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Polycrystalline materials with refined grain size are well known to have enhanced diffusion properties compared to coarse grain materials. Due to their 
high grain boundary density, the macroscopic diffusivity of such materials is increased. Indeed, grain boundaries are fast diffusion channels in the material. 
In this paper, a numerical method to calculate the diffusivity of polycrystalline materials as a function of their grain size is proposed. A homogenization 
technique is applied on polycrystalline representative volume elements on which diffusion calculations are performed with a finite element method. This 
technique allows to extract the effective diffusivity of the material for different grain sizes. A relationship is then built between the diffusivity and the grain 
size. It is shown that the extracted diffusivity follows a mix-ture law of both diffusivities in the grains and grain boundaries, as proposed by Hart [14], but 
taking into account grain boundaries randomly oriented compared to the diffusion direction.

1. Introduction

In the recent years, surface nanostructured materials are of

great interest to enhance mechanical parts. Regarding their

mechanical properties, it has been shown that they provide

improved hardness, fatigue resistance and wear resistance [1–3].

They also improve the efficiency of thermochemical treatments

such as nitriding by increasing the hardness [4–8] and the nitrogen

penetration depth [5,6,9]. Moreover, the nitriding temperature

[5,7,8] is reduced. Likewise, the friction coefficient, the wear [4–

8] and the corrosion [5] are also reduced. The main explanation

given for a such efficiency improvement is that grain boundaries

act like fast diffusion channels. Then, when the grain size

decreases, the grain boundaries multiply, as well as the fast diffu-

sion channels. Thermochemical treatments are usually described

by the diffusion equation, which is a combination of both Fick’s

laws:

@c
@t

¼ div Dgrad
��!

cð Þ
� �

ð1Þ

where c x
!
; t

� �

is the concentration of the diffusing element at point

x
!
and time t, and D is its diffusivity in the material. In this formu-

lation, no thermodynamic interactions are taken into account and

one diffusing element is considered. The term D is then a macro-

scopic value of the diffusivity which takes into account both diffu-

sion processes in grains and along grain boundaries. At a smaller

scale, these processes can be separated in two single diffusion pro-

cesses occurring in two different media with different diffusivities:

Dg for the diffusion inside the grains and Dgb for the diffusion along

the grain boundaries. It is possible to find some numerical values for

diffusivities of both grains and grain boundaries in the case of self-

diffusion [10–12]. Table 1 gives an example of both grain and grain

boundary diffusivities for aluminum in the case of self diffusion at

400 �C. According to Harrison’s classification [13], in the case of type
A diffusion kinetics, Hart has proposed an analytic expression for the

effective diffusivity [14] with grain boundaries parallels to the dif-

fusion direction.

D ¼ f
v
Dgb þ 1� f

v
ð ÞDg ð2Þ

This relations is similar to the Wiener upper bound for the real

effective permittivity in multicomponent media [15] and to the

upper Voigt bound in elasticity [16]. f
v
is the volume fraction of

grain boundaries and D the effective diffusivity which can be used

in the diffusion Eq. (1). The volume fraction of grain boundaries f
v

can also be written

f
v
¼ b

d

d
ð3Þ

⇑ Corresponding author at: Winoa, 528 avenue de Savoie, BP3, 38570 Le Cheylas,

France.

1



where d is the grain boundary thickness and d is the grain size. b is a

numerical factor depending on the grain shape. Eq. (2) was

extended to the Hart–Mortlock equation [17] which takes into

account segregation at grain boundaries. Kalnins et al. [18] has also

developed a model which describes diffusion in a two-phase mate-

rial with segregation effects. The combination of these two equa-

tions has been performed by Belova and Murch [19] to build an

analytical model of the effective diffusivity in a 2D cubic shaped

polycrystal. Also, some authors studied the grain boundary diffu-

sion effect on the effective diffusivity with numerical methods. Gry-

aznov et al. [20] and Bassman et al. [21] have made a finite element

analysis considering two different media: grains and grain bound-

aries. This type of methodology has also been applied with the finite

difference method [22] or by computation of the effective conduc-

tivity of two dimensional disordered random Voronoi networks

[23] with Kirchhoff equations resolved by Lanczos algorithm [24].

The aim of this work is to expand Hart’s equation to a 3D media

where the grain boundaries are randomly oriented regarding the

diffusion direction with help of an homogenization technique com-

patible with representative volume elements (RVE) as shown in

Fig. 1. This technique enables to extract the effective diffusivity of

the considered RVE. The second step of this work stands on a

numerical study of flux dissociation in grains and along grain

boundaries. It will lead to formulate the effective diffusivity as a

weighted arithmetic average as expressed by Hart. The ponderation

coefficient of this expression will be numerically measured on mul-

tiple representative volume elements and linked to the grain size.

2. Homogenization technique

To calculate the effective diffusivity in general cases, it is not

possible to take the average of the different local diffusivities as

in perfect interfaces described by Hart’s model. The homogeniza-

tion technique presented here aims at giving a method to extract

an effective diffusivity D from a diffusion simulation on a cubic

RVE by means of the finite element method. Let us consider a cubic

RVE of Dx square under a concentration difference Dc on two of its

opposite faces. This RVE can be considered as a heterogeneous

material constituted of grains and grain boundaries. Because the

concentration is prescribed on two opposite faces of the cube,

the diffusion occurs in the direction perpendicular to these sur-

faces. Let x designing the considered point on this direction. At a

local scale, the flux density through the RVE is given by

J
!

¼ �DðxÞ
@c xð Þ

@x
ð4Þ

where DðxÞ can be either Dg or Dgb. Then at steady state, considering

this cube as a homogeneous of diffusivity D, the concentration gra-

dient along the RVE can be expressed as the concentration slope

@c xð Þ

@x
�

@c xð Þ

@x

� �

¼
Dc
Dx

ð5Þ

where the brackets denote a global average on the whole RVE. Then,

by integrating the flux density on the whole incoming or outcoming

surface of the RVE, where it is assumed to be constant due to the

homogenization hypothesis, the total flux U is given by

U ¼ �D
Dc
Dx

S ð6Þ

with S ¼ Dx2 is the section of the cube perpendicular to the diffu-

sion direction. The diffusivity is then linked to the concentration

difference Dc, to the side of the cube Dx and to the flux of chemical

element U which is easily measurable from a finite element calcu-

lation. The effective diffusivity can be deduced by performing a dif-

fusion simulation on a cubic RVE under a concentration difference

at steady state and by measuring the flux on one of its two surfaces

where it passes through.

D ¼
�U

DxDc
ð7Þ

3. Finite elements model

3.1. Generation of representative volume elements with equiaxed
grains

To generate the cubic RVEs, the software Neper [25] has been

used. This software enables to generate such RVEs by adjusting

the side of the cube Dx and the number of grains in the cube N,
so the grain size can not be set directly. The grain shapes are

obtained with a Voronoï tesselation. These RVEs are produced as

a mesh of the grain and the grain boundaries, where grains are

meshed with 3D elements and grain boundaries are meshed with

2D elements.

3.2. Diffusion model

To simulate the diffusion at steady state, calculations are per-

formed with the software Sysweld� [26]. The problem is solved

using Eq. (1) and two different diffusivities, Dg and Dgb are affected

to grains and grain boundaries respectively. A thickness d is

affected to the grain boundaries in order to model the volumic dif-

fusion along them. The grains are considered to be equiaxed, due to

their generation method. Their crystallographic orientation is not

taken into account.

Table 1

Aluminum self diffusion coefficients at 400 �C for grains and grain boundaries [10].

Brown and Ashby [11] Gust et al. [12]

Dg (mm2/s) 1:8� 10�11 2:33� 10�11

Dgb (mm2/s) 1:84� 10�5 6:27� 10�5

Fig. 1. Example of a representative volume element with 250 grains generated by

the software Neper [25].
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3.3. Set of representative volume elements

150 different RVEs have been created, with a cubic shape with

Dx ¼ 1 mm. The grain numbers are set between 50 and 500 grains

by steps of 50 grains. For one number of grains, 5 different RVEs

have been generated. These methodology has been repeated for 3

different grain shapes:

1. The grains are generated with a 3D Voronoï tesselation,

which is the default behavior of Neper (see Fig. 2a).

2. The grains are generated with a 2D Voronoï tesselation in

order to create columnar grains in the direction of the dif-

fusion (see Fig. 2b).

3. The grains are generated with a 2D Voronoï tesselation in

order to create columnar grains perpendicular to the diffu-

sion direction, which is equivalent to a planar 2D Voronoï

tesselation (see Fig. 2c).

The concentration difference Dc was set to 100%.

4. Flux dissociation in a representative volume element

In this part three cases of diffusion are studied.

1. The whole RVE is subject to diffusion:

Dg ¼ 1 mm2=s; Dgb ¼ 106 mm2=s and d ¼ 10�6 mm.

2. Only the grain boundaries are subject to diffusion:

Dg ¼ 0; Dgb ¼ 106 mm2=s and d ¼ 10�6 mm.

3. Only the grains are subject to diffusion:

Dg ¼ 1 mm2=s and Dgb ¼ 0.

The third case described above is equivalent to a homogeneous

cube. Indeed, the grain boundaries are meshed with surface ele-

ments. The nodes composing a grain boundary belong to this grain

boundary and to both grains toward the grain boundary. If the

chemical element cannot diffuse through the grain boundaries

(Dgb ¼ 0), they can still diffuse through the grains because there

is at least one node linking a grain to its neighbor. Regarding the

diffusivities presented in Table 1, the grain boundary diffusivity

has been set 1 million times higher than the grain diffusivity. Let

us consider Ugb as the flux in the surface mesh of grain boundaries

only. And let us consider Ug as the flux in the RVE without grain

boundaries, which is the flux in a homogeneous cube. They respec-

tively correspond to the measurement of U in the second and third

case of diffusion described above. Thus, in order to have Ug and Ugb

of the same order of magnitude, the grain boundary thickness d has

been set to 10�6 mm i.e. 1 million times lower. This value is consis-

tent with experimental values obtained by high-resolution trans-

mission microscopy, field ion microscopy and other techniques

[27–30].

4.1. Results and discussion

In Fig. 3 the relative difference e ¼
U�Ug�Ugb

U

�
�
�

�
�
� is plotted versus the

number of grains N in the case of Voronoï 3D grain shapes (Fig. 2a).

This quantity is representative of the ability of both flux Ug and Ugb

to be taken separately and added together in order to calculate the

real total flux U.

It appears that above 50 grains the relative difference e remains

less than 2%. It means that the following assumption can be made

U � Ug þUgb ð8Þ

Then, 50 grains is a low limit for the flux dissociation hypothesis

and for the volume element representativeness. Moreover, the flux

in a homogeneous cube of diffusivity Dg is already known

Ug ¼ �DgDxDc ð9Þ

Hence, by combining Eqs. (7)–(9) it becomes

D ¼ Dg �
Ugb

DcDx

� 	

ð10Þ

This equation shows that the study of the effective diffusivity

stands on the measurement of the flux in grain boundaries only.

Then the calculations can be performed on the grain boundaries

only instead of being performed on the whole representative vol-

ume element. The surface mesh of the grain boundaries is enough

(a) Voronoi 3D (b) Columnar

(c) Voronoi 2D

Fig. 2. Grain shapes used to perform simulations. Diffusion direction is vertical,

highlighted by the color gradient. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Validity criterion of the flux superposition hypothesis.
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to know the whole flux in the RVE, which saves some calculation

time. The flux in a set of grain boundaries is written as follows

Ugb ¼

Z

Sgb

J
!

� n
!
dS ð11Þ

where Sgb is the surface in the grain boundary set where the flux

comes in (or out) and n
!

its normal unit vector. By extracting the

grain boundary thickness d it can also be written

Ugb ¼ dDgb

Z

lgb

�grad
��!

cð Þ � n
!
dl ð12Þ

where lgb is the grain boundary length corresponding to Sgb and the

term grad
��!

cð Þ � n
!
is representative of the grain boundary orientation:

if the macroscopic diffusion direction – marked by the vector n
!
– is

perpendicular to the grain boundary – marked by the vector

grad
��!

cð Þ–, there will be no flux through it. According to the problem

linearity, the flux is proportional to the prescribed concentration

difference Dc. It leads to the following expression

Ugb ¼ �DgbdDca ð13Þ

where a is a scalar. Thus, by extracting the side of the cube, it

becomes

Ugb ¼ �Dgbd
Dc
Dx

leq ð14Þ

where leq represents an equivalent length of flux transit. By combin-

ing Eqs. (7), (8), (9) and (14), it becomes:

D ¼ fDgb þ 1� fð ÞDg ð15Þ

where

f ¼
dleq

Dx2 þ dleq
ð16Þ

This equation is closely related to Hart’s equation but is applicable on

3D structures with non columnar grains. The following part aims at

expressing the weighting coefficient f as a function of the grain size d.

5. Effective diffusivity model

5.1. Results

According to Hart’s equation, the weighting coefficient f of Eq.
(15) should be equal to f

v
the volume fraction of grain boundaries.

For the whole set of RVEs, both f and f
v
values are extracted and

plotted in Fig. 4. f is extracted from a combination of Eqs. (14)

and (16) by measuring Ugb and f
v
is obtained with the following

relation:

f
v
¼

Vgb

Vgb þ Vg
¼

SvdDx3

SvdDx3 þ Dx3
¼

Svd
Svdþ 1

ð17Þ

where Sv is the grain boundary surface per unit volume in the RVE,

which can be numerically measured on the mesh. It also corre-

sponds to the grain boundary density. It appears that the weighting

coefficient f is directly proportional to the volume fraction of grain

boundaries f
v
. Let us call q the proportionality coefficient, it

changes with the grain shape but remains less than one, except in

the case of columnar grains in the diffusion direction where it is

equal to one.

5.2. Discussion

The proportionality between f and f
v
can then be written

f ¼ q fv ð18Þ

Table 2 summarizes the different values of q obtained in the 3 cases.

For a given value of q, the model predicts the effective diffusivity as

a function of the grain boundary volume fraction. q seems to

depend on the grain shape and to be representative of the grain

boundary fraction participating to diffusion. In the case of columnar

grains, the model becomes equivalent to Hart’s Eq. (2). In this case,

the whole grain boundary surface participates to diffusion and

q ¼ 1. For this configuration, the calculation of q would have been

trivial but the aim is to highlight that its numerical measurement

is consistent with this well-known solution. The link with the grain

size can be established through the grain boundary density Sv ,
which requires to make an hypothesis on the grain shape. For exam-

ple for spherical grains of diameter d, this grain boundary surface

per unit volume can be obtained by dividing the surface of the

sphere by the double of its volume, because a grain boundary

belongs to two grains.

Sv ¼
4p d

2


 �2

2� 4
3
p d

2


 �3
¼

3

d
ð19Þ

A similar approach for other grain shapes leads to a general expres-

sion for the grain boundary density:

Sv ¼
b

d
ð20Þ

where b depends on the grain shape and d is the grain size. The def-

inition of the grain size can vary with the grain shape. In our cases,

we chose to assume the grains as spherical for the Voronoi 3D con-

figuration because they do not present any preferential direction.

For the same reason, in both columnar and Voronoi 2D cases, we

assumed the grains as cylindrical. In these 3 cases, the grain size

is defined as the diameter of the grains. The value b is a link

between the grain size and the volume (or surface) fraction of grain

boundaries. It can be obtained by measuring the grain boundary
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Fig. 4. Weighting coefficient of the homogeneous diffusivity as a function of the

volume fraction of grain boundary.

Table 2

Grain Shape parameters q and b for the 3 different shapes studied.

Case q b

Voronoi 3D 0:63264 3:1685� 0:13

Columnar 1 2:1455� 0:06

Voronoi 2D 0:43206 2:1455� 0:06
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density on these multiple grain shapes. Then, the grain size can be

extracted with these relations

d ¼ 2
ffiffiffiffiffiffiffiffi

3Dx3
4pN

3

q

For spherical grains

d ¼ 2
ffiffiffiffiffiffi

Dx2
pN

q

For cylindrical grains
ð21Þ

A linear regression lead to estimate bwith the least squares method

for each grain shape. Table 2 shows its values for the different grain

shapes studied. The relation (20) can also be obtained by dividing

the volume fraction of grain boundaries of Eq. (3) by d. Considering

Svd to be negligible compared to 1, the volume fraction can also be

obtained with Eq. (17). Hence, replacing all parameters with Eqs.

(15), (17) and (18), the effective diffusivity model can be written

as follows

D ¼ Dg þ q
bd

dþ bd
Dgb � Dg


 �

ð22Þ

This model is valid when the contrast between grain boundary

diffusivity and lattice diffusivity is high and when the grain bound-

ary thickness is very low compared to the grain size, in order to

respect the hypothesis that grain boundaries can be represented

by surface mesh elements. Thus, considering that bd is negligible

compared to d, and that Dgb � Dg , Eq. (22) becomes

D ¼ Dg þ qb
d

d
Dgb ð23Þ

The main difference with the Hart Eq. (2) can be found in this factor

q which takes into account grain boundaries not parallel or perpen-

dicular to the diffusion direction. With a global point of view, there

are two geometrical parameters in this model: b and q. The value of

q is representative of the grain boundaries mean orientation com-

pared to the diffusion direction. The more grain boundary surface

containing the diffusion direction there will be, the more q will be

close to unity. And by increasing the proportion of grain boundaries

perpendicular to the diffusion direction, the value of q decreases.

The difference between these two parameters is clearly underlined

in Table 2: for both cases Columnar and Voronoi 2D, the grain shape

remains the same just as b. However, q takes different values, fol-

lowing the grains orientation.

6. Conclusion

In this paper, a homogenization technique is proposed to find

the effective diffusivity of polycrystalline media, using the finite

elements method on cubic representative volume elements, where

grain boundaries are meshed with 2D elements. A criterion has

been highlighted for the flows dissociation which is a criterion

for the volume element representativeness. The flux dissociation

enables to expand the Hart model to a 3D representative volume

element. Then, an analytic formulation of the relationship between

diffusivity and grain size has been proposed from the study of RVEs

with different grain sizes. It constitutes an improvement of Hart’s

equation by taking into account grain boundaries in random

directions.

For the future studies, the focus will be given to the meaning of

the q parameter, which seems to depends on the grain geometry.

The method will be applied on representative volume elements

with non equiaxed grains and the value of q will be studied as a

function of the grain shape or the grain geometrical orientation.

A more general aim of this study is to provide an engineering

tool to determine the effective diffusivity for a given microstruc-

ture. Thus, the homogenization method presented here is expand-

able to any transport phenomenon like thermal studies for the

calculation of an effective thermal conductivity for example.
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