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KARHUNEN-LO ÈVE DECOMPOSITION OF GAUSSIAN MEASURES ON BANACH SPACES

The study of Gaussian measures on Banach spaces is of active interest both in pure and applied mathematics. In particular, the spectral theorem for self-adjoint compact operators on Hilbert spaces provides a canonical decomposition of Gaussian measures on Hilbert spaces, the so-called Karhunen-Loève expansion. In this paper, we extend this result to Gaussian measures on Banach spaces in a very similar and constructive manner. In some sense, this can also be seen as a generalization of the spectral theorem for covariance operators associated to Gaussian measures on Banach spaces. In the special case of the standard Wiener measure, this decomposition matches with Paul Lévy's construction of Brownian motion.

Preliminaries on Gaussian measures

Let us first remind a few properties of Gaussian measures on Banach spaces. Our terminology and notations are essentially taken from [START_REF] Bogachev | Gaussian measures[END_REF] (alternative presentations can be found in [START_REF] Kuo | Gaussian measures in banach spaces[END_REF], [START_REF] Vakhania | Probability distributions on banach spaces[END_REF] or [START_REF] Hairer | An introduction to stochastic pdes[END_REF]). In this work, we consider a separable Banach space X, equipped with its Borel σ-algebra B(X). Note that every probability measure on (X, B(X)) is Radon and that Borel and cylindrical σ-algebras are equal in this setting. A probability measure γ on (X, B(X)) is Gaussian if and only if for all f ∈ X * (the topological dual space of X), the pushforward measure γ • f -1 (of γ through f ) is a Gaussian measure on (R, B(R)). Here, we only consider the case γ centered for simplicity (the general case being obtained through a translation). An important tool in the study of a (Gaussian) measure is its characteristic functional γ (or Fourier transform) γ : f ∈ X * → γ(f ) = X e i x,f X,X * γ(dx) ∈ C, where ., . X,X * is the duality pairing. Since γ is a centered Gaussian measure, we have

(1.1) ∀f ∈ X * , γ(f ) = exp - C γ (f, f ) 2 ,
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where C γ is the covariance function

C γ : (f, g) ∈ X * × X * → X x, f X,X * x, g X,X * γ(dx) ∈ R.
One of the most striking results concerns integrability. Indeed, using a rotation invariance principle, it has been shown that a Gaussian measure γ admits moments (in a Bochner sense) of all orders (as a simple corollary of Fernique's theorem, see [START_REF] Bogachev | Gaussian measures[END_REF]). Consequently, its covariance operator may be defined as

R γ : f ∈ X * → X
x, f X,X * xγ(dx) ∈ X, using Bochner's integral and is characterized by the following relation

(1.2) ∀(f, g) ∈ X * × X * , R γ f, g X,X * = C γ (f, g).
Most noticeably, R γ is a symmetric positive kernel (Hilbertian or Schwartz kernel) in the following sens:

∀(f, g) ∈ X * × X * , R γ f, g X,X * = R γ g, f X,X * , ∀f ∈ X * , R γ f, f X,X * ≥ 0.
Furthermore, the Cameron-Martin space H(γ) associated to γ is the Hilbertian subspace of X with Hilbertian kernel R γ (see [START_REF] Schwartz | Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants)[END_REF] and [START_REF] Aronszajn | Theory of reproducing kernels[END_REF] for the usual case of reproducing kernel Hilbert spaces). In particular, we will extensively use the socalled reproducing property

∀h ∈ H(γ), ∀f ∈ X * , h, f X,X * = h, R γ f γ ,
where < ., . > γ denotes the inner product of H(γ). Note that H(γ) is continuously embedded in X and admits R γ (X * ) as a dense subset. Additionally, the covariance operator has been shown to be nuclear and in particular compact (see [START_REF] Vakhania | Probability distributions on banach spaces[END_REF], Chapter 3 for a detailed presentation and proofs).

Our objective is to decompose any Gaussian measure γ on a (separable) Banach space X which, in fact, can be done by considering any Hilbert basis of the Cameron-Martin space H(γ). Indeed, let (h n ) n be any arbitrary orthonormal basis of H(γ) and (ξ n ) n a sequence of independent standard Gaussian random variables defined on a probability space (Ω, F , P). Then the series

(1.3) n ξ n (ω)h n ,
converges almost surely in X and the distribution of its sum is the Gaussian measure γ (cf. theorem 3.5.1 p. 112 in [START_REF] Bogachev | Gaussian measures[END_REF]). When X is a Hilbert space, a canonical Hilbert basis of the Cameron-Martin space H(γ) is given by the spectral decomposition of the covariance operator R γ as a self-adjoint compact operator on X (see Mercer's theorem in the special case

X = L 2 [a, b] with [a, b] any compact interval of R).
In this paper, we will show how to define and construct such a basis in the general case X Banach by a direct generalization of the Hilbert case. In particular, this "diagonalizing" basis will be of the form h n = R γ h * n where h * n is in the dual space E * for all n. As a special case of the representation (1.3), the corresponding decomposition in X (for the strong topology) will be

x = n x, h * n X,X * h n ,
γ almost everywhere (since (h * n ) n is a sequence of independent standard normal random variables by the reproducing property). Roughly speaking, it means that γ can be seen as the countable product of the standard normal distribution N (0, 1) on the real line:

γ = n N (0, 1).
For a recent review of the interplay between covariance operators and Gaussian measures decomposition, consult [START_REF] Kvaratskhelia | Unconditional convergence of functional series in problems of probability theory[END_REF]. To see how to construct such a basis, we start with the Hilbert case.

Gaussian measures on Hilbert spaces

Hilbert geometry has nice features that are well understood, including Gaussian measures structure (see [START_REF] Kuo | Gaussian measures in banach spaces[END_REF] and [START_REF] Prato | An introduction to infinite-dimensional analysis[END_REF] for a recent treatment). First of all, Riesz representation theorem allows to identify X * with X. As a linear operator on a Hilbert space, the covariance operator R γ of a Gaussian measure γ is self-adjoint and compact. Spectral theory exhibits a particular Hilbert basis of X given by the set (x n ) n of eigenvectors of R γ . Using this specific basis, the covariance operator is

R γ : x ∈ X → n λ n x, x n X x n ∈ X,
where ., . X is the inner product of X. A simple normalization, namely h n = √ λ n x n , provides a Hilbert basis of H(γ). The nuclear property of R γ simplifies to

n h n 2 X = n λ n < +∞.
Using the terminology of random elements, let Y be the infinite-dimensional vector defined almost surely by

Y (ω) = n ξ n (ω)h n = n λ n ξ n (ω)x n ,
where (ξ n ) n is a sequence of independent standard normal random variables. Then γ is the distribution of the Gaussian vector Y . In the context of stochastic processes, this representation is well-known as the Karhunen-Loève expansion ( [START_REF] Karhunen | über lineare methoden in der wahrscheinlichkeitsrechnung[END_REF], [START_REF] Loève | Probability theory[END_REF]) of the process Y = (Y t ) t∈T (assumed to be mean-square continuous over a compact interval T = [a, b] of R).

In order to extend this spectral decomposition to the Banach case, let us recall the following simple property (where B X denotes the unit closed ball of X):

(2.1)

λ 0 = sup x∈X\{0} R γ x, x X x 2 X = max x∈BX R γ x, x X
is the largest eigenvalue of R γ and is equal to the Rayleigh quotient

Rγ x0,x0 X x0 2 X
where x 0 is any corresponding eigenvector. A similar interpretation is valid for every n ∈ N:

λ n = max x∈BX ∩span(x0,...,xn-1) ⊥ R γ x, x X .
Keeping this interpretation in mind, we can now consider the Banach case.

Gaussian measures in Banach spaces

In the context of Banach spaces, the previous spectral decomposition of the covariance operator doesn't make sense anymore. Nevertheless, we will show in section 3.1 that the Rayleigh quotient is well defined in this context (lemma 3.1). Combining this and a simple decomposition method (lemma 3.2), we give in section 3.2 an iterative decomposition scheme of a Gaussian measure. Main analysis and results are given in the last section 3.3.

3.1.

Rayleigh quotient and split decomposition. The first lemma in this section is an existence result of particular linear functionals based on a compactness property. The second one provides a method to separate a Banach space into two components with respect to a linear functional and a Gaussian measure. These results are given independently to emphasize that lemma 3.2 could be combined with different linear functionals to define other iterative decomposition schemes (see section 3.2). Lemma 3.1. Let γ be a Gaussian measure on (X, B(X)) a separable Banach space and set

λ 0 = sup f ∈B X * R γ f, f X,X * ∈ [0, +∞]. Then ∃f 0 ∈ B X * , λ 0 = R γ f 0 , f 0 X,X * .

Moreover, we may assume

f 0 X * = 1. Proof of lemma 3.1. Let (f n ) n ∈ B X * be a maximizing sequence: R γ f n , f n X,X * → λ 0 ∈ [0, +∞]. From the weak-star compactness of B X * (see Banach-Alaoglu theorem), we can suppose that f n ⇀ f ∞ for the σ(X * , X)-topology where f ∞ ∈ B X * . This implies that γ(f n ) = X e i x,fn X,X * γ(dx) → X e i x,f∞ X,X * γ(dx) = γ(f ∞ ),
using Lebesgue's convergence theorem. From equations 1.1 and 1.2, we conclude that

R γ f n , f n X,X * → R γ f ∞ , f ∞ X,X * . Hence λ 0 = R γ f ∞ , f ∞ X,X * ∈ R + . If λ 0 > 0, then f ∞ X * = 1
and we can take f 0 = f ∞ . In the degenerate case λ 0 = 0, we have R γ = 0 and any f 0 of unit norm is appropriate.

We will now show how to split both X and γ, given any f ∈ X * of non trivial Rayleigh quotient (in the previous sense). Lemma 3.2. Let γ = δ 0 be a non trivial Gaussian measure on a separable Banach space (X, B(X)). Pick

f 0 ∈ X * such that f 0 X * = 1 and λ 0 = R γ f 0 , f 0 X,X * > 0. Set P 0 : x ∈ X → x, f 0 X,X * x 0 , R γ f 0 = λ 0 x 0 and h 0 = √ λ 0
x 0 , then we have the following properties.

(1) x 0 , f 0 X,X * = 1 and h 0 γ = 1.

(2) P 0 is the projection on X with range Rx 0 and null space ker

(f 0 ) = {x ∈ X, x, f 0 X,X * = 0}. Furthermore, the restriction Q 0 of P 0 on H(γ) is the orthogonal projection onto Rh 0 : h ∈ H(γ), h, f 0 X,X * x 0 = h, h 0 γ h 0 .
(3) According to the decomposition x = P 0 x + (I -P 0 )x in X, the Gaussian measure γ can be decomposed as

γ = γ λ0 * γ 1 ,
where γ λ0 = γ • P -1 0 and γ 1 = γ 0 • (I -P 0 ) -1 are Gaussian measures with respective covariance operators:

R λ0 : f ∈ X * → λ 0 x 0 , f X,X * x 0 , R γ1 : f ∈ X * → R γ f -R λ0 f.
In particular,

R γ f = λ 0 x 0 , f X,X * x 0 + R γ1 f.
(4) The Cameron-Martin space H(γ) is decomposed as

H(γ) = Rh 0 ⊕ H(γ 1 ), where H(γ 1 ) = (I -Q 0 )(H(γ)) = (Rh 0 ) ⊥ equipped with the inner product of H(γ) is the Cameron-Martin space of γ 1 .
(5) For each t ∈ R, denote by tx 0 + γ 1 the Gaussian measure on X centered at tx 0 with covariance operator R γ1 . Then, γ t is the conditional probability distribution of x ∈ X given f 0 (x) = t:

∀B ∈ B(X), γ t (B) = γ 1 (B -tx 0 ) = γ(B|f 0 = t).
Moreover, f 0 is N (0, λ 0 ) and the deconditioning formula is as follows:

γ(B) = R γ t (B) e -t 2 2λ 0 √ 2πλ 0 dt.
The proof is straightforward and is given in the appendix. Concerning the last property on conditioning, it is worth noting that the conditional covariance operator R γ1 does not depend of the particular value t of the random variable f 0 ∈ X * . We will now use both of these lemmas to build a complete decomposition of any Gaussian measure γ.

3.2.

Iterative decomposition of a Gaussian measure. Consider a (centered) Gaussian measure γ on a separable Banach space (X, B(X)). The initial step of the decomposition is to split X and γ according to lemma 3.2 using f 0 ∈ X * given by lemma 3.1. The same process is applied to the residual Gaussian measure γ 1 defined in lemma 3.2, and so on and so forth. Now, we formalize the resulting iterative decomposition scheme.

Define γ 0 = γ (initialization). By induction on n ∈ N (iteration), we define the Gaussian measure γ n+1 of covariance operator R γn+1 such that

∀f ∈ X * , R γ f = n k=0 λ k x k , f X,X * x k + R γn+1 f where λ n = max f ∈B X * R γn f, f X,X * and where x n is defined by the relation R γn f n = λ n x n with f n chosen such that λ n = R γn f n , f n X,X * .
From lemma 3.2, we have the orthogonal decomposition for all n

H(γ) = span(h 0 , ..., h n ) ⊕ H(γ n+1 ) where h n = √ λ n x n .
If for some n, λ n+1 = 0, then R γn+1 = 0 and H(γ n+1 ) = {0}, which means that R γ is a finite-rank operator and H(γ) = span(h 0 , ..., h n ) = span(x 0 , ..., x n ) a finite-dimensional linear space. This means that γ is a finitedimensional Gaussian measure with support equal to its Cameron-Martin space. Theorem 3.3 gives the properties of this decomposition in the general case where H(γ) is infinite-dimensional. Theorem 3.3. Suppose H(γ) is infinite-dimensional and keep previous notations, we have the following properties.

(1) (h n ) n is an orthonormal sequence in H(γ).

(2) (x n ) n and (f n ) n are satisfying the following relations:

(a) ∀n ∈ N, x n X = x n , f n X,X * = 1, (b) ∀(k, l) ∈ N 2 , k > l, x k , f l X,X * = 0. (3) Let Q n : h ∈ H(γ) → Q n h = n k=0 h, h k γ h k be the orthogonal projection onto the linear space span(h 0 , ..., h n ) = span(x 0 , ..., x n ) in H(γ). Then, we have Q n h = n k=0 h -Q k-1 h, f k X,X * x k , with the convention that Q -1 = 0. (4) Define P n on X by P n x = n k=0 x -P k-1 x, f k X,X * x k ,
with the same convention P -1 = 0. Then, P n is the projection onto span(x 0 , ..., x n ) and null space {x ∈ X : x, f k X,X * = 0 for k = 0, ..., n}. Furthermore, the operator P n restricted to H(γ) is equal to Q n .

(5) According to the decomposition x = P n x + (I -P n )x in X, the Gaussian measure γ can be decomposed as γ = γ λ0,...,λn * γ n+1 where γ λ0,...,λn = γ

• P -1 n is a Gaussian measure with covariance operator R λ0,...,λn : f ∈ X * → n k=0 λ k x k , f X,X * x k .
Furthermore, we have γ n+1 = γ • (I -P n ) -1 and the relation

R γ = R λ0,...,λn + R γn+1 . ( 6 
)
The Cameron-Martin space H(γ) is decomposed as

H(γ) = span(h 0 , ..., h n ) ⊕ H(γ n+1 ),
where H(γ n+1 ) = (I -Q n )(H(γ)) equipped with the inner product of H(γ) is the Cameron-Martin space of the Gaussian measure γ n+1 . (7) Let x * n = (I -P n-1 ) * f n for n ≥ 0. Then, ∀n, R γ x * n = λ n x n . The random variables x * n are independent N (0, λ n ), and

∀n, P n x = n k=0 x, x * k X,X * x k .
For the computation of the dual basis (x * n ) n , we have the recurrence formula

x * n = f n -P * n-1 f n with P * n-1 f n = n-1 k=0 x k , f n X,X * x * k and x * 0 = f 0 . Furthermore, γ λ0,...,λn = γ λ0 * ... * γ λn where γ λn is the distribution of the random vector x → x, x * n X,X * x n for all n. (8) Let h * n = √ λ n -1
x * n for n ≥ 0. Then, we have R γ h * n = h n , and the random variables h * n are independent N (0, 1). ( 9) For each t = (t 0 , ..., t n ) ∈ R n+1 , denote by

n k=0 t k x k + γ n+1 the Gauss- ian measure on X centered at n k=0 t k x k with covariance operator R γn+1 . Then, γ t = n k=0 t k x k + γ n+1 is the conditional probability distribution of x ∈ X given x * 0 (x) = t 0 , ..., x * n (x) = t n : ∀B ∈ B(X), γ t (B) = γ n+1 B - n k=0 t k x k = γ(B|x * 0 = t 0 , ..., x * n = t n ).
The deconditioning formula is

γ(B) = R n γ t (B) n k=0 e - t 2 k 2λ k √ 2πλ k dt k
This theorem is a straightforward extension of lemma 3.2 and a proof is given in the appendix. It remains to see that this decomposition is complete, namely that we have γ = * n γ λn according to the decomposition of the covariance operator

R γ = n λ n x n , . X,X * x n .
3.3. Asymptotic analysis. In this section, we suppose that H(γ) is infinitedimensional and we use notations of the previous section. The two following lemmas will be essential for the main result of this paper (theorem 3.6). Lemma 3.4. We have B H(γn) = B H(γ) ∩ span(h 0 , ..., h n-1 ) ⊥ for all n and

(3.1) λ n = sup f ∈B X * sup h∈B H(γn ) h, f X,X * .
Proof of lemma 3.4. Since H(γ) = span(h 0 , ..., h n-1 ) ⊕ H(γ n ) and . γn = . γ on H(γ n ) (see theorem 3.3, assertion ( 6)), we get B H(γ) ∩ span(h 0 , ..., h n-1 ) ⊥ = B H(γn) .

But, for h ∈ H(γ n ), h, f X,X * = h, R γn f γn and sup h∈B H(γn ) h, f X,X * is at-

tained for h = Rγ n f Rγ n f γn (if R γn f = 0). Thus, sup h∈B H(γn ) h, f X,X * = R γn f, f X,X * .
Lemma 3.5. The sequence (λ n ) n≥0 is non-increasing and λ n → 0.

Proof of lemma 3.5. By lemma 3.4 and the expression 3.1, we see that

λ n+1 ≤ λ n . Moreover, (h n ) is an orthonormal system in H(γ), hence ∀f ∈ X * , h n , f X,X * = h n , R γ f γ → 0,
as a consequence of Bessel's inequality. In other words, we have that h n ⇀ 0 for the weak topology of X. Since the unit ball of H(γ) is precompact in X (corollary 3.2.4 p.101 in [START_REF] Bogachev | Gaussian measures[END_REF]), we can extract a subsequence (h n k ) k such that h n k → k h ∞ for the strong topology of X. By unicity of limit in the topological vector space X equipped with the weak topology, we deduce that h ∞ = 0 in X. Therefore, h n k X = λ n k → k 0, which ends the proof.

The two above lemmas are the ingredients to prove now that the orthonormal family (h n ) n is a Hilbert basis of H(γ) in R γ (X * ) as it is discussed in [START_REF] Vakhania | Canonical factorization of gaussian covariance operators and some of its applications[END_REF].

Theorem 3.6. (h n ) n≥0 = (R γ h * n ) n≥0
is a Hilbert basis of H(γ). Proof of theorem 3.6. Let h ∈ H(γ) such that ∀n ∈ N, h, h n γ = 0. Then, using lemma 3.4, we have

∀n ∈ N, ∀f ∈ B X * , h, f X,X * ≤ λ n h γ ,
which implies that h, f X,X * = 0 for all f ∈ X * . Therefore, h = 0 and span(h n , n ≥ 0) is dense in H(γ).

We give now the two claimed results of this paper.

Corollary 3.7. The covariance operator can be decomposed as follows

R γ = n≥0 λ n x n , . X,X * x n ,
where the convergence is in L(X * , X). More precisely, the nth step truncation error is

R γ - n k=0 λ k x k , . X,X * x k = λ n+1 ,
where • stands for the operator norm in L(X * , X).

Proof of corollary 3.7. From theorem 3.6, we know that (h n ) n is a Hilbert basis of H(γ). It suffices to write

∀f ∈ X * , R γ f = n≥0 R γ f, h n γ h n ,
and use the reproducing property. The truncation error norm is

R γ - n k=0 λ k x k , . X,X * x k = sup f ∈B X * R γn+1 f X . But, R γn+1 f X = sup g∈B X * R γn+1 f, g X,X * ≤ λ n+1 by the Cauchy-Schwarz inequality. Since R γn+1 f n+1 = λ n+1 x n+1 and x n+1 X = 1, we have R γn+1 f n+1 X = λ n+1 . Hence R γ - n k=0 λ k x k , . X,X * x k = λ n+1 → 0. Corollary 3.8. Remind the definition h * n = √ λ n -1 x * n with x * n = (I -P n-1 ) * f n for n ≥ 1 and x * 0 = f 0 . Then, we have the decomposition in X x = n x, h * n X,X * h n , γ a.e.,
where the random variables h * n are independent N (0, 1). In equivalent form, let (ξ n ) n be a sequence of independent standard normal variables on (Ω, F , P). Then the random series

n √ λ n ξ n (ω)x n
defines a X-valued random Gaussian vector with distribution γ.

Decomposition of the classical Wiener measure

Let γ be the standard Wiener measure on X = C([0, 1], R), the space of all real continuous functions on the interval [0, 1] which is a Banach space if equipped with the supremum norm. The Riesz-Markov representation theorem allows to identify X * with the linear space of all bounded signed measures on [0, 1] equipped with the norm of total variation. In this context, the dual pairing is

∀x ∈ X, ∀µ ∈ X * , x, µ X,X * = 1 0 x(t)µ(dt).
The Cameron-Martin space associated to γ is the usual Sobolev space H 1 0 ([0, 1], R), defined by

H 1 0 ([0, 1], R) = f ∈ X, ∀t ∈ [0, 1], f (t) = t 0 f ′ (s)ds, f ′ ∈ L 2 ([0, 1], R)
and associated inner product

f 1 , f 2 γ = f ′ 1 , f ′ 2 L 2 . The covariance operator R γ satisfies R γ µ, µ X,X * = V ar 1 0 W t µ(dt)
where (W t ) t∈[0,1] is the standard Wiener process. Using Fubini's theorem, we easily get

R γ µ, µ X,X * = [0,1] 2 t ∧ sµ(dt)µ(ds) = 1 0 µ([u, 1]) 2 du. Hence, (R γ µ) ′ (t) = µ([t, 1]) almost everywhere in [0, 1], and R γ µ : t ∈ [0, 1] → t 0 µ([u, 1 
])du. Consider now the initial step of the decomposition, that is find

f 0 = µ 0 ∈ B X * such that R γ µ 0 , µ 0 X,X * = sup µ∈B X * R γ µ, µ X,X * . Since ∀µ ∈ B X * , ∀u ∈ [0, 1], |µ([u, 1])| ≤ 1, the unique measure (up to sign) into B X * maximizing R γ µ, µ X,X * = 1 0 µ([u, 1]) 2 du is µ 0 = δ 1 . Moreover, λ 0 = R γ µ 0 , µ 0 X,X * = V ar(W 1 ) = 1
is the variance of the Wiener process at point t = 1. Since µ → R γ µ, µ X,X * is a non-negative quadratic functional, an usual argument shows directly that µ 0 must be an extremal point of B X * . Thus µ 0 = δ t0 for some point t 0 ∈ [0, 1]. And clearly, t 0 = 1, corresponding to the maximum of variance of the Wiener process. So, we have

λ 0 = 1, f 0 = µ 0 = δ 1 . Using the fact that R γ δ t : s ∈ [0, 1] → R γ δ t , δ s X,X * = Cov(W t , W s ) = t ∧ s, we get x 0 = (t ∈ [0, 1] → t) and h 0 = x 0 (since λ 0 = 1). Now, we have P 0 x : t ∈ [0, 1] → x, f 0 X,X * x 0 (t) = x(1)t and (I -P 0 )x is the function t ∈ [0, 1] → x(t) -x(1)t.
From this, we see that γ 1 = γ • (I -P 0 ) -1 is the Gaussian measure associated to the Brownian bridge (B t ) t∈[0,1] with covariance kernel

K 1 : (t, s) ∈ [0, 1] 2 → Cov(B t , B s ) = t ∧ s -ts.
Using now the fact that µ → R γ1 µ, µ X,X * is a non-negative quadratic functional, we see that f 1 = µ 1 = δ t1 where t 1 = 1 2 is the maximum of variance of the Brownian bridge B. Hence, we get

λ 1 = 1 4 , x 1 = (t → 4(t ∧ 1 2 -t 2 
)) (by the relation is the Gaussian distribution of the process (I -P 1 )W :

λ 1 x 1 = R γ1 δ 1 2 ) and h 1 = 1 2 x 1 . Furthermore, x * 1 = δ t1 -1 2 δ t0 and γ 2 = γ • (I -P 1 ) -1
t → W t -W 1 x 0 (t) -(W 1 2 - 1 2 W 1 )x 1 (t)
. By the assertion 9 of theorem 3.3, γ 2 is the conditional distribution of W given W 1 = 0, W 1 2 = 0. Using this interpretation, scale-invariance and spatial Markov properties of the Wiener process, we immediately get λ n = 1 2 p+2 for n = 2 p + k, k = 0, ..., 2 p -1 and p ≥ 0. Furthermore, the Hilbert basis (h n ) n≥0 of H(γ) is given by h 0 (t) = t and h n (t) = t 0 h ′ n (s)ds, n ≥ 1, where

h ′ n (s) =    √ 2 p for 2k 2 p+1 ≤ s ≤ 2k+1 2 p+1 - √ 2 p for 2k+1 2 p+1 < s ≤ 2k+2 2 p+1
0 otherwise , if n = 2 p + k, k = 0, ..., 2 p -1 and p ≥ 0. The family (h ′ n ) n∈N is the usual Haar basis of L 2 ([0, 1], R). The functions (x n ) n≥0 are Schauder's functions

x n (t) = √ 2 p+2 h n (t)
corresponding to hat functions of height 1 and lying above the intervals k 2 p , k+1

2 p (n = 2 p + k). The resulting decomposition n √ λ n ξ n (ω)
x n is the famous Lévy-Ciesielski construction of Brownian motion on the interval [0, 1] (see [START_REF] Mckean | Stochastic integrals[END_REF]). The 8 first steps (and the associated residual) of this decomposition are illustrated in figure 1.

Comments

(1) For γ a Gaussian measure on a separable Hilbert space X, corollary 3.7 is equivalent to the spectral theorem applied to the self-adjoint compact operator R γ . In the Banach case, corollary 3.7 says that

R γ = n≥0 λ n x n , . X,X * x n ,
where (λ n ) n is a non-increasing sequence that converges to zero and (x n ) n is a sequence of unit norm vectors in X and orthogonal in H(γ). Furthermore, we have the same formula for the error (see comments below of its importance for applications):

R γ - n k=0 λ k x k , . X,X * x k = λ n+1 .
Interpretation of the pairs (λ n , x n ) for each n is the following: for n = 0, x 0 is a (unit) direction vector for a line in X that has the largest variance possible (= λ 0 ) by a projection of norm one (namely, the projection P 0 in theorem 3.3). Remark that P 0 of norm one means P 0 orthogonal or self-adjoint in the Hilbert case. By considering the measure γ 1 = γ • (I -P 0 ) -1 , the vector x 1 is the direction vector for a line in the subspace (I -P 0 )X that has the largest variance possible and so on. In the Hilbert case, this decomposition process is known as (functional) principal component analysis. [START_REF] Bogachev | Gaussian measures[END_REF] In this work, we assume the Radon measure γ to be Gaussian. By a slight modification of the proof of lemma 3.1, the decomposition is valid if we assume only X x 2 γ(dx) < +∞ and results have to be interpreted in a mean-square sense (in particular, independence becomes non correlation and last parts of lemma 3.1 and theorem 3.3 on conditioning are valid only in the Gaussian case).

(3) The random series representation n≥0 √ λ n ξ n (ω)x n in corollary 3.8 is a generalization of the Karhunen-Loève expansion based on the corresponding decomposition of the covariance operator R γ = n≥0 λ n x n , . 

) n ). Error expression R γ - n k=0 λ k x k , . X,X * x k = sup f ∈B X * R γn+1 f X = λ n+1
in corollary 3.7 says that we have a precise quantification of uncertainty in terms of confidence interval in the Gaussian case.

Conclusion

In this work, we suggest a Karhunen-Loève expansion for a Gaussian measure on a separable Banach space based on a corresponding decomposition of its covariance operator. In some sense, this decomposition generalizes the Hilbert case. Lévy's construction of Brownian motion appears to be a particular case of such an expansion. Finally, we believe that this result will be useful both in pure and applied mathematics since it provides a canonical representation of Gaussian measures on separable Banach spaces. Now, the random variable P * 0 f = x 0 , f X,X * f 0 is Gaussian with variance R γ λ 0 f, f X,X * = λ 0 x 0 , f 2 X,X * and (I -P * 0 )f = fx 0 , f X,X * f 0 is Gaussian with variance R γ1 f, f X,X * . To show that P * 0 f and (I -P * 0 )f are independent, we compute their covariance: X x, P * 0 f X,X * x, (I -P * 0 )f X,X * γ(dx)

= X
x 0 , f X,X * x, f 0 X,X * ( x, fx 0 , f x, f ) γ(dx)

= x 0 , f X,X * R γ f 0 , f X,X * -λ 0 x 0 , f 2 X,X * = 0.
Using the characteristic function of γ, we get by independence γ(f ) = X e i x,(P * 0 f +(I-P * 0 )f ) X,X * γ(dx) = γ λ0 (f ) γ1 (f ).

This proves γ = γ λ0 * γ 1 and also R γ = R γ λ 0 + R γ1 . (4) Consider the orthogonal decomposition H(γ) = Rh 0 ⊕ H 1 where H 1 = (Rh 0 ) ⊥ . Since R γ λ 0 f = λ 0 x 0 , f X,X * x 0 = R γ f, h 0 γ h 0 is the orthogonal projection of R γ f onto Rh 0 , we see that R γ f = R λ0 f + R γ1 f is the corresponding orthogonal decomposition of R γ f . Therefore, by the Pythagorean theorem,

R γ f 2 γ = R γ0 f 2 γ + R γ1 f 2 γ . Now, using the relation R γ λ 0 f = λ 0 x 0 , f X,X * x 0 , we get R γ λ 0 f 2 γ = λ 0 x 0 , f 2 X,X * = R γ λ 0 f, f X,X * (= R γ λ 0 f 2 γ λ 0 ), thus R γ1 f 2 γ = R γ f, f X,X * -R λ0 f, f X,X * = R γ1 f, f X,X * .
Using the reproducing property in the Cameron-Martin space H(γ 1 ), we get R γ1 f 2 γ = R γ1 f 2 γ1 . Since R γ1 (X * ) is dense in H(γ 1 ), we conclude that H(γ 1 ) is a subspace of H 1 and, in particular, ., . γ1 = ., . γ . Finally, H(γ 1 ) = H 1 by density of R γ (X * ) in H(γ).

(5) Using γ = γ λ0 * γ 1 , we can write for all B ∈ B(X):

γ(B) = X γ 1 (B -tx 0 ) e -t 2 λ 0 √ 2πλ 0 dt.
Since f 0 ∼ N (0, λ 0 ), we deduce that γ(B|f 0 = t) = γ 1 (Btx 0 ) (as a regular conditional probability).

Proof of theorem 3.3.

(1) For n ∈ N, h n γ = 1 by construction. If n < m, remark that h n ∈ span(h 0 , ..., h m-1 ) = H(γ m ) ⊥ to get h n , h m γ = 0.

(2) By definition of x n , we have x n , f n X,X * = 1. Now, the reproducing property gives ∀f ∈ B X * , x n , f X,X * = x n , R γn f γn ≤ x n γn R γn f, f X,X * .

Using the relations R γn f, f X,X * ≤ λ n and √ λ n x n γn = h n γ = 1, we get x n , f X,X * ≤ 1. This proves that x n X * = x n , f n X,X * = 1. For k > l, h k ∈ H(γ l ) and the reproducing property gives λ k x k , f l X,X * = h k , R γ l f l γ l = λ l h k , h l γ = 0.
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 1 Figure 1. Decomposition of the standard Wiener measure on the 8 first steps.

  X,X * x n . (4) The decomposition of the classical Wiener measure shows that "multiplicity" of the values λ n . In the Hilbert case, this sum is always finite and is the trace of the operator R γ . Furthermore, this finitetrace property is characteristic of Gaussian measures on Hilbert spaces. Such a characterization in the Banach case is still an open problem.
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	due to the (5) Gaussian hypothesis is motivated by applications both in Gaussian process
	regression (or Kriging, see [11]) and Bayesian inverse problems ([13]). As
	theorem 3.3 indicates, we are interested in an efficient algorithm to con-
	struct a design of experiments (see [4]) or a training set (functionals (f n ) n
	or, equivalently, (x * n						

Proofs

Proof of lemma 3.2.

(1) Since R γ f 0 = λ 0 x 0 , we have λ 0 x 0 , f 0 X,X * = R γ f 0 , f 0 X,X * = λ 0 and λ 0 > 0 implies x 0 , f 0 X,X * = 1. The second equality is obtained from the definition of h 0 and the reproducing property:

(2) Since P 0 x 0 = x 0 , f 0 X,X * x 0 = x 0 , we have P 2 0 = P 0 and P 0 is clearly the projection onto Rx 0 along the null space of f 0 ∈ X * . Now, if h ∈ H(γ), we get by the reproducing property:

(3) As bounded linear transformations of a (centered) Gaussian measure, both γ λ0 and γ 1 are (centered) Gaussian measures. Consider the decomposition in X * :

According to the orthogonal decomposition

Clearly, we have:

Conversely, if P n x = 0 then P k x = 0 for all k ∈ [0, n] and 0 = x -

The random variable P * n f is Gaussian with variance R γ λ 0 ,...,λn f, f X,X * and (

0, the random variables P * n f and (I -P n ) * f are independent and we conclude as in lemma (3.2). [START_REF] Karhunen | über lineare methoden in der wahrscheinlichkeitsrechnung[END_REF] The proof is similar to the proof of (4) in lemma (3.2). Introduce the space H n+1 = span(h 0 , ..., h n ) ⊥ , we have that (R γn+1 (X * ), ., . γn+1 ) is a subspace of H n+1 , which is sufficient to prove H(γ n+1 ) = H n+1 as Hilbert spaces. [START_REF] Kuo | Gaussian measures in banach spaces[END_REF] For n ≥ 0 and h ∈ H(γ), we write h, R γ x * n γ = h, (I -

Hence, the random variables x * n are independent with respective variance λ n . The computation of this sequence comes from the identity P * n f = n k=0 x k , f X,X * x * k . (8) This is a reformulation of the previous statement about the sequence (x * n ) n . (9) This last assertion is a direct consequence of ( 5) and [START_REF] Kuo | Gaussian measures in banach spaces[END_REF].