour this linkage and ensure that any result 
coming from the use of a quantitative model effectively fits a decisional issue raised during 
the contextualisation work. The approach developed to correctly manage the integration 
of use will be developed in the case study of Section 4 (Figure 4).

as aforementioned, using numerical methods to make decisions related to IT capacity 
planning is a challenging task. Without any surprise, STMicroelectronics IT managers 
were struggling building such quantified approaches to support their daily activities. 
That is why the presented research work was initiated. our objective was therefore to 
build an operational but scientific decision-aid, thanks to the rigorous contextualisation 
process described above, designed specifically for STMicroelectronics purpose. Section 
4 demonstrates the application and results of this methodological approach, to give 
more details on the three components a, B, C and show their concrete application for a 
microelectronics industry IS. More general lessons learned for DSS applied research are 
also discussed.

4. The contextualisation process applied to an industrial IS case study

Based on the STMicroelectronics case study, this section illustrates the concrete application 
of the three components of the contextualisation process: ‘Qualitative contextualisation (a)’, 
‘Statistical Modelling and Formalisation (B)’ and, finally, ‘User integration (C)’.

Figure 4. Objectives of the user integration step.
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4.1. Introduction: industrial research background

STMicroelectronics microchip plants are highly automated and most manufacturing oper-
ations are computer controlled or aided. Consequently, IT capacity failures mean production 
downtime or loss of efficiency. It is, thus, fundamental to plan carefully IT system capacities 
and the criticality of the ISs emphasises the essential decisional challenges for 
STMicroelectronics IT managers: how can they ensure an adequate future capacity of the 
information technologies, able to provide continuous support for changing manufacturing 
activity? In Lutz et al. (2012), it was explained that sizing and IT investment planning were 
performed on the basis of qualitative estimates provided by IT experts. Despite a clear inter-
nal demand to base these judgements on rigorous quantitative models, STMicroelectronics 
was not able to organise a complete quantitative study.

The case study focuses on an earlier major STMicroelectronics project affecting the IS:  
a major change in the production Manufacturing execution System (MeS) IT infrastructure. 
Many levels of the IT architecture were impacted: software upgrades, new oracle database 
versions, change of the physical servers. This project was highly business-critical. Indeed, as 
the MeS system represents the core of the industrial IS, any poor definition of the new infra-
structure could have destabilised the manufacturing processes. The project was complex 
and long term: it was completed in a period of around two years and involved several busi-
ness and IT teams, with sometimes conflicting interests. Many decision problems occurred 
successively. as proposed in this paper, applying the suggested decision-aid process will 
help to clarify this complicated decisional context.

Statistical formalisation is part of the decision-aid process proposed in this paper. This 
statistical study on IT capacity analysis has been performed on a delimited subsystem of the 
overall semiconductor manufacturing IS: this subsystem focuses on the MeS. The MeS is the 
core of the production activity. It supports two major applications: one used to manage all 
the business rules (BR) applied during the production processes (more than 500 BRs, which 
could be considered as sub-programmes) and one used to manage the maintenance of 
production equipment. This functional layer is supported by a multilayer hardware infra-
structure, including application and database servers. at the upper level of the model, the 
business activity variables commonly used are the number of moves (corresponding to the 
transition of an operation of a production process to another) and the number of wafer-outs 
(corresponding to the number of production processes completed).

4.2. Qualitative contextualisation phase, applied to STMicroelectronics case study

The first stage consists of analysing qualitatively the decision processes, throughout the IS 
project mentioned, using a set of expert interviews. To take into account the a posteriori 
dimension of the study (the decision processes are studied for a ‘past’ project of the com-
pany), the interview guide has been slightly adapted for the raw material collection (quali-
tative case study/step 1). To rediscover past decision processes, nutt’s recommendations 
(nutt, 1993, 1998) were followed. It consists of a systematic use of questions such as ‘what 
happened before/next?’. Six people were interviewed: this was as much as was necessary to 
saturate the case analysis. The collected material was then manually analysed (qualitative 
case study/step 2). We discovered that the project was broken down into a succession of 
interdependent decisions. These different stages of the project were structured through a 
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thematic arborescence. Consequently, it was possible to provide a chronological view of the 
multiple decision purposes. This thematic arborescence was then categorised, with the aim 
of describing the multiple representations of problem situations and problem formulations. 
This work is summarised in Figure 5.

after this analysis, a final workshop was organised with relevant people to validate the 
analysis (qualitative case study step 3). When done, a full description of the decisional process 
was clearly described and made available for quantitative decision-aiding. The case study 
constitution helped in understanding with accuracy all the different steps of the whole 
decision process. The MeS project was defined by two principal phases:

•  Project initiation: to identify the need of the project, define a rough appropriate technical
solution and the project management strategy.

•  Project realisation: to define in detail the IT solution, implement and test it, then perform 
the move to production.

Several specific decision problems were identified within those phases:

•  Project initiation decision problems:
○  Identification of distinct risks of IT capacity failure.
○  Definition of a change scenario for the IT architecture and infrastructure: software,

middleware and hardware upgrades.
○  Financial support, procurement and legal concerns.
○  Project realisation decision problem:

○  Project management (development, testing, training, release plan, etc.).
○  hardware set-up, installation, migration scenarios.
○  Move to production.

all of these problems occurred throughout the two-year MeS project. of course, each of 
these steps involves distinct decisional concerns and not all of them concern IT capacity nor 
require statistical approaches. nevertheless, all were discussed by task groups. as a result, 
the conclusion underlined that the most challenging ones were ‘Identification of any risk of 
IT capacity failure’ and ‘Definition of a change scenario for the IT architecture and 

Figure 5. Analysis of the raw material collected, applied to a retrospective case study.
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infrastructure’, especially to size properly the future MeS hardware servers (memory, CPU 
…). not surprisingly, they are both related to IT capacity planning.

4.2.1. Representation of the problem situation [P]

each of the decision problems identified above could lead to a representation of the problem 
situation, then a deeper formalisation. In this paper, we will restrict the scientific formalisation 
and contribution to the decision situation ‘Definition of a change scenario for the IT archi-
tecture and infrastructure’, by showing how a quantitative decision-aid can be provided to 
size the CPU of the future MeS servers. however, let us mention that numerical solutions 
were also proposed for ‘Identification of any risk of IT capacity failure’: an interested reader 
may refer to Padonou et al. (2015).

a more precise formal description of the contextualisation artefacts for ‘Definition of a 
change scenario for the IT architecture and infrastructure’ has to be provided. The qualitative 
case study presents an informal communication process between different stakeholders, in 
order to size the IT components. Managers of the IT architecture team are responsible for 
the decision. They work with technical experts of their team (oracle, UnIX, hardware experts 
…), but also with close interaction with the MeS application team leaders, also supported 
by their own experts. each team brings its own resources, but also its own stakes. For instance, 
the application team will be focused on application performance, whereas the IT architecture 
team will be focused on maintaining the global consistency of the whole IT architecture 
throughout all the factory (for instance, the hardware components that will guarantee the 
best response times of MeS application are not necessarily the best choices to ensure the 
overall consistency and performance of the entire industrial IS). Table 2 provides an overview 
of the different items of the problem situation for the decisional step ‘Definition of a change 
scenario for the IT architecture and infrastructure’.

Two resources should be noticed: the IT capacity management database of the IT  
architecture team and the business application databases of the MeS application team. They 
correspond to the two kinds of data sources presented and used in Lutz et al. (2012). The 
data analyses presented in this paper come from the same sources.

Table 2.  ‘Definition of a change scenario for the IT architecture and infrastructure’: problem situation 
description.

[A] People involved Managers of the IT 
architecture team

Technical experts of 
the IT architecture 
team

MES application team 
leaders

MES application 
team technical 
experts

[O] Objects, challenges Ensure a global IT architecture, throughout 
the factory, to furnish an IT service fulfilling 
present and future industrial needs

Ensure an MES application architecture, to 
furnish an IT service fulfilling present and 
future industrial needs

[S] Resources Final decision-maker 
recognised by the 
company;

Technical knowledge 
(Oracle, UNIX, 
hardware…);

Technical expert 
support

Technical knowledge 
(application);

Business application 
databasesTechnical expert 

support;
Relationships with 

applications team 
leaders;

IT capacity 
management 
database

IT capacity 
management 
database
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4.2.2. Problem formulation [τ]

In the scope of this paper, we consider the following IT capacity decision: sizing the CPU of 
the future MeS servers. The underlying decision problem can be better formalised thanks 
to the qualitative case study, which helps to describe the different components of Tsoukiàs’ 
problem formulation.

[A] are the potential alternatives to be considered. Basically, it relies on the following 
question: given a horizon h, will it be necessary or not to upgrade the MeS servers and, if 
yes, to what extent? a proper answer ensures an adequate sizing, to avoid any lack of capacity 
(IT service disruption), but also overcapacity (unnecessary extra cost, technological risk due 
to too recent IT components …).

To observe, analyse and compare the potential alternatives [V], the qualitative case study 
helps showing that managers are trying to evaluate an ‘increasing factor’ of the need in IT 
resources, at the horizon h. Let us denote it I

h
. In absolute terms, I

h
 can vary from one to the 

infinite (steady to unlimited IT resource need). In concrete terms, I
h
 is defined as the ratio of:

•  The estimate of the IT resource need, when the evaluation is performed (Ŷ
0
).

•  The estimate of the IT resource need at the horizon h (Ŷ
h
).

These estimates are expected to be provided by a forecasting model designed to predict 
Y over time t (Ŷ

t
), according to explanatory variables X

i,t
 (i ranged from 1 to n), where X

i,t
 has 

to depict the business/industrial activity of the plant.
To summarise, [V] is evaluated according to:

with Ŷ
t
= f (X

i,t
) and where X

i,t
 should not be trivial and understood by STMicroelectronics’ 

top management, to ease communication between IT operational managers (IT architecture 
team, application teams) and high-level executives. Consequently, IT decisions could be 
taken on the basis of strategic business-focused scenarios thanks to variables understood 
all over the company.

Through the qualitative case study, we discovered evidence illustrating the difficulty of 
evaluating I

h
. During the MeS project, a 2.5-fold increase estimation was provided by IT 

architecture team experts, without using any formal method: ‘The factor 2.5 was proposed 
a bit haphazardly, we did not use sophisticated tools nor existing models.’3 as a consequence, 
many people lacked confidence in this informal proposition, not founded on a scientific or 
numerical method. as mentioned by an application team leader: ‘he said “2.5”, but it seemed 
to be pulled out of a hat’. Such unease, which did not facilitate the negotiation between the 
different stakeholders, must be deplored.

Thus, to overcome this difficulty, the decision problem statement [Π] can be expressed 
as follows: how to constitute a forecasting model to quantify I

h
, e.g. to predict the increase in the 

need for IT resources, according to high-level business variables? This final decisional issue does 
not only deal with the creation of a forecasting model including STMicroeletronics-specific 
variables, but also with the use of this model to provide a final output as expected by IT 
management (the I

h
 estimate). This is a very local decision problem statement, never  

encountered in such a form in the IT capacity planning literature. This emphasises the two 
added-values of our work: (1) bring an ad hoc support to STMicroelectronics operational 

Ih =
Ŷh

Ŷ
0
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managers, directly useful in their daily activities; (2) propose a new contribution to the IT 
capacity planning literature.

4.3. Statistical formalisation phase

4.3.1. Statistical model

as mentioned in the definition of the problem statement, a forecasting model is expected. 
Let us call it F

t
. This model will later be embedded in an evaluation model that will allow to 

quantify I
h
, by furnishing estimates for Ŷ

0
 and Ŷh at t = 0 and t = h. The modelling process that 

was used to build F
t
 model has been fully presented in Lutz et al. (2012). That is why, for the 

sake of brevity, this part of our work will not be developed in the scope of this paper. however 
please note that the statistical modelling process exactly applies the procedure synthesised 
in Section 3.2: two main sequences, exploratory and explanatory, based upon qualitative 
(experts’ knowledge) and quantitative analyses (statistical methods), to take the best  
advantage possible from the mass of data stored in STMicroelectronics manufacturing IS (IT 
capacity management and business applications databases, as mentioned in the  
representation of the problem situation).

F
t
 is different from the model presented in Lutz et al. (2012), because it fits to a different 

purpose. Indeed, Lutz et al. (2012) introduced a model to describe the day-to-day activity 
of the MeS CPU. This model is not adapted to a mid-term forecast as required for a two-year 
long project, such as the MeS upgrade described through the qualitative case study:

•  A daily observation is too microscopic and introduces the modelling of pointless temporal
phenomena (weekend dummy variables, aR(1) residual process).

•  Some variables (number of production lots prepared, clogging abstract variables) are not 

meaningful to describe mid-term scenarios understood by top-level management, as
required by the qualitative case study description.

Consequently, a complementary model was built to overcome these weaknesses. The 
application of the modelling process proposed in Lutz et al. (2012) for the specific purpose 
of the MeS project results in the simpler following model:

where:

•  t is the time unit, given as a week aggregation;
•  Y

t
 is the MeS server CPU consumed per time unit in seconds;

•  X
1,t

 is the average work in progress (WIP) of the plant per week. This gives an estimate
of the global workload of the plant: processed and pending microelectronic wafers
throughout the manufacturing system;

•  X
2,t

 is the effective production activity within the plant, given in average number of
moves per week: a move is a production operation;

•  X
3,t

 is the percentage of automation of the production process (most production oper-
ations can indeed be performed either in a manual or automated way);

•  ε
t
 are the F

t
 residuals, independent and identically distributed (i.i.d.) according to a law 

n(0, σ²).

F
t
:Y

t
= �

1
X
1,t
+ �

2
X
2,t
+ �

3
X
3,t
+ �

t
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This linear model is computed by least-square estimation through a 26-week observation 
period. It is characterised by a good adjusted-R² and meets all the hypothesis of the linear 
model. It is positively validated by cross-validation (see Lutz et al., 2012, for more details) 
and can therefore be used with confidence for forecasting. The estimated point model is 
given by the formula:

ε
t
 i.i.d. according to n(0, 20,958.52²).

We can see that both increases in terms of WIP and move increase the CPU consumption. 
on the contrary, using the automated processes decrease the CPU activity: this is because 
another hardware server is required for automated tasks.

Model real data, predicted values and prediction intervals are plotted in Figure 6.
all real data are contained in the prediction intervals. This is consistent: with a 95% con-

fidence level and for 26 observations, a maximum of one Y
t
 value could be expected outside 

the prediction intervals. Thus, the model approaches fairly well the MeS system’s real 
behaviour.

In a further step, this statistical model is still required to be embedded in an evaluation 
model [M], as required by Toukiàs’ method. Indeed, the statistical model itself does not 
directly provide the final information expected by IT managers. They do not expect a math-
ematical relationship, but an effective and directly usable answer based on the quantification 
of I

h
.

4.3.2. Evaluation model [M]

Let us show how F
t
 can be used to formalise the final evaluation model [M], specifically 

designed to answer the contextualised decisional problem described above. We recall that 
an evaluation model is given by: M = ‹A, D, e, h, U, R›. as mentioned earlier, the alternatives 
[A] are considered through all possible values of I

h
 (potentially, one to infinite). Indeed, the 

F
t
:Y

t
≈ 14.02X

1,t
+ 183.54X

2,t
−6414.53X

3,t
+ �

t

Figure 6. F
t
: real data, predicted values and prediction intervals.
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sizing of the new physical servers (CPU architecture, number of CPU, number of cores, etc.) 
are selected according to the I

h
 values: the technical considerations that should result from 

I
h
 to the choice of the final server are outside the scope of the evaluation model considered 

within this paper, focused on I
h
 estimate.

The dimensions [D] and their metrics [e] are F
t
 variables, as recalled in Table 3.

[h], the criteria to evaluate [A] depends on the values of [D] at the forecasting horizon h. 
These values express the hypothesis of the decision-maker, regarding a forecasted activity 
of production. at the time of the studied MeS project, the manufacturing management 
anticipated an overall production increase expressed in terms of wafer-outs, by a factor of 
2.25. a wafer-out corresponds to a finished microelectronic wafer that leaves the factory. 
Comparatively to Table 3 variables, it means that an in-process wafer will be taken out of the 
volume of WIP after the completion of several moves (several hundred moves, depending 
on the complexity of the component). The challenge for the IT manager is to link this infor-
mation to the F

t
 variables4: an increase in the number of wafer-outs, could be induced by a 

plant throughput intensification for a steady WIP, but also by more general growth of the 
manufacturing activity intensity, and it also depends on the automation level of the factory. 
Thus, some hypothesis has to be formalised, within forecast scenarios. Based on collaborative 
work with experts (task groups), j scenarios are built; the variations of the variables X j

i,h
 at the 

horizon h are estimated:

•  Optimistic scenario (j  =  O): the anticipated increase is the consequence of a de-bot-
tlenecking of the plant. The global workload is steady, but the effective production
increases. The automated production mode is deployed as expected by manufacturing 
executives (+30 points);

•  Realistic scenario (j = R): the anticipated increase is the consequence of an increase of the 
global workload, coupled to an equivalent increase of the effective production (which 
means the production throughput is kept constant). The automated production mode 
is deployed as expected by manufacturing executives;

•  Pessimistic scenario (j = P): the global workload increases, as much as the effective pro-
duction. In addition, the complexity of the processed components grows (+11% of
moves to produce one wafer) and the automated production mode is not deployed;

•  Implicit scenario (j =  I): it expresses the hypothesis implicitly taken by experts when
I
h
 was estimated during the MeS project: increase of the global workload, coupled to

an equivalent increase of the effective production, without being able to quantify the
consequences of the automated production mode deployment.

Table 4 provides an overview of these scenarios. It describes the variations of X j

i,h
 at the 

horizon h compared to time t = 0.
The uncertainty of this evaluation model has to be taken into account:

Table 3. Formalisation of [M]: dimensions to consider the alternatives of the decision.

Dimensions [D] Metrics [e]

Y
t
: the MES server CPU activity Seconds CPU consumed per week (s/w)

X
1, t

: global workload of the plant WIP per week (wip/w)
X

2, t
: effective production activity Moves per week (mo/w)

X
3, t

: automation of the production process Per cent (%)
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•  Preferences of the decision-makers [h]: using different forecasting scenario is a way to
take the uncertainty into account. no mathematical method is required to handle this
uncertainty. It is supposed that the values of the predictors are known;

•  The uncertainty associated with the available information [U] is directly expressed by F
t
/I

h
:

the decision will be made on the basis of a probabilistic model.

Last but not least, we need the aggregation procedure [R], which will output the relevant 
synthetic information required to make a decision. This procedure is given by using the 
forecasting model F

t
 aforementioned, as follows:

(α
i
 are supposed to be known: �̂

i
 estimations are used).

With these final elements, the model M = ‹A, D, e, h, U, R› is available for use.

4.4. User integration step : result [Φ] and final recommendation

This final step illustrates how [M] can be used to produce a result and an effective final rec-
ommendation, efficient within the operational usage context.

I
h
 is equal in law to the ratio of two normal laws (due to ɛ

h
 and ɛ0). It corresponds to a

Cauchy-like law (see Cedilnik, Košmelj, and Blejec (2004) and Qiao, Wood, Lai, and Luo (2006) 
for more details about this law). however, in the scope of our study, we will not try to evaluate 
the theoretical parameters of this law. The calculation of I

h
 for different values of X j

i,h
 will be 

analysed through simulations. To achieve such a result, the following procedure is applied :

•  At t = 0, the X j

i,0
 industrial activity is depicted with the expert, on the basis of available 

information: X j

i,0
 = {50,000, 2000, 35};

•  Based upon X j

i,0
 and values from Table 4, X j

i,h
 values are calculated (Table 5).

I
h
 density probabilities are evaluated through simulation on the basis of Table 5 values: 

for each scenario, I
h
 is calculated 106 times. The result of this work is presented to the 

Ih =
Ŷh

Ŷ
0

=
�̂
1
X
j

1,h
+ �̂

2
X
j

2,h
+ �̂

3
X
j

3,h
+ �h

�̂
1
X
j

1,0
+ �̂

2
X
j

2,0
+ �̂

3
X
j

3,0
+ �

0

Table 4. Forecast scenarios.

Scenario Variation compared t = 0

j X
j

1,h
X
j

2,h
X
j

3,h

O Steady x 2.25 +30 points
R x 2.25 x 2.25 +30 points
P x 2.25 x 2.5 Steady
I x 2.25 x 2.25 Steady

Table 5. Numerical X
j

i,h
 values used for simulations.

j X
j

1,h
X
j

2,h
X
j

3,h

O 50,000 4500 65
R 112,500 4500 65
P 112,500 5000 35
I 112,500 4500 35
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decision-maker by using a visual representation: a boxplot is used, which enables the display 
of the main characteristics of the distribution, such as median, quartiles and outliers (see for 
instance Correa & González, 2002; for more details). This output is plotted in Figure 7. By 
comparison, the intuitive estimate provided by experts in 2009 is also indicated.

Using this result, the following recommendation could have been provided in 2009 by 
using the proposed evaluation model:

‘Considering a realistic industrial scenario, and based on the first and fourth quartiles of 
the simulation, I

h
 should be within the range [2.31, 2.40].’

This final recommendation was provided as a result of to the application of the full deci-
sion-aid process proposed in this paper and ends the application of the whole process. 
Before moving to a conclusion, let us discuss this achievement.

4.5. Discussion: STMictroelectronics case study and further lessons

The scenarios o and P are too far from the implicit scenario used by experts in 2009 to be 
discussed in detail here. however, they demonstrate the added value of the evaluation model 
proposed, which enables the characterisation of several industrial scenarios to express 
detailed and relevant hypothesis. as a consequence, a thorough study of the considered 
system can be performed and I

h
 can be evaluated with full background knowledge.

The recommendation based on the scenario R suggests that I
h
 is comprised between the 

interval [2.31, 2.40]. In 2009, with an I
h
 value equals to 2.5, experts slightly overestimated 

the factor of increase value. however, one can think that this choice, a little bit higher than 
the median value of the simulation (2.35), would have been a good choice. Indeed, this small 
overestimation protects the new IT system from any unexpected overload of the plant. This 

Figure 7. Visualisation of I
h
 simulation result [Φ].
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means that the simulation would have been a good support for IT experts to justify quan-
titatively their estimates. This would have protected them from the criticisms of their informal 
way of preparing the capacity plans (see above).

nevertheless, this result can be moderated. In 2009, experts tried rather to estimate the 
scenario I. according to the simulation study, I

h
 first and fourth quartiles are, in this case, 

contained in the interval [2.54, 2.63], with values that can grow up to 2.77 for the boxplot 
upper limit. This means that, for the scenario I, experts underestimated the increase factor.

Thus, the estimate provided by experts in 2009 was fairly good, but could have been 
better controlled. Indeed, experts provided a good forecast for the realistic scenario R, 
whereas they thought they were anticipating the implicit scenario I. If IT managers had had 
the simulation results in 2009, they might have built their IT capacity plans in a different 
manner. actually, the realistic scenario implies a success in the deployment of the automated 
production mode, which is not the case of the implicit one. Consequently, if the deployment 
of this new production mode fails for any unforeseen reason, the new MeS servers may 
encounter a lack of capacity and the production activity may be jeopardised. hence, the 
interest of using a quantitative approach for decision-making is fully proven: it helps formal-
ising and challenging the experts’ intuitive propositions and, thus, provides better and more 
reliable risk management tools for IT decision-makers.

But this case study can also bring more general feedback concerning the deployment of 
DSS within such industrial companies. The key focus underlined for this paper was the impor-
tance to manage a contextualisation process, making it possible to increase the added-value 
of the DSS development: so, what can we learn on the impact of managing 
contextualisation?

First, it is interesting to note that it is not the statistical model in itself that brings value 
to the experts. Business experts do not really care about the model: working with them to 
build and validate it is a kind of ‘necessary evil’. The real business value of our work was to 
clearly express users’ question [τ] and bring clear answer [Φ].

Given all the current hype around data science and big data, it is important to keep this 
in mind. Statistical or machine learning modelling is often not the big deal, as it requires 
‘only’ high-level technical and scientific skills. Value will only be brought to an organisation 
if such skills are made to serve a valuable business question. This means that data analytics 
in companies are not Kaggle competitions.5 Too much money is spent on ‘Proofs of Concepts’, 
only launched to test the ability to build models with business data. once finished, such 
Proofs of Concepts will be abandoned because they do not meet any clear business concern. 
That is why the key challenge is rarely about creating models. The point is really about asking 
the right questions then exploiting efficiently the developed models, so as to provide an 
accurate and direct answer. That is why we think the proposed decision-aid process could 
be particularly helpful.

a second important discussion deals with the obsolescence of the model. The precision 
and reliability of the I

h
 forecast provided by the model, directly depends on the data used 

to build the forecasting model. an industrial context like STMicroelectronics production 
plant, constantly evolves at the level of technology, product flows, data flows. To maintain 
a real ability to support decision-makers on IT capacity management, the model itself should 
be updated quite systematically. This underlines two important feedbacks and requirements 
for such DSS:
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•  The need to monitor and put under control the quality of the statistical models
implemented, then to develop an automated or semi-automated approach in charge
of systematic updating of the DSS based on data-mining and knowledge extraction;

•  The need to maintain in the company a sufficient level of competencies on data mining 
techniques as well as on the various DSS models implemented industrially, so as to be
able to manage such constant obsolescence risks.

5. Conclusion

In this paper a contextualisation process supporting a comprehensive decision-aid building 
method was specified, dedicated to generate data-driven answers to IT capacity  
management issues. The first phase of the contextualisation process aims at anticipating 
and analysing the expected use of a quantitative decision-aid. The second step specifies a 
way of constructing a quantitative decision-aid model on the basis of this context analysis. 
This quantitative step is based on the assumption that masses of data stored within modern 
manufacturing systems can build useful predictive tools, through data analysis. The third  
ented context of decision-making.

This process was applied to the STMicroelectronics case to confront the decision-aid 
results with the reality, on a past project of IT capacity transformation. The contextualisation 
led to the construction of a forecasting statistical model. at this stage of the whole process, 
the outcome is a statistical model, linking IT resource utilisation to several high-level man-
ufacturing activity-related variables. Through the final step of the process, this model was 
used to implement a final evaluation model, which generates recommendations for deci-
sion-making. This application highlights that the decision-aid process could have brought 
very valuable insights to the past project decisions. This recommendation is fully contextu-
alised: it leads to a final way to generate a decision-aid answer which is fully specific to 
STMicroelectronics’ internal context (the determination of an increase factor, modelled by 
the ratio of two normal laws). The contextualisation phase was the only way to conclude to 
such a fine-tuned decision-aid, which really meets STMicroelectronics managers’ needs.

This positive result on the industrial case study both brings reusable results for applied 
research in DSS and opens new perspectives. First, designed as an additional methodological 
layer to be integrated within a very generic DSS specification method (i.e. the work by 
Tsoukias, afore mentioned), the contextualisation process presented in this paper is available 
and generic enough to be re-used in very different industrial context, when there is a neces-
sity to implement some statistical model. one of the objectives of this research work lies in 
this genericity: the approach aims at providing the pertinent methods to adapt decision-aid 
approaches to very distinct industrial contexts, with the ability to address the special features 
of each context. Within the decision-aid process presented above, the ‘Qualitative contex-
tualization’ phase answers a generic purpose of capturing and structuring the key features 
of an organisational context and the associated decision needs. The quantitative methods 
applied in the subsequent phases (‘Statistical Modelling and Formalisation’, then ‘User 
Integration’) could also be used to fit in a wide panel of contexts; even if alternative quanti-
tative methods could be useful, the overall procedure to integrate the context throughout 
the quantitative decision-aid building process is fully generic. The added-value of this work 
is thus to fill one of the gaps limiting the industrial deployment of data mining techniques: 
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the ability to capture the right user problem and to implement the final decision-aid in a 
very contextualised form, thus increasing the acceptance rate for the end-user.

however, filling this gap is not sufficient. The case study also puts forth another important 
challenge for such industrial applications: the crucial need to manage the obsolescence of 
the knowledge integrated within the statistical models. This confirms important research 
orientations for the scientific community: (i) on the analysis of the deviations and drifts on 
the performance of the statistical models and quality of their answers and (ii) on the technical 
or expertise-based solutions which could support a systematic update of these models, but 
also (iii) on the way to develop statistical models which would avoid too general and exces-
sively complicated models (Bartolini et al., 2011).

Notes

1.  Crolles Production Plant (France), IS architecture Department in charge of the IT infrastructure 
and architecture for the production plant.

2.  Tsoukiàs uses a formal codification to denote the different parts of the decision-making process.
3.  Reported from case study verbatim extracts (translated from French).
4.  of course, a straightforward model between Y

t
 and the number of wafer-outs could be expected. 

Unfortunately, such a model provides poor predictions. as reported from the qualitative case 
study: ‘it is not easy to say if, in the MeS domain, you can observe a correlation coefficient. We 
do not necessarily have all the relevant data, neither the appropriate statistical tools.’

5.  https://www.kaggle.com/ : ‘Kaggle is the world's largest community of data scientists. They
compete with each other to solve complex data science problem’.
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