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Abstract. Among other threats, secure components are subjected to
physical attacks whose aim is to recover the secret information they
store. Most of the work carried out to protect these components gener-
ally consists in developing protections (or countermeasures) taken one by
one. But this “countermeasure-centered” approach drastically decreases
the performance of the chip in terms of power, speed and availability.
In order to overcome this limitation, we propose a complementary ap-
proach: smart dynamic management of the whole set of countermeasures
embedded in the component. Two main specifications for such manage-
ment are required in a real world application (for example, a conditional
access system for Pay-TV): it has to provide capabilities for the chip to
distinguish between attacks and normal use cases (without the help of a
human being and in a robust but versatile way); it also has to be based
on mechanisms which dynamically find a trade-off between security and
performance. In this article, a prototype which enables such security
management is described. The solution is based on a double-processor
architecture: one processor embeds a representative set of countermea-
sures (and mechanisms to define their parameters) and executes the ap-
plication code. The second processor, on the same chip, applies a given
security strategy, but without requesting sensitive data from the first
processor. The chosen strategy is based on fuzzy logic reasoning to en-
able the designer to describe, using a fairly simple formalism, both the
attack paths and the normal use cases. A proof of concept has been pro-
posed for the smart card part of a conditional access for Pay-TV, but it
could easily be fine-tuned for other applications.

Keywords: Hardware tamper resistance, Countermeasures against fault and
side-channel attacks, Architectures and implementations, Architectures for trusted
computing, Security in commercial consumer applications, Application of fuzzy
logic



1 Introduction

Security is a key component for information technologies and communication.
Among the security threats, a very important one is certainly due to vulnerabili-
ties of the integrated circuits that implement cryptographic algorithms to ensure
confidentiality, authentication or data integrity (such as smartcards). With the
access to one of these circuits, the attacker tries either to reconstruct the func-
tionality of the circuit (reverse engineering) or to recover cryptographic materials
when the cryptographic algorithm is known (physical or hardware cryptanaly-

sis). Both threats share a set of techniques. The first one, called side channel

attacks, consists in observing some physical characteristics which are modified
during the circuit’s computation [25, 40, 39, 16, 9]. The second technique, called
fault attacks, consists in disrupting the circuit’s behavior [11, 35, 8, 37, 3, 17]. The
third one consists in getting information about the chip design by direct inspec-
tion of its structure [42]. This inspection may be performed by using any kind
of imaging techniques or by using destructive means such as abrasion, chemical
etching or focused ion beam. Combinaison of those three techniques have also
been proposed [7, 36].

Many protections have therefore been proposed to counter such attacks. Some
protections (hereafter referred to as “sensors”) give information about the state
of the system either by measuring the light, the voltage, the frequency or the
temperature of the chip or by detecting errors during computations. This detec-
tion is generally based on spatial redundancy (i.e. performing the same compu-
tation several times simultaneously), temporal redundancy (i.e. performing the
same computation several times) or information redundancy (i.e. performing a
computation with more bits than required) [30, 31, 12] or ad-hoc sensors [19, 23].
Several mechanisms are also proposed to detect a modification in the software
execution flow. In some cases, an additional hardware block is dedicated to this
task [5, 28]. To render physical attacks more difficult, “noise” has been added,
for example, by using an internal clock, by randomizing the order of the instruc-
tions, by adding dummy operations or by masking the internal computations
that can be predicted by the attacker [34, 14, 2, 10, 15]. Another way to reduce
sensitivity to side channel attacks consists in reducing the correlation between
physical values (such as power consumption or electromagnetic radiation) and
the data processed, for example, by using balanced data encoding and balanced
place and route [22, 33, 38], by using power filters or electromagnetic shields. Fi-
nally, some countermeasures modify the functional behavior of the circuit in case
of attacks. Such “reactions” may consist, for example, in temporarily stopping
the communication with the reader (the card “mutes”) and/or resetting parts of
the running software. The ultimate reaction consists in permanently destroying
(i.e. killing) all the data (including sensitive information) stored in the chip.

In practice, the chip security is achieved by a combination of such counter-
measures. Nowadays, state-of-the-art circuits can protect data for weeks, months
and even years. But the implementation of these countermeasures not only dras-
tically decreases the performance of the chip in terms of power and speed but
also decreases its availability. In order to overcome this limitation, we propose



a complementary approach: implementing complex management (through the
application of a “strategy of security”) of the whole set of countermeasures em-
bedded on a chip. Such a “system-level” approach has already been addressed
in [21]. The authors proposed mechanisms which reconfigure the architecture
of cryptographic hardware blocks embedded in an FPGA in accordance with
performance and energy consumption criteria. Our work addresses this trade-
off but also the trade-off between security and availability. Besides, we consider
that these trade-offs have to be adjusted only with technologies which are regu-
larly available in smart cards (i.e. without the use of hardware reconfiguration
capabilities provided by FPGAs).

In section 2, a representative case study (a conditional access system for Pay-
TV) and the associated expected properties for complex strategy of security are
detailed. In section 3, an example of such a strategy, based on fuzzy logic, is
proposed. In section 4, an innovative hardware/software prototype enabling the
execution of this strategy is described. Finally, in section 5, the results obtained
with this prototype are presented.

2 Case study

In the following sections, an implementation of the chosen representative system,
the smart card part of a conditional access system (hereafter referred to as the
“host system”), is described. Its functional parts and some of its protections are
presented. Finally, by expressing the difficulties of designing such a system, the
specifications for complex strategies of security are highlighted.

2.1 Conditional Access System: Functional Part

The functional part of the conditional access system (or CAS) consists of a
JavaCard application which is interpreted by a virtual machine (VM) which
runs on a micro-controller.

Application: The Conditional Access Systems (CAS) protect content (such as
radio, TV, data stream) by requiring certain criteria to be met before granting
access to this content. One of the main criteria is to own a smart card that
stores sensitive information. This information is used by the receiver to decipher
the content. Security of this content is achieved by combining protections at
different levels. A management key (MK) protects the transfer of access rights
(subscriptions, the related period of validity, geographical localization of the
receiver, etc.) and the transfert of the exploitation key (EK). This key, which
is changed approximately once every month, protects the access criteria (CA)
associated with the content and the value of the control word (CW). This control
word, which is changed approximately once every 5 to 10s, protects the content.
The sensitivity level of data which is handled by the application is noted DS. For
the sake of simplicity, DS is hereafter supposed to be an element of {0, 1, . . . , 5}.



Virtual Machine: In order to be as close as possible to a real product and in
order to benefit from the efficient software security features, a state-of-the-art
virtual machine (VM) has been implemented in the host system. The chosen VM
complies with the Java Card 2.2.2 specifications [24], and provides card content
management capabilities based on the GlobalPlatform Standard [20]. Hence, it
is possible to download and install on-card applications (or applets) running on
top of the VM and to use standard Java Card and GlobalPlatform Application
Programming Interfaces (APIs).

Host’s micro-controller: The host sub-system is built on a 5-stage pipelined
32-bit Harvard RISC microcontroller able to execute one instruction per clock
cycle. The instructions are stored in 640kB of ROM and the data in 256kB
of RAM and in 128kB of EEPROM. The peripherals include two Universal
Asynchronous Receiver Transmitters (or UARTs) compliant with the ISO7816
and RS232 standards and an Advanced Encryption Standard (or AES) crypto-
engine (to accelerate the ciphering and deciphering of data) [32].

2.2 Protections

The different components of the host described above embed the protections
described below. Some of them, such as the security sensors, may have out-
puts. Other countermeasures may be configured. Configuration parameters are
either integer numbers (for redundancy level, insertion of dummy instructions
and random power generator) or boolean values (which activate or not a security
reaction). As will be explained in section 4.1, even though these protections are
physically embedded in the host sub-system, these parameters are not driven by
the host.

Security sensors Several sensors have been implemented or emulated. Some
of them measure physical characteristics such as voltage, light intensity or chip
temperature. Others detect errors during the execution flow of a piece of code,
during I/O data transmissions or during computations. One way of detecting
errors consists in performing the same computation several times and then com-
paring the results. If they are identical, the computation is considered error-free.
If not, a counter of corrupted executions, noted CE, is increased. The number of
times that the same computation is performed is called the “redundancy level”
(noted “RL”). A redundancy level of “i” is noted “×i”. It is equal to 1 when
the redundancy countermeasure is not activated but when 3 ≤ RL, the host has
fault-tolerance capabilities.

The various sensors which are taken into account in our study and their differ-
ent possible outputs are described in Table 1. The hardware (HW) or software
components (“VM” denotes the virtual machine and “App” the application)
which update these outputs are listed in the last column of this table. For ex-
ample, the number of times that the check (performed by the application) of a
Message Authentication Code (MAC) is false is noted ME. It takes its value



between 0 and 104. Another sensor is the number of times that a cryptographic
operation is performed with the same key. This number is noted CO.

Name Values Description Updated by

LS {0, 1, . . . , 5} # of triggers of the light sensor HW

V S {0, 1, . . . , 10} # of triggers of the voltage sensor HW

EFE {0, 1, . . . , 10} # of corrupted execution flow VM

CE {0, 1, . . . , 10} # of corrupted execution VM

PE {0, 1, . . . , 10} # of wrong PIN App

NE {0, 1, . . . , 103} # of methods processed without error VM

ME {0, 1, . . . , 104} # of MAC errors App

CO {0, 1, . . . , 107} # of cryptographic execution App

Table 1. Outputs of the CMs

Insertion of Dummy Instructions (IDI) Another protection consists in
increasing the level of noise by inserting dummy instructions (i.e. that are not
useful) during computations. The execution of a program is thus made up of
several sequences of valid instructions followed by dummy instructions. In our
framework, which has been drawn from [4], two parameters D and N config-
ure the countermeasure. D and N denote the maximum number of consecutive
useful and dummy instructions respectively in a sequence. Let us call D the
random variable equal to the number of instructions in the sequences of useful
instructions. The domain of D is chosen equal to {1; . . . ;D}. Let us call N the
random variable equal to the number of instructions in the sequences of useless
instructions. The domain of this random variable is set equal to {0; . . . ;N}. We
consider that the random variables N and D follow uniform distributions. Note
that N is equal to 0 when the countermeasure is not activated.

Random Power Generator (RPG) In order to blur the power consumption
of the circuit, several Random Number Generators (RNG) may be activated.
Assuming that each step t of this power consumption, noted x(t), is drawn from
a Gaussian shaped probability distribution (with a mean µc(t) and a constant
standard deviation σc). Let us also suppose that the power consumption added
by one random generator also follows a Gaussian distribution with a constant
mean µR and with a standard deviation which is equal to σc. We also suppose
that the different RNG are identical and that their power consumptions are
statistically independent. The probability density function of the total power
consumption, noted xtot(t), of the circuit when R RNG are activated is thus the
following:

pdf(xtot(t)) =
e
−

(xtot(t)−µc(t)−R·µR)2

2·σ2
c ·(1+R2)

σc ·
√
1 +R2 ·

√
2 · π

(1)



Note that R is equal to 0 when the RPG countermeasure is not activated.

Security reactions Two reactions have been taken into account: stopping the
communication and resetting the software (hereafter noted “Mute/Reset”), or
destroying all the data (hereafter noted “kill”). But several reactions could also
be considered at the application level: forbidding the access to one or several TV
channel packages, suppressing services such as video on demand, restricting the
access to only free TV or program contents, etc.

Other protections In the case of a commercial device, other security features
(such as power filters, shields, balanced logic, etc.) which can never be deac-
tivated, are also supposed to protect the circuit, independently of all kinds of
strategy of security.

2.3 Impact of protections

In this section, the impact on the performances and on the security of the pa-
rameters of the countermeasures described above is analyzed theoretically.

Performance criteria An estimation of the evaluation of performances in
terms of speed, energy consumption and security is proposed above. Note that
we consider only the threat related to side channel attacks (SCA) and differential
fault attacks (DFA). In order to successfully mount such attacks, the attacker
proceeds in a divide and conquer manner (i.e. he attacks small pieces of the
key one by one). On each iteration of these attacks, he targets the result of
one particular piece of computation, hereafter referred to the “targeted result”.
It is, for example for SCA, the computation of a SBox during the first round.
To mount a DFA, the attacker also needs the cipher text resulting from one or
several faulty computations [26].

– The gain in terms of SCA, noted FSCA, is the ratio between the number of
curves needed for the attacker to recover the key when the countermeasure
is activated and the number of curves without countermeasure (the greater
the better).

– The gain in terms of DFA, noted FDFA, is the ratio between the number of
experiments needed to recover the key when the countermeasure is activated
and the number of experimentations without countermeasure (the greater
the better).

– The loss in terms of speed, noted FT ime, is the ratio between the duration
of a computation with the countermeasure and the duration of the same
computation without countermeasure (the smaller the better).

– The loss in terms of energy, noted FNRJ , is the ratio between the en-
ergy consumption with countermeasure and the energy consumption without
countermeasure (the smaller the better).

Note that the theoretical considerations described above are only approximations
and will have to be validated with experimental results.



Impact of Redundancy

FSCA: We consider that the redundant computations generate identical power
traces which could easily be added in the time domain by the attacker, decreasing
the number of curves needed to recover the key by a factor RL.

FDFA: As explained in section 2.2, a redundant computation is associated with a
comparison of the results in order to increment the counter CE if the results are
different. To bypass the redundancy protection, the attacker will have to both
avoid the update of the counter in case of error detection and realize several
faults of the same value, noted e0, during the RL successive computations of the
targeted result. The probability of realizing such a set of faults determines the
number of realizations which are required to mount the attack. We shall call q
the number of bits of the targeted result. If we consider that all the faults on
these bits are equally probable, then the probability of realizing the same fault
e0 (whose value does not matter) during the RL successive execution of the
targeted instruction is equal to (1/2q)RL−1. In classical DFA schemes, a fault
generally has to affect 1 byte. So, the default value is chosen equal to q = 8.

FTime: In our framework, the redundant computations are not performed in
parallel. We also assume that the comparison of the results is negligible in terms
of computation time. Thus, the redundancy countermeasure increases the com-
putation time by a factor RL.

FNRJ: We assume that the comparison of the results is negligible in terms of
energy consumption. So, the redundancy countermeasure increases the energy
consumption by a factor RL.

FSCARL =
1

RL

FDFARL = (1/2q)RL−1

FT imeRL = RL

FNRJRL = RL

Fig. 1. Performances for the redundancy level countermeasure

Impact of Insertion of Dummy Instructions Suppose that the mth valid
instruction should be the instruction which computes the targeted result. For
the sake of simplicity, we consider that each instruction (useless or not) is ex-
ecuted in one clock cycle. The typical value for m is equal to 100-200 which
corresponds to a software implementation on a 32-bit processor of a round of an



AES [32]. Let us define the random variable X equal to the number of the clock
cycle associated with the execution of the instruction m. Each realization x of
this random variable, is equal to x =

∑k
i=1(di) +

∑k
i=1(ni), with k such that

∑k

i=1(di) = m, with i being the ith sequence of useless/useful instructions and
with di and ni the ith realizations respectively of the random variables D and
N . We have x = m+

∑k

i=1(ni). We consider that, because m ≫ D, x could be
approximated by x ∼ m+

∑q

i=1(ni) with q = 2 ·m/(D+1). In these conditions,
the density of probability of X follows a normal distribution (µX ,σX) with:

µX = m+ q · µN = m · (1 +N/2) (2)

σ2
X = q · σ2

N = m · N · (N + 2)

6 · (D + 1)
(3)

For the sake of simplicity, we consider, as proposed in [13], that m is uniformly
distributed (with the probability 1 out of 2 · σX) between m− σX and m+ σX .

FSCA: In these conditions, the SCA peak is reduced by a factor 2 · σX and the
number of curves necessary to retrieve the key increases by a factor 4 · σ2

X . But
by using the sliding window method (with consists in reconstructing the peak
by integrating the consumption curves on 2 · σX samples) also described in [13],
this saving in terms of number of power curves is only equal to 2 · σX .

FDFA: In order to realize a DFA, we suppose that the attacker is able to target
clock cycles comprising between m − σX and m + σX . In these conditions, he
has one chance out of 2 · σX to modify the instruction m. The number of faulty
realizations is thus increased by a factor 2 · σX .

FTime: The formula 2 indicates that the computation time is increased by a
factor (1 +N/2).

FNRJ: Because we consider that useful and dummy instructions consume the
same energy, the consumption of the circuit is also increased by a factor of
(1 +N/2).

FSCAIDI =

{

1 if N=0

2 ·
√

m · N·(N+2)
6·(D+1)

otherwise

FDFAIDI = FSCAIDI

FT imeIDI = 1 +N/2

FNRJIDI = FT imeIDI

Fig. 2. Performances for the IDI countermeasure



Impact of Random Power Generator

FSCA: According to [13], if we call δ the amplitude of the SCA peak (i.e. the
difference of the power consumption or electromagnetic radiation between data)
and σc the standard deviation of the power consumption curve, the number of
power curves necessary to recover the key has to be higher than (σc/δ)

2. The
activation of the R random generators increases this number by a factor (1+R2).

FDFA: We suppose that the RPG does not protect against differential fault
attacks.

FTime: As the RPG processes at the same time as the computation, computa-
tion time is not increased by its activation.

FNRJ: We consider that the power consumption of an RNG is equal to α times
the temporal mean of µc(t) (with α = 10% because the random number generator
is a small piece of hardware). In these conditions, the total energy consumption
of the circuit is increased by a factor (1 + α · R).

FSCARPG = 1 +R2

FDFARPG = 1

FT imeRPG = 1

FNRJRPG = (1 + α ·R)

Fig. 3. Performances for the RPG countermeasures

Combination of countermeasures When the different countermeasures are
combined, factors computed above for the different countermeasures are simply
multiplied for side-channel attacks, for the time of computation and the energy
consumption. For the DFA, the chance of making the same fault (in order to
bypass detection of RL) on the targeted result (whose position is blurred with
IDI) is equal to the chance obtained in the first occurrence (i.e. 1/(2q · 2 · σX))
up to the redundancy level minus one. So we obtain:

Figure 5 displays the values of these factors for different values of D and N
(with RL = 2 and R = 3). Note that the values do not share the same scale. This
figure clearly shows that performance decreases as the security level increases.

2.4 Difficulties

The design of the smart card part of a CAS, as described in section 2.1, is a very
challenging task because of the following specifications:



FSCA = FSCARPG · FSCAIDI · FSCARL

FDFA = FDFARPG · FDFARL−1
IDI · FDFARL

FT ime = FSpeedRPG · FSpeedIDI · FSpeedRL

FNRJ = FNRJRPG · FNRJIDI · FNRJRL

Fig. 4. Performances for combination of the countermeasure

Fig. 5. Decrease of the performances with the increase of the security

– Its security level has to be very high: the security of a smart card is expected
to hold for 2-5 years. But it is generally used for 8 years. In this condition, a
card which resists one additional year represents large savings for the content
and CAS providers.

– Its performance has to be high: For Pay-TV applications, the switch from
channel to channel has to be as fast as possible.

– The availability has to be high: A malfunction of the card causes a prejudice
for the user (who is no longer able to watch his favorite TV program) but
also for the CAS provider who has to deal with expensive field feedback. A
malfunction may be due to abnormal system usage (if the card, for example,
is put in a very hot place) but also to incorrect system integration (if the
card, for example, is inserted in a poor quality reader). Such cases will further
be called “anomalies”, in the sense that the component operates in abnormal
conditions but is not subjected to attacks.

– It processes data with various sensitivity levels. For example, the retrieval
of the exploitation key (EK) would enable the pirate to decipher the control



word (CW) during the period of validity of the key EK. With this CW,
he gains access to the content. So, the corruption of the key EK is a very
serious security threat. On the contrary, knowing the value of the word CM
at a given moment is of little value because it is only valid for a very short
period of time.

– Its power consumption must be low if it is embedded in a mobile phone or
in a multimedia tablet.

– It has to be inexpensive.

2.5 Specifications for strategies of security

Section 2.3 shows that the setup of the countermeasures defines the performances
of the circuit in terms of security, speed and power consumption (but also avail-
ability). This section also shows that those performances are closely linked. For
example, the increase in security causes the decrease in speed. Thus, the set
of performances which may be reached, despite the wide range of setups of the
countermeasures, is restricted. This restriction may be such that none of the per-
formances of this set fulfills the specifications described above. In such a case,
the specifications are antagonistic and the designer has to make a trade-off. He
has, for example, to choose between availability and security.

We propose to add mechanisms which enable to dynamically modify the se-
tups of the countermeasures, i.e. which enable to switch from a high performance
but “poorly” secured state to a low performance but secured one. To draw an
analogy, these mechanisms provide a new “degree of freedom” which make it
possible to reach new sets of performances. In other words, these mechanisms
release the links that exist between the different performances. We consider that
a smart strategy of security should be able to control these mechanisms to fulfill
all the specifications (or at least as many as possible).

3 Example of strategy of security

In this section, a complex strategy of security tailored for the application de-
scribed in section 2.1 is detailed. For this application, the main goal is to distin-
guish between anomalies and attacks. For example, let us consider the hardware
voltage sensor implemented to detect voltage glitch attacks. Its detection level
may be set at the time of design to a particular value. If this value is too low,
the sensor may trigger when the chip is connected to a non-malicious but low
quality card reader. It may be interpreted as a fault attack at application level,
causing the card to self-destruct. Such an anomaly considered as an attack will
further be called “false positive” case. On the contrary, if the value of the de-
tection level is too high, real glitch attacks may not be detected. Such an attack
considered normal will further be called “false negative” case. The strategy must
be designed in order to minimize both rates of false positive and false negative.
In the first case availability is increased. In the second case, security is increased.



One way to reduce these rates consists in applying methods proposed in Intru-
sion Detection Systems (or IDS) [6]. The first method consists in determining
the whole set of states of the system reached by a user with “normal” behavior.
Each time the state of the system leaves this set, an “anomaly” is detected.
The second method is complementary. It consists in determining the whole set
of states which would have to be reached by an evil-minded user to perform
an attack. When the system enters this set, misuse (considered an attack) is
detected. Contrary to classical IDS, the component is off-line most of the time.
So, it has to react autonomously without any outside help. In order to obtain,
in this context, both robust and secure behavior, mechanisms must detect both
anomalies and misuses.

According to principles developed for IDS, the chosen strategy of security is
decomposed into three different processes: The first consists in collecting infor-
mation about the state of the host system, the second in computing the anomaly
and misuse levels and the third in modifying the parameters of the countermea-
sures.

3.1 Information sources

We consider that the sensitivity level of data DS (provided by the applica-
tion and defined in 2.1) and the outputs {LS, V S,EFE,CE, PE,NE,ME,CO}
(provided by the sensors and defined in section 2.2) are the inputs of the analysis
algorithm. More generally, each input is called Si and takes its values si between
0 and Si

max, with Si
max chosen as a multiple of 5. Note that, for clarity, when

only one input is taken into account, the superscript i is omitted. The vector of
all the inputs’ values is called S = {s0, . . . , sj}.

3.2 Analysis

As the secure circuit designer generally expresses the anomaly and misuse cases
with words which are very often vague and inaccurate, fuzzy logic has been used
to formalize the analysis mechanism [43, 18]. Within this framework, the detec-
tion process is mainly described by a set of “IF-THEN” rules (expressed with
words or “linguistic variables” whose meanings are precisely defined with “fuzzy
sets”) and an inference process (i.e. computing the misuse and anomaly level
(resp. ML and AL). This process can be activated, for example, each time an in-
put value is modified. The process chosen for inferring a decision from fuzzy rules
and inputs was first proposed by Mamdani in [27]. As reported in the following
pseudo-code, this process consists in fuzzifying the inputs, then computing the
degree of truth of the rules, then aggregating the results of these rules and lastly
“defuzzyfying” them to obtain the output values. Only the computation of the
misuse level is described in detail below (the computation of the anomaly level
being strictly identical).

Fuzzy subsets



Algorithm 1 Algorithm for calculating the Misuse Level (ML)

Require: Inputs: Scalar values of the inputs (S)
Ensure: Output: Misuse Level (ML)
Require: Fuzzy Sets for inputs
Require: Fuzzy Sets for the outputs
Require: The set of rules

Fuzzify the values of the inputs
Compute the degree of truth of each rule of the rule set
Aggregate all the rules to obtain the membership function of the ML
Defuzzify this membership function to obtain the scalar value of the ML

Definition The significance of the words (or “linguistic variables”) “low” and
“high” for the inputs and outputs are defined with “fuzzy subsets”. The mem-

bership function, denoted µA, of a fuzzy subset A is a generalization of the
characteristic function in classical set theory. It is any function mapping the val-
ues s of the input S to the real unit interval [0, 1]. The value µA(s) is called the
membership degree of s in the fuzzy subset A. This degree quantifies the grade
of membership of the element s to the fuzzy subset A: the value 0 means that
s is not a member of the fuzzy set; the value 1 means that s is a full member
of the fuzzy set. The values between 0 and 1 characterize fuzzy members, which
belong to the fuzzy set only partially. The degree of membership also quantifies
the degree of truth of the assertion “s is A” (which is true with a degree µA(s)).

Membership functions for inputs Firstly consider the fuzzy sets associated with
the value of the input Si. The 8 membership functions (or fuzzy subsets) selected
for each input Si are presented in Table 6. For example, let us consider the
voltage sensor input whose maximum value is equal to V Smax = 10. If this
input is equal to 3 (and so is comprised between V Smax/5 and 2 · V Smax/5) it
is considered “rather high” with a grade of truth of 1/4 and “very low” with
a grade of truth of 1/2. If this voltage sensor value is equal to 7 (and so is
comprised between 3 · V Smax/5 and 4 · V Smax/5) it is considered “high” with a
grade of truth of 2/3 and “very very low” with a grade of 0.

Membership functions for outputs The outputs of the analysis mechanisms are
the levels of anomaly and misuse. Their values are real values in [0, 1]. The
two different membership functions “LOW” and “HIGH”, considered for these
outputs are described in Table 2:

Name LOW HIGH

o ∈ [0; 0, 2] 1 0

o ∈]0, 2; 0, 8] −5/3 · o+ 2/3 5/3 · o− 1/3

o ∈]0, 8; 1] 0 1

Table 2. Membership functions for outputs



Name
Very Very

Rather Very Very Very Very Rather
Low Low Low Low High High High High

Acronym L
Si
max

−
L

Si
max

−−
L

Si
max

−−−
L

Si
max

−−−−
H

Si
max

++++ H
Si
max

+++ H
Si
max

++ H
Si
max

+

si ∈ [0;Si
max/5] 1 1 1 1 0 0 0 0
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i
max 0 0 0 0 1 1 1 1

Fig. 6. The 8 membership functions (or fuzzy subsets) for an input Si ( Si
max is the

maximum value of this input)

Set of Rules The security rules are expressed in terms of “IF-THEN” rules. The
“IF” term is the premise (or precondition). The “THEN” term is the conclusion.
The premises are generally expressed as boolean operations on fuzzy subsets.

Operations on fuzzy subsets The boolean operations such as AND, OR and NOT
are also defined in fuzzy logic. In the following, we consider the standard Zadeh
operators on fuzzy subsets A0 and A1 respectively defined on variable x and y
such as:

Z NOT : µNOT (A0)(x) = 1− µA0(x)

Z AND : µAND(A0,A1)(x, y) = min(µA0(x), µA1 (y))

Z OR : µOR(A0,A1)(x, y) = max(µA0(x), µA1 (y))

The extension of Z AND and Z OR to “n-ary” operators is trivially defined
and denoted as:

µAND(A0,...,Ak)(x0, . . . , xk) = min(µA0(x0), . . . , µAk
(xk))

=
k

min
j=0

(µAj
(xj))

µOR(A0,...,Ak)(x0, . . . , xk) = max(µA0(x0), . . . , µAk
(xk))

=
k

max
j=0

(µAj
(xj))

Example of rules set Two examples of rules noted R0 and R1 expressed with nat-
ural language are reported above. They are also expressed in two more compact
but equivalent ways by using the notation described above.

The degree of truth of the premise is a real number in [0, 1] which depends
on the values S of the inputs. This degree of truth of the premise of the rule
i is denoted prei(S). As described in Table 7, we distinguish the rules which
conclude to a LOW value for misuse (noted “LOW-m” rules) and those which
conclude to the HIGH values for misuse (noted “HIGH-m” rules). The strategy



R0

IF the number of PIN code error is rather high OR the number of triggers
of the voltage sensor is high THEN the misuse is high
IF ( PE is H+ OR V S is H++ ) THEN Misuse is HIGH
IF µOR(H+,H+++)(PE, V S) THEN µHIGH(Misuse)

R1

IF the number of methods that have processed without error is very high
THEN the misuse is low
IF ( NE is H+++ ) THEN Misuse is LOW
IF µH+++(NO E) THEN µLOW (Misuse)

Table 3. Examples of rules set

of security is expressed in our system by using several rules (about a dozen).
Without loss of generality, we reorder the rules so that those numbered from 0
to q − 1 are “LOW-m” rules and those numbered from q to p are “HIGH-m”
rules. The considered set of rules is noted R and reported in Figure 7.

Rule number Rules

L
O
W

-m

R0 IF pre0(S) THEN Misuse is LOW
. . . . . .
Rq−1 IF preq−1(S) THEN Misuse is LOW

H
IG

H
-m

Rq IF preq(S) THEN Misuse is HIGH
. . . . . .
Rp IF prep(S) THEN Misuse is HIGH

Fig. 7. Considered set of rules R

Compute the degree of truth of the rules

Computing the values of the premises The degree of truth of each premise is
computed first by evaluating the degree of membership of the input Si to fuzzy
subsets. Then, if necessary, the Zadeh operators are applied according to the
premise’s formula. Examples of such computations are reported on Table 8 for
three different triplets of input values.

It is important to note that because we have chosen input membership func-
tions that are discontinuous and because we have chosen Zadeh operators, re-
gardless of the values of the entries and regardless of the different formulæ used
to express the premise i, the result prei(S) is always an element of the set
P = {0; 1/4; 1/3; 1/2; 2/3; 3/4; 1};

Modification of the membership function of the conclusion of a rule In the
method proposed by Mamdani, the degree of truth of the premise of a rule
modifies the membership function of its conclusion. The modification consists in



Sensors Case 1 Case 2 Case 3

S0 = PE 3 5 9

S1 = V S 6 2 8

S2 = NE 300 900 700

µH+(PE) 1/4 1/2 1

µH++(V S) 1/3 0 2/3

pre0(S) = µOR(H+,H++)(PE,V S) 1/3 1/2 1

pre1(S) = µH++++(NE) 0 1 2/3

Fig. 8. Examples of degree of truth of the premises of R0 and R1

truncating the membership function Ak(y) of the conclusion with the value of
the premise, that is:

µRk
(y|S) = min(prek(S), µAk

(y))

The modified membership function of the conclusion of rules R0 and R1 are
respectively shown in Figure 9 and 10 for different values of inputs.

In fuzzy logic inference mechanisms, all the rules are considered to fire in
parallel. So, at first glance, the use of this logic could lead to inconsistency, that
is, several rules could lead to different conclusions (for example, the misuse is
both HIGH and LOW). The aim of aggregation of rules and defuzzification is to
compute a unique value for the decision.

Aggregation of rules The different rules are considered to be linked together
with the operator OR. So, combining the rules consists in taking for all y ∈ [0, 1],
the maximum value of the conclusions of the different rules, according to the
following formula:

µR(y|S) = p
max
k=0

(µRk
(y|S))

Figure 11 shows the membership functions obtained by combining the rules R0

and R1 for the three cases described above.

Defuzzification The operation of defuzzification consists in calculating a scalar
value (also called “crisp” value) for the output membership function of the con-
clusion (µR(y|S)), obtained given a set of entries and a set of rules. Before
explaining this process of defuzzification, this output membership function is
rewritten by taking into account the properties of our set of rules.



Sensors Truth of Membership function
premise of conclusion

(s0 = 3, s1 = 6) 1/3

(s0 = 5, s1 = 2) 0,5

(s0 = 9, s1 = 8) 1

Fig. 9. Modification of the membership function according to the value of inputs (rule
R0)

Output membership function rewriting The fuzzy subset of LOW −m is defined
as:

µLOW−m(y|S) = max(min(pre0(S), µLOW (y)),

. . . ,min(preq−1(S), µLOW (y))

= min(max(pre0(S),

. . . , preq−1(S)), µLOW (y))

= min(
q−1
max
k=0

(prek(S)), µLOW (y))

In the same way, the fuzzy set associated to the “HIGH-y” rules is defined
as:

µHIGH−m(y|S) = min(
p

max
k=q−1

(prek(S)), µHIGH(y))

As explained in section 3.2, the different premises prek are in the set P .
So, let us define pl and ph and the membership functions µLOW−m(y)pl and



Sensors Truth of Membership function
premise of conclusion

(s2 = 300) 0

(s2 = 900) 1

(s2 = 700) 0,66

Fig. 10. Modification of the membership function according to the value of inputs (rule
R1)

µLOW−m(y)ph such as:

pl =
q−1
max
k=0

(prek(S)) ∈ P

ph =
p

max
k=q

(prek(S)) ∈ P

µLOW−m(y)pl = min(pl, µLOW (y))

µHIGH−m(y)ph = min(ph, µHIGH(y))

The output membership function for the output y can in these conditions
always be written in the following form:

µR(y)pl,ph = max(µLOW−m(y)pl , µHIGH−m(y)ph)

Defuzzification techniques There are different kinds of defuzzification techniques
to compute the crisp output from the output membership function. We have
considered four of the more popular ones, called “centroid” (CT), “mean of



Sensors Membership function Defuzzification techniques
of conclusions Pl Ph Centroid MofM FofM LofM

s0 = 3
s1 = 6
s2 = 300

0 0,33 0,65 0,7 0,4 1

s0 = 5
s1 = 2
s2 = 900

1 0,5 0,42 0,1 0 0,2

s0 = 9
s1 = 8
s2 = 700

0,66 1 0,55 0,9 0,8 1

Fig. 11. Membership function of the output according to the value of inputs (com-
bination of rules R0 and R1) and associated crisp values for different defuzzification
techniques

max” (MM), “first of max” (FOM) and “last of max” (LM). For example, the
FOM crisp value is computed using the formula:

FOM(µ(y)) = min{v ∈ [0, 1]|µ(v) = SUPy∈[0,1]{µ(y)}} (4)

Then, we have computed their values for the whole set of possible values of
premises, that is, for all of the 49 membership functions µR(y)pl,ph with Ph ∈ P
and Pl ∈ P . The results for First Of Max (“FOM”) is reported in Table 4.



Ph

FOM 0.00 0.25 0.33 0.50 0.67 0.75 1.00

Pl

0 0 0.35 0.4 0.5 0.6 0.65 0.8
0.25 0 0 0.4 0.5 0.6 0.65 0.8
0.33 0 0 0 0.5 0.6 0.65 0.8
0.5 0 0 0 0 0.6 0.65 0.8
0.66 0 0 0 0 0 0 0.8
0.75 0 0 0 0 0 0 0.8
1 0 0 0 0 0 0 0

Table 4. First of Max results for µR(y)pl,ph

3.3 Configuration of countermeasures

The configuration of the countermeasures has been chosen from the analysis
of their impact, described in section 2.3. We have evaluated the impact of the
RPG for R ∈ {0; 3; 10} (the value for α is chosen equal to 10%). As the cost of
the redundancy technique is very high, we have only considered RL ∈ {1; 2; 3}
(the default value for q is 8) and the impact of the IDI for D ∈ {0; 4; 8} and
for N ∈ {2; 3; 4} (the value for m is chosen equal to 150). Among all those
possibilities, only four configurations of the different countermeasures are taken
into account. These configurations are chosen since they cover a large range of
security/performance trade-offs. They are reported in Table 12. It is important to
note that whatever the configurations, the different physical sensors are always
activated. It is also important to note that, in practice, the security level is
determined as the minimum value between FDFA and FSCA (in bold in the
table).

Config. Sensors RL RPG IDI Mute or Kill FSCA FDFA Time Energy
Reset

Safe ON ×1 0 (D = 2;N = 0) No No 1,0 1,0 1,0 1,0

Unsafe ON ×2 3 (D = 3;N = 4) No No 122,5 6270,7 4,0 5,2

Critical ON ×3 10 (D = 4;N = 8) Yes No 1346,7 1,0E+08 7,8 15,6

Fatal - - - - - Yes -

Fig. 12. Countermeasure configurations

The function which assigns the configuration to each value of the anomaly
(AL) and misuse (ML) levels is described in Table 13. The different thresh-
olds have been determined according to the parameters chosen for the analysis
process.



ML

[0; 0.2] ]0.2; 0.4] ]0.4; 0.6] ]0.6; 0.8] ]0.8; 1]

1
−

A
L

[1; 0.8] Safe Safe Unsafe Critical Fatal
]0.8; 0.6] Safe Unsafe Unsafe Critical Fatal
]0.6; 0.4] Unsafe Unsafe Unsafe Critical Fatal
]0.4; 0.2] Unsafe Unsafe Critical Critical Fatal
]0.2; 0] Unsafe Critical Critical Fatal Fatal

Fig. 13. Configurations of the countermeasures according to the Misuse (ML) and
Anomaly (AL) Levels

4 Prototyping

This section describes a hardware implementation which has been defined for
our case study but which could also be used for different strategies of security.

4.1 Architecture

We choose an architecture, represented in Figure 14, which separates the calcu-
lations related to the execution of the application software and those related to
the management of the security. This leads to the addition of a system called
“monitor” and strictly dedicated to the management of the security. In the left
part of the figure, the host system, described in section 2.1, is represented with
its software part (the CAS application running above the JavaCard virtual ma-
chine) and its hardware part (the 32-bit RISC microcontroller). Each of these
parts implements its own set of countermeasures described in section 2.2. These
countermeasures may be configured via signals noted “CMs config.” and may
give information about the state of the host via signals noted “CMs outputs”.
The signal which indicates the sensitivity of the data handled by the application
is noted DS. All these signals are exchanged between the host and the monitor
through a communication channel. The monitor is represented in the right part
of the figure. The software parts of the monitor are the strategy of security and
the component-based operating system. Its hardware part is a micro-controller.

The hardware and software parts of the monitor and an example of commu-
nication between the host and the monitor are described above.

Operating system and strategy of security: The monitor uses a specific component-
based operating system. It needs a small memory footprint (less than 4kB) and
it responds in less than a hundred clock cycles to the host’s requests. An applica-
tion is a set of components linked together through exchange memory zones. A
component is a set of ports towards these exchange zones, of private attributes
and of methods (which describe its behavior). The strategy of the security for-
malized by using fuzzy logic and described in section 3 is embedded in such a
component. It is important to note that the “fuzzification” of the input sen-
sor values is reduced to tests of membership of a value to an interval and that



Fig. 14. Architecture of the prototype (hardware in dark grey, software in grey)

the computation of the premises is only the application of min/max operators
according to the premises’ formulæ. Also note that, thanks to off-line precom-
putations and the choice of the fuzzy sets, the defuzzification is reduced to the
access in a table of size 7× 7 elements (cf Table 4). The complete strategy can
thus be easily implemented in a very simple processor.

Monitor’s micro-controller: The micro-controller of the monitor is built around
a 5-stage pipelined 32-bit Harvard RISC processor. To increase the security of
the system, this processor does not share any piece of hardware with the host
system and in particular it has its own addressing space: the instructions are
stored in 32kB of ROM and data in 4kB of RAM. The peripherals comprise
one UART, two FIFOs and an Interrupt Controller Unit (ICU). These ICU
and FIFOs provide two communication channels: The monitor is informed of
the events occurring in the host (without having access to the sensitive data
themselves) and in return, the monitor is able to change the configuration of the
countermeasures embedded into the host.

Communication between the host and the monitor: The communication between
the host and the monitor is based on a request/acknowledge protocol. The re-
quest is always initiated by the host. The host waits after its request until the
monitor responds. The following example describes such a communication initi-
ated by the application.

1. The application indicates that the sensitivity of the data that it manipulates
(DS) is changing.

2. The virtual machine sends this information to the monitor via the FIFOs.



3. The host stops its current execution.
4. From the fuzzy sets and the fuzzy rules defined by the user, the monitor

processes the CM’s outputs and the DS’s value by using the fuzzy reasoning
described in section 3.2. The outputs of this reasoning are the misuse and
the anomaly levels. These levels are used to select the configuration of the
countermeasures thanks to Tables 13 and 12 reported in section 3.3.

5. The monitor asks to the host system to configure software (via FIFOs) and
hard wired countermeasures (via the ICU).

6. The monitor waits until all the countermeasures are configured and are ready.
7. The monitor asks to the host system to resume its execution.

4.2 FPGA synthesis results

The whole system has been implemented in the Xilinx Virtex-5 FPGA of an
ML501 evaluation platform. This platform has been extended with an ISO7816
interface adapter (for an easy connection with off-the-shelf smart card readers)
and with an additional RS232 serial interface (for trace or debug purposes). The
details of the hardware implementation of the host, of the monitor and of the
communication channels are described in Figure 15.
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Fig. 15. Hardware part of the prototype

The combinatorial part of the system (i.e. excluded the memory areas) uses
48% (3490 slices out of 28800) of the total FPGA’s resources in term of slices.
As a reminder, a slice is the smallest hardware element used in a Xilinx FPGA.
A slice contains four D flip-flops associated to four look-up tables with six inde-
pendent inputs. Excluding the monitor, the resources usage falls to 34% (2462



slices out of 7200). So, the combinatorial part of the monitor represents around
40% of the combinatorial part of the whole system. As the resources associated
with the memory parts are far larger than the combinatorial ones, the estimated
total overhead (i.e. including the memory areas) decreases to about 7%. But it
is important to note that this total overhead greatly depends on the size of the
host’s memories. For example, for a smaller host (i.e. with 256kB of ROM, 32kB
of RAM and 128kB of EEPROM), the total overhead rises to approximately
18%.

5 Results

Different steps have been planned to validate the strategy of security and the
associated HW/SW architecture. The first step consists in performing a security
analysis of the behavior of the whole system. The second step consists in playing
“real-life” scenarios and verifying the responses of the system by simulation.
Future work will consist in performing “real” life attacks on the FPGA.

5.1 Security analysis

Side channel analysis For this discussion, we distinguish two kinds of in-
formation leakage. The first kind is “directly” related to the value of sensitive
data (such as cryptographic keys) and is exploited with classic side channel tech-
niques. The second kind of leakage is not directly linked to the sensitive data but
only helps the attacker to understand the functioning of the system and so, to
focus his attacks. For example, if the circuit blurs the manipulation of sensitive
data with the activation of RPG, the attacker could easily detect, by measuring
the power consumption, the location in time of this sensitive computation. This
information will help him perform his side channel attacks on this location.

The system is protected against direct information leakage by the host’s coun-
termeasures. The theoretical efficiency of some countermeasures is estimated in
Section 2.3. Several methods have also been proposed to quantify in practice the
direct information leakage of circuits in terms of “number of traces to recover the
key”. One of these methods, described in [39] is based on a profiled information
theoretic analysis. If the security of the host has been first estimated with such
a worst-case security evaluation, the user is able to know how many bits per
trace the host leaks. From this data, from the number of cryptographic execu-
tions which has be done with the same key (sensor CO) and from the number
of times a MAC is false (sensor ME), he is able to estimate the number of bits
of the key which could have been retrieved by the attacker. Depending of this
number, the strategy of security could consist, for example, in increasing the
level of noise or the number of random instructions. Besides, as the host sends
to the monitor only the values of the sensors and the sensitivity level of the data
handled by the application, there is no additional direct information leakage due
to the communication channels or due to the monitor.



The indirect information leakage is linked to the “discretion” of the host’s
countermeasures. We consider that the computation of the configuration of the
countermeasures executed in the monitor is very small compared to the signature
of the countermeasure itself and so does not represent an additional indirect
leakage of information. Besides, a more complex strategy of security such as
the one described in Section 3, could be defined in order to reduce the indirect
information leakage (for example, by creating a randomly high level of noise even
when no sensitive data is manipulated).

Fault attacks As for protections against side channel attacks, the system is
mainly protected by the host’s countermeasures. In particular, the host has to
embed highly effective protections in order to be protected against highly effec-
tive attacks such as those described in [29] (which enable the pirate to retrieve
the key with only one faulted execution). In the following discussion, we consider
that it is the case, at least when sensitive data is handled by the application.
During fault attacks, several cases have been distinguished:

– If the functioning of the monitor and of the communication channels are not
corrupted during a fault attack, two sub-cases are possible:
• The functioning of the host is not corrupted during the fault attack. In
this case, the system functions normally.

• The functioning of the host is corrupted during the fault attack. In this
case, as the host is protected by using error detection or correction, the
host stops its computation, the counter of corrupted execution is incre-
mented and this information is processed by the monitor. The monitor
will decide to increase the redundancy level until providing error cor-
rection capabilities (rendering DFA ineffective). The only possibility for
the pirate in such a case consists in bypassing the HW/SW error de-
tection/correction capabilities of the host to avoid the increase of the
redundancy level.

– If the functioning of the monitor (or of the communication channels) are
corrupted during a fault attack, this incorrect functioning does not directly
give information about sensitive data because the monitor never handles
such data but two sub-cases are possible:
• The monitor is unable to compute a configuration. Two sub-sub-cases
have to be taken into account:
∗ The functioning of the host is not corrupted during the fault attack.
In this case, as the host waits after any request until the monitor
responds, there is no risk of external communications of data.

∗ The functioning of the host is also corrupted during the fault attack.
In this case, as the host is protected by using error detection or
correction, the host stops its computation and a request towards the
monitor is triggered through the increase of the counter of corrupted
execution. As the host waits after this request until the monitor
responds, there is no risk of external communications of data. The
only possibility for the pirate in such a case consists in bypassing



the HW/SW error detection or correction capabilities of the host to
avoid any request towards the monitor.

• The monitor computes an incorrect configuration of the countermea-
sures. In this case, the sensitive data is still protected by the counter-
measures that can never be deactivated and by this incorrect set of coun-
termeasures. In the worst case, the attacker will have to face a lower level
of security. In the best case, he will have to face a higher level of security.
But in both cases, the host has to be attacked after the monitor.

This discussion shows that in order to take advantage of the proposed archi-
tecture, the pirate has to attack first the monitor and, in a second step, to attack
the host. Such a scenario is unfortunately possible with state-of-the-art attack
equipment but we consider that, in practice, it leads to more difficult attacks.

5.2 Simulations of scenarios

The second analysis consists in defining several attack and normal use scenar-
ios and playing these scenarios on an algorithmic model of the prototype. For
example, consider a scenario where the card is connected to a low quality card
reader. In such an abnormal case, the electrical connection between the two
devices regularly triggers the voltage sensor. In the first part of the scenario
(called I), there is no error and the level of security remains low, as represented
in Figure 16 (top). In this figure, the x-axis corresponds to the time and the
y-axis to the levels of security. In the second part (called II) of the scenario,
the voltage sensor alone is triggered. The security level increases slowly (because
we consider that these mistakes are not important). In the third part (called
III) of the scenario, the MAC error sensor ME is also triggered. In this part,
the security level increases quickly. In the last part of the scenario (called IV),
the sensors stop being triggered and the security level decreases quickly. On the
contrary, let us consider a laser attack scenario. In the first part of this scenario,
there are no errors and the level of security remains low, as represented in Figure
16 (bottom). In the second part, the light sensors are triggered because the at-
tacker injects faults in the middle of a long sequence of correct commands. Even
with this precaution, the level of security increases quickly (we consider that the
triggers of the light sensor are important). We suppose that the attacker is able
to detect this increase (the activation of the RPG when the system switches to
the “unsafe” configuration is easy to detect) and that, in the third part of the
scenario, he stops to inject faults. The level of security tends to decrease. But
when the laser attack is re-started in the fourth part of the scenario, the monitor
increases the security level very quickly until sensitive data is deleted.

5.3 Drawbacks of the proposed approach

As explained in Section 4.2, the proposed architecture leads to a penalty of 5-
20% (depending of the size of the host’s memories) in terms of area (and to some
extent, of power consumption), but we underline that these figures have been



Fig. 16. Response of the system for an anomaly case (left) and for an attack case
(right)

obtained with no design optimization. The penalty in terms of performances
of the adjunction of the monitor greatly depends on several parameters such
as, for example, the rate of communication of data between the host and the
monitor, the rate of change of configurations of the countermeasures or the time
necessary for the host to reconfigure its countermeasures. But it is important
to note that these penalties have to be compared with the penalties due to the
countermeasures embedded in the host.

Another difficulty concerns the design of the best strategy of security for a
given application. The theoretical considerations of Section 2.3 help the user,
first, to evaluate a priori, that is according to a given set of hypotheses, the
performances and the security levels of the host for several sets of parameters
and, second, to choose an a priori strategy of security for the given application.
As the set of hypotheses may be false (and it is unfortunately often the case
in the security domain), the performances have to be measured in practice and
security evaluations have to be performed with state-of-the-art attack equipment.
As most secure designs, these results have to be used to improve the a priori
strategy of security. At the end of this refinement process, the strategy should
not only reduce the rate of false positives and false negatives but also trade-off
the performances and the security according to the application’s constraints.

Finally, the testing and debugging of the whole prototype is also more com-
plex than for a single component. Each hardware and software component has
been debugged one by one. After these unitary tests, the monitor and the host
have been tested independently. Finally, the host and the monitor have been
tested together.

6 Conclusion

This article has completed the first step towards “system level” management
of the security dedicated to the improvement of the availability and the perfor-



mance of a circuit without reducing its security. The three main contributions
of this article are the following. First, the impact in terms of security and per-
formances of different combinations of well-known countermeasures has been
quantified. This study has shown, without surprise, that security and perfor-
mances are antagonistic. But this study has also shown that, by modifying only
a few parameters of these countermeasures, states with very distinct perfor-
mance and security levels can be reached. Second, we have proposed a strategy
of security designed to minimize both the rate of anomalies considered to be
attacks (to increase the availability) and the rate of attacks considered to be
normal functioning (to increase the security). The strategy is based on mecha-
nisms which dynamically modify the parameters of the countermeasures. Third,
we have proposed an HW/SW architecture which implements these mechanisms.
The proposed solution is based on a double-processor architecture: one processor
embeds a representative set of countermeasures (and mechanisms to define their
parameters) and executes the application code. The second processor, on the
same chip, applies the strategy, but without requesting sensitive data from the
first processor.

Future work will consist in determining the theoretical performances and se-
curity levels for combinations of other countermeasures. It will also consist in
refining the strategy by performing real attacks on the prototype and in mea-
suring its real performance. We also plan to develop mechanisms to enable over
the air upgrades of fuzzy rules according to the evolution of the threat. It could
also be interesting to investigate, in parallel, more expressive formalisms such
as, for example, those used for the detection of intrusion in complex computer
systems. At last, as the threat related to the insertion of Trojan Horses into in-
tegrated circuits has clearly to be taken into account [41], it could be interesting
to adapt the fuzzy rules and the sensors for the detection of such Trojan (as an
generalization of [1]).
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