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Abstract

Metamodeling, the science of modeling functions observed at a finite number of points, benefits
from all auxiliary information it can account for. Function gradients are a common auxiliary
information and are useful for predicting functions with locally changing behaviors. This article is
a review of the main metamodels that use function gradients in addition to function values. The
goal of the article is to give the reader both an overview of the principles involved in gradient-
enhanced metamodels while also providing insightful formulations. The following metamodels have
gradient-enhanced versions in the literature and are reviewed here: classical, weighted and moving
least squares, Shepard weighting functions, and the kernel-based methods that are radial basis
functions, kriging and support vector machines. The methods are set in a common framework
of linear combinations between a priori chosen functions and coefficients that depend on the
observations. The characteristics common to all kernel-based approaches are underlined. A new
ν-GSVR metamodel which uses gradients is given. Numerical comparisons of the metamodels
are carried out for approximating analytical test functions. The experiments are replicable, as
they are performed with an opensource available toolbox. The results indicate that there is a
trade-off between the better computing time of least squares methods and the larger versatility of
kernel-based approaches.
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1 Introduction

Despite continuous progress in the accuracy of experimental measurements and numerical simulations of
the physics of a considered system, the need for metamodels keeps increasing. Metamodels are statistical
or functional models of input-ouput data that are obtained either from experimental measures or from the
numerical simulation of the associated physical phenomena. Metamodels are sometimes called surrogates,
proxies, regression functions, approximating functions, supervised machine learners or are referred to
with specific names such as the ones described later in this article. Although not directly linked to
the physics, metamodels have proven to be necessary for creating simple, computationally efficient
associations between the input and output of the considered phenomena. For example, in materials
sciences input may be material properties or boundary conditions and outputs are displacements, forces,
temperatures, concentrations or other quantities at specific locations; in design, inputs may be the
parameters describing a shape or a material and outputs specific measures of performance such as
mass, strength, stiffness; in geophysics inputs may be parameterized descriptions of the underground
(permeabilities, faults, reservoir shapes) and the outputs quantities observed at the surface (flow rates,
displacements, accelerations, gravity). Typically, actual or numerical experiments are costly in terms
of time or other resources, in which case metamodels are a key technology to perform optimization,
parameter identification and uncertainty propagation.

Infering nonlinear relationships requires large amount of data particularly when the number of input
parameters grows (the “curse of dimensionality” [1]) so that it is important to use all available additional
information. Gradients, i.e., derivatives of the outputs with respect to the inputs, are one of the most
common and most useful side knowledge to be accounted for when building the metamodels: many finite
elements codes have implemented adjoint methods to calculate gradients [2–4]; automatic differentiation
is another solution for computing gradients [5–7]; there are responses such as volumes for which analytical
gradient calculation is accessible.

Accounting for gradients when building metamodels often allows to decrease the necessary number of
data points to achieve a given metamodel accuracy, or equivalently, it allows to increase the metamodel
accuracy at a given number of data points. When guessing a function with a locally changing behavior (a
non stationary process in the probability terminology) from a sparse set of observations, the traditional
regression techniques relying only on the function values will tend to damp out local fluctuations. This
is because useful regression methods comprise regularization strategies that make them robust to small
perturbations in the data. Accounting for gradients is a way to recover some of the meaningful local
fluctuations. The need for gradient information has been acknowledged in geophysics for reconstructing
a gravity field from stations measurements when the underground is subject to local changes [8, 9].
Further illustrations of the interest of gradients will be given in Section 10.
The purpose of this article is to review the various approaches that have been proposed to create

metamodels with zero order and gradient information. A global view is first developed. Section 2.1 is a
general introduction to metamodeling which may be skipped by readers familiar with the concept. After
a Section presenting the main notations, Section 2.3 synthetizes into a unique framework the different
techniques which will be covered in the review. A generic idea, which can be applied to any surrogate,
for indirectly using gradients is summarized in Section 3.
The article then details, in turn, each gradient-enhanced method: the large family of least squares

approaches are the focus of Section 4; Shepard weighting functions are summarized in Section 5. All
the methods covered later are based on kernels. After summarizing the main concepts behind kernels
in Section 6, we provide details about gradient-enhanced radial basis functions (Section 7), kriging
(Section 8) and support vector regression (Section 9). Note that the formulation of the gradient-enhanced
Support Vector Regression (ν-GSVR) proposed in part 9.4 is a new contribution. Multivariate cubic
Hermite splines [10, 11] are not discussed in this review as they seem to date to remain a topic of
mathematical research.
Finally, the different methods are applied and compared on analytical test functions in Section 10.

The ensuing analysis of results and presentation of related softwares should help in choosing specific
gradient-enhanced techniques. All methods described in this article have been implemented and tested
with the opensource matlab/octave GRENAT Toolbox [12].
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2 Build, validate and exploit a surrogate model

2.1 Surrogates and their building in a nutshell
In many contexts, the observation of the response of a parametrized system can be done only for a few
parameters instances, also designated as points in the design space. A solution to getting an approximate
response at non-sampled parameter instances is to use a metamodel (or surrogate). A metamodel is a
doubly parameterized function, one set of parameters being the same as that of the studied system (i.e.,
the coordinates of the points), the other set of parameters allowing further control of the metamodel
response to give it general representation abilities. For simplicity’s sake, parameters of the second set
will be designated as internal parameters. The building of the metamodel involves tuning its internal
parameters in order to match, in a sense to be defined, the observations at the points.

The simplest metamodels are polynomials tuned by regression, which are part of the Response Surface
Methodology (RSM, [13]) for analyzing the results of experiments. For dealing with an increase in
nonlinearity of the function, rising the degree of the polynomial could seem to be a solution. However,
oscillations appear and the number of polynomial coefficients, nt, to be set grows rapidly, as

nt =

(
np + d◦

d◦

)
=

(np + d◦)!
np! d◦!

(1)

where np is the number of parameters and d◦ is the degree of the polynomial. This is why other
techniques for approximating functions such as parametric kernel-based metamodels have received much
attention.
The literature is already rich in contributions presenting and detailing surrogates models [14–23].

Hereafter, the basic steps in building and using surrogate models are summarized (see also Fig. 1):

• Initial data generation. Sampling strategies generate points in the design space (using, for instance,
Latin Hypercube Sampling [24]). The responses of the actual function are calculated at each
instance of the parameters. In many cases, this step is computationally intensive because the
actual function involves a call to, typically, solvers of partial differential equations. Details on
sampling techniques can be found in [25–27].

• build the metamodel. Because data is sparse, parametric surrogate models (which are reviewed
in the rest of this paper) are used. This step mainly means determining the model internal
parameters.

• In many situations and in particular for optimization, enrichment (or infill) strategies are used for
adding points to the initial set of sample points. Enrichment strategies post-process the current
surrogate. An example of infill method for optimization is the Expected Improvement [28, 29].

• Finally the quality of the surrogate model is measured using dedicated criteria (such as R2 or Q3,
cf. Section 10).

At the end the building process and during the infill steps the surrogate can provide inexpensive
approximate responses and gradients of the actual function. For a large number of sample points and/or
a large number of parameters, the building of a surrogate can be (computer) time consuming but it is
typically less expensive than a nonlinear finite elements analysis.
In the context of optimization, metamodels are often used for approximating objective or constraint

functions and the approximation contributes to localizing the potential areas of the optimum. For
efficiency in optimization, metamodels are not made accurate in the whole design space but only in
potentially good regions. Such family of approaches is designated as Surrogate-Based Analysis and
optimization (SBAO) [18]. It is composed of optimization algorithms that rely on a metamodel, a
classical optimization algorithm and an infill strategy. SBAO presents some similarities with Trust-
Region methods [30] in the use of metamodels. However Trust-Region methods focus on proved rapid
local convergence whereas SBAO targets globally optimal points. In SBAO the infill strategy looks
for global optima by sequentially optimizing a criterion that is calculated directly with the metamodel
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Figure 1: Schematic representation of the building process of a surrogate model (adapted from [21])

(saving calls to the true functions) and that is a compromise between exploration and search intensification:
exploration means adding points at badly known areas of the design space, intensification (also referred
to as exploitation) means adding points in regions where one expects good performance. Among the
many existing criteria [31, 32], Expected Improvement and related criteria [28, 29] are the most common
and have led to the Efficient Global Optimization algorithm (EGO) [33]. Thus, the use of surrogates in
optimization is iterative: each step of SBAO algorithms includes i) building a surrogate followed by ii)
optimizing an infill criterion based on the surrogate and then iii) calling the actual simulation at the
point output by the infill subproblem.
We now turn to the focus of this review that is gradient-enhanced metamodels also designated as

gradient-assisted or gradient-based metamodels. The next sections present our notations and a global
framework for gradient-enhanced metamodels.

2.2 Main notations

Let us consider an experiment parameterized by np continuous values grouped in the vector x(i). np
if often known as the dimension of the (approximation or optimization) problem. The scalar output,
or response, of the experiment is the function y(.). The notation x(i) designates both sample points
(i ∈ J1, nsK) and any non sampled point (i = 0). The vectors of responses (also sometimes called
observations) and gradients calculated at all sample points are denoted yg and are assembled according
to Eq. (2)-(5).

yg =
[
y>s y>gs

]>
, (2)

with

ys =
[
y1 y2 . . . yns

]>
, (3)

ygs =
[
y1,1 y1,2 . . . y1,np y2,1 . . . yns,np

]>
, (4)
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where

∀(i, k) ∈ J0, nsK× J1, npK,

yi = y
(
x(i)
)
, yi,k =

∂y

∂xk

(
x(i)
)
. (5)

More generally, a function y and its derivatives is written using the following index notations: y,i,
y,ij ... where i and j take values in J0, npK such as

y,i(x) =


y(x) if i = 0,

∂y

∂xi
(x) if i ∈ J1, npK;

(6)

y,ij(x) =



y(x) if i = j = 0

∂y

∂xi
(x) if i ∈ J1, npK and j = 0,

∂y

∂xj
(x) if j ∈ J1, npK and i = 0,

∂2y

∂xi∂xj
(x) if (i, j) ∈ J1, npK2.

(7)

Finally, the notation •̃ designates the approximation of the quantity of interest • provided by the
metamodel. Bold fonts mean vectors and matrices. ‖ • ‖ denotes the Euclidian distance.

2.3 Introduction to gradient-enhanced metamodels
This review article focuses on metamodels that, in addition to using and describing the responses, also
use and model the gradient of the response with respect to the x parameters. Henceforth, for each
sample point the value of the function and the gradients are supposed to have been observed. The
following approaches will be covered: indirect approaches, Least Squares techniques (LS), Weighted
Least Squares (WLS), Moving Least Squares (MLS), the Shepard Weighting function (IDW), Radial
Basis Functions (GRBF), Cokriging (GKRG) and Support Vector Regression (GSVR). In these last
acronyms, G stands for gradient-enhanced. A condensed view of the main references on which the next
sections are based is given in Table 1.

Grad.-based metamodels References
GKRG [34–63]
GRBF [46, 54, 56–59, 64–67]
GSVR [54, 68–73]
IDW [43, 46, 74]
LS [75]
MLS [76, 77]
WLS [75, 78–80]

Table 1: Summary of the main references on gradient-based metamodels

Before precisely introducing each gradient-based surrogate, we give a common description of all the
techniques (that can also be used for describing non-gradient-based models). It is noteworthy that all
the surrogates discussed in this paper are obtained by linear combination of “coefficients” and “functions”
that we will define soon. The approximation ỹ of an actual function y can be calculated as follows:

∀x(0) ∈ D, ỹ
(
x(0)

)
= A

(
x(0); yg, `

)
+

M∑
j=0

N∑
i=1

Bij

(
x(0); `

)
Cij

(
x(0); yg, `

)
. (8)
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` designates the internal parameters of the surrogate model. The terms A(), B(), and C() are specific to
each kind of surrogate model but share common defining properties. A() is the trend term whose goal is
to represent the main (average, large scale) features of the function y(). The B()’s are “functions” and
the C()’s are “weighting coefficients”. The B() functions are chosen a priori in the sense that, assuming `

is fixed, they do not depend on the observed responses, y
(
x(i)
)
and their derivatives,

∂y

∂xj

(
x(i)
)
. However,

the B() functions can depend on the locations of the sample points, x(i), i = 1, . . . , ns.The B() functions
are typically user inputs to the methods.

In contrast, the C() coefficients are calculated from the observations y
(
x(i)
)
and

∂y

∂xj

(
x(i)
)
, so that

their linear combination with the B() functions, eventually added to the trend, makes an approximation
to y(), as stated in Eq. (8). The coefficients are the weights in the linear combination of the B() functions.
For example, if one expects that the response (for np = 1) is proportional to 1/x plus a quadratic term
one could a priori choose B1(x) = 1/x and B2(x) = x2 and create a simple approximation with constant
coefficients y

(
x(0)

)
≈ ∑nt

i=1 CiBi(x
(0)). The Ci’s are then calculated from the observations, which in

our context include both the response function and its derivatives at the sampled points, for example so
that the approximation fits the observations in a least squares sense. When there is no a priori on the
B() functions, a generic choice is made: basis functions (e.g., polynomials) for LS, arctan for neural
networks, kernels evaluated at a given x(i) in kernel methods (GRBF, GKRG, GSVR here).
More generally, surrogates can be created by looking, at each x(0), for the “best” (in a certain sense) linear
combination of the B()’s, in which case the coefficients depend on x(0). The simplest template of such a sur-
rogate would be
y
(
x(0)

)
≈ ∑ns

i=1 similarity
(
x(i),x(0)

)
y
(
x(i)
)
where Bi

(
x(0)

)
is a measure of similarity between x(0) and

x(i) (not detailed here) and the coefficients Ci() are y
(
x(i)
)
. IDW and the kernel methods (GRBF,

GKRG and GSVR) are refined examples of such surrogates.
Although mathematically equivalent to a single summation, the double summation in Eq. (8) empha-

sizes the specific structure of gradient-enhanced surrogates: in all kernel-based surrogates, the index i
describes the sample point considered (therefore N = ns) while j represents the variable with respect to
which the derivatives are taken, j = 0 standing for the response without differentiation, (and M = np).

Table 2 summarizes the expressions of the trend, the functions and the coefficients such as they will
appear later in the text. Note that all metamodels but LS have internal parameters, `, that, as with

non-gradient-enhanced metamodels, are computed from the known points (x(i), y(x(i))), and
∂y

∂xj

(
x(i)
)

here, i = 1, ns, in a manner which is specific to each surrogate. For the sake of clarity, the difference
between the functions B() and the coefficients C() is made assuming that ` is fixed, otherwise there is
no clear general mathematical difference between them.
The methods that will be presented are organized in two groups, the kernel-based methods from

Section 6 onward, and the rest (before). They can be distinguished in the same way as the two above
examples. Kernel-based methods are built from the specification of a kernel, i.e., a function with two
inputs that quantifies the similarity between what happens at these two inputs. The other approximations,
which in this review are mainly variants of least squares, are made from a priori chosen single input
functions that are linearly combined. Despite fundamental differences in the way they are constructed,
many equivalences can be found between the methods: generalized least squares also have a kernel
which is given at the end of Section 4.2; vice versa, the kernels of the GSVR are implicitely products
of functions and the GSVR approximation is a linear combination of them like that of least squares;
the approximate responses of GRBF and GKRG have the same form (Eq. (72) and (89) without trend
are equivalent). These connections are further detailed in the paper. As a last common feature of the
methods presented, it is striking that all the approaches but GSVR approximate the response by a linear
combination of the observations yg, provided the internal parameters ` are fixed.
The calculation of the approximate gradients will be achieved by deriving Eq. (8), i.e., calculating

ỹ,k(x), which is possible if A, Bij and Cij are differentiable functions. One could think of other ways to
build ỹ,i(x), like learning them directly from the gradient data ygs independently from the response ys,
but such techniques are instances of the usual metamodel building (just applied to the gradients) and
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Table 2: Global framework for gradient-enhanced surrogates: Definition of trends, a priori functions
and coefficients as in Eq. (8). LS means Least Squares, WLS Weighted Least Squares, MLS
Moving Least Squares, IDW Shepard Weighting function, GRBF Gradient-enhanced Radial
Basis Function, GKRG CoKRiGing, GSVR Gradient-enhanced Support Vector Machine.
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are out of the scope of this review.
In practice, it is common to only have access to some of the components of the gradient of the

response. ỹ,k(x) would be known while ỹ,l(x), k 6= l, would not. All the techniques reviewed in this
article apply only to the components where the derivatives are known. However, to keep notations
simple, the derivations will always be carried out for all of the variables, as if all components of the
gradient were accessible. Further remarks about missing data and higher order derivatives are given in
Section 10.5.

3 Indirect gradient-based metamodels
For taking into account the derivative information of the response in the making of a metamodel, the
most basic idea is to use a first order Taylor’s series at sample point x(j) to generate additional data
points. For each sample point, for each of the np parameters, a neighboring point is created,

∀(i, k) ∈ J1, nsK× J1, npK, x(i) + ∆xkek, (9)

where ek is an orthonormal basis vector of the design space. Under the assumption that ∆xk remains
small (|∆xk| � 1), the Taylor’s serie provides the extrapolated value of the function y at the neighboring
point :

y
(
x(i) + ∆xkek

)
≈ y
(
x(i)
)

+
∂y

∂xk

(
x(i)
)

∆xk. (10)

Finally the non-gradient based metamodel can be built with ns × (np + 1) sample points and associated
responses.
This approach has been used with kriging approximation [43, 48, 81] and has been called “Indirect

Cokriging”. The main drawback of this method is that it requires a good choice of the ∆xk parameters:
if the value is too small, the kriging correlation matrix can be ill-conditioned and too large a value leads
to a degraded extrapolation by Taylor’s expansion. In both cases, the metamodel provides an incorrect
approximation. In previous works, Liu [81] used Maximum Likelihood Estimation for estimating the
value of each parameter ∆xk and in [48], the ∆xk are chosen equal to 10−4.

The indirect gradient-based approach does not scale well with dimension as the number of sample
points is multiplied by np + 1 when compared to a direct approach. Moreover, because the np new
sample points are very close to the initial sample point, numerical issues (such as the bad conditioning
of covariance matrices in KRG) occur that complicate the determination of the internal parameters.
Regularization or filtering techniques should be brought in. Therefore, indirect gradient-based approaches
should only be used in low dimension and for problems where dedicated techniques for determining ∆xk
and the internal parameters exist. In other cases, it is better not to use gradients or to opt for a direct
gradient-based approach. Examples of indirect gradient-based Kriging and RBF are proposed in Fig. 6
and 9. In these figures, the derivatives of RBF and KRG are determined analytically by deriving their
predictors. In such low dimension, the indirect gradient-based approaches, InRBF and InOK, seem to
perform as well as the direct gradient-based approaches, GRBF and OCK, in terms of approximating
the true response derivative, dy/dx(x). However, as will be seen in Section 10 (Figures 23 and 25), such
indirect strategies are not competitive in higher dimensions.

4 Least Squares approaches

4.1 Non weighted Least Squares (LS and GradLS)
Least Squares regression is the most common technique for approximating functions. Mainly applied in
the context of Response Surface Methodology (RSM, [13]), the classical regression [82] can be extended
for taking into account gradient information [75]. In this text, the acronym LS designates least squares
regression without the use of gradients and GradLS is the gradient-enhanced version of it. Notice that
this acronym differs from GLS that will designate Generalized Least Squares.
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The linear model used for gradient-based formulations remains the same as for non-gradient-based
versions:

yg = Fβ + ε, (11)

but this time the vector yg contains ns× (np+ 1) terms (responses and gradients), the matrix F contains
evaluations of the nt a priori chosen functions fj and their derivatives at each sample points x(i), the
vector β contains nt polynomial regression coefficients βj , and the vector ε is made of the ns × (np + 1)
errors of the model.

For gradient-based least squares models, at each point
{

x(i), y
(
x(i)
)
,
dy
dx

(x(i))

}
, np + 1 errors can be

written:

∀(i, k) ∈ J1, nsK× J1, npK,∀x(i) ∈ D,
εi = y

(
x(i)
)
− ỹ
(
x(i)
)
, (12)

εik =
∂y

∂xk

(
x(i)
)
− ∂ỹ

∂xk

(
x(i)
)
. (13)

The matrices and vectors of Eq. (11) are now further defined:

F =
[
F>s F>gs

]>
, (14)

β =
[
β1 β2 . . . βnt

]>
ε =

[
ε1 . . . εns ε11 ε12 . . . ε1np ε21 . . . εnsnp

]>
, (15)

where

Fs =

 f1
(
x(1)

)
. . . fnt

(
x(1)

)
...

. . .
...

f1
(
x(ns)

)
. . . fnt

(
x(ns)

)
 , (16)

Fgs =



∂f1
∂x1

(
x(1)

)
. . .

∂fnt

∂x1

(
x(1)

)
...

. . .
...

∂f1
∂xnp

(
x(1)

)
. . .

∂fnt

∂xnp

(
x(1)

)
∂f1
∂x1

(
x(2)

)
. . .

∂fnt

∂x1

(
x(2)

)
...

. . .
...

∂f1
∂xnp

(
x(ns)

)
. . .

∂fnt

∂xnp

(
x(ns)

)


. (17)

The sizes of the previous matrices Fs and Fgs are ns × nt and npns × nt, respectively.
The metamodel is built by determining the vector β̂ which minimizes the following Mean Squares

Error:

MSE(β) =

ns∑
i=1

[
ε2i +

np∑
k=1

ε2ik

]
=
∥∥Fβ − yg

∥∥2
2
. (18)

Minimizing MSE over β yields the function approximation,

∀x(0) ∈ D, ỹ
(
x(0)

)
= f
(
x(0)

)
β̂, (19)

where

f
(
x(0)

)
=
[
f1
(
x(0)

)
. . . fnt

(
x(0)

)]
, (20)

β̂ =
(
F>F

)−1
F>yg. (21)
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This metamodel leads to the familiar expression of regression approximation. Notice however that here,
the gradients affect the coefficients β̂.

The derivation of the GradLS model by minimization of the quadratic norm MSE can be interpreted
as making the orthogonal projection of the vector of observed responses and gradients yg onto the space
spanned by the columns of F. The result of the orthogonal projection is Fβ̂. The projection is itself
defined by the inner product it relies on. In least squares without derivatives, the inner product is the
usual dot product between vectors in an Euclidean space. Accounting for derivatives extends this inner
product to an inner product in a Sobolev space [83]:

∀ (ug,vg), 〈ug,vg〉 = 〈us,vs〉+ 〈ugs,vgs〉 =

ns∑
i=1

uivi +

ns∑
i=1

np∑
k=1

ui,kvi,k , (22)

where the g, s and gs subscripts have the same meaning as above with F. While both inner products
account for the euclidean distance between the response and the metamodel, the Sobolev inner product
further accounts for the difference in response and metamodel regularities through their gradients. In
other words, the usual geometrical interpretations of least squares generalize to the least squares with
derivatives formulation of Eq. (18) by moving from the Euclidean inner product to a product with
additional derivative terms.

The derivatives of the GradLS approximation are directly obtained by deriving Eq. (19),

∀k ∈ J1, npK, ∀x(0) ∈ D, ∂ỹ

∂xk

(
x(0)

)
=

∂f

∂xk

(
x(0)

)
β̂ , (23)

As required for building the gradient-enhanced least squares model, the functions fj must be differentiable
at least once.
Although the empirical mean square error Eq. (18) can be reduced by increasing the degree of the

polynomial basis, ỹ() will increasingly oscillate between the ns data points, which degrades the prediction
quality. This oscillatory phenomenon, known as Runge’s phenomenon [84], is illustrated in Fig. 2a and
Fig. 3d in 1 and 2 dimensions, respectively. Runge’s oscillations are mitigated when the actual function
is polynomial, the number of sample points ns increases, when gradients are accounted for like here, or
when a regularization strategy is added to the MSE minimization. For example, when approximating a
4th degree polynomial function using sufficiently many sample points in a dimension low enough so that
Eq. (19) can be computed, a 4th degree least squares approach is exact. Regarding the effect of gradients,
observe in Fig. 2b and Fig. 3g how gradient-enhanced least squares have a more stable response than LS
which only uses function values.

4.2 Generalized Least Squares (GLS)

Initially introduced for addressing the uncertainties and correlations in measured responses, Generalized
Least Squares (GLS) follow the same logic as the previous LS and GradLS models except that weights
are introduced in the error, MSE. The generalized least squares error which incorporates gradient
information now reads [75, 78–80],

E(β) = (ys − ỹs)
>

Ws(ys − ỹs) +
(
ygs − ỹgs

)>
Wgs

(
ygs − ỹgs

)
(24)

=
(
yg − ỹg

)>
Wg

(
yg − ỹg

)
, (25)

where Ws and Wgs are positive definite weight matrices. The minimization of the error leads to the
regression coefficients,

β̂ =
(
F>WgF

)−1
F>Wgyg, (26)

where F and yg are the same as in the GradLS approach (see above) and Wg = diag
[
Ws Wgs

]
. The

Weighted Least Squares (WLS) [82] approach is a special case of the Generalized Least Squares (GLS)
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Figure 2: Response-only and gradient-enhanced least squares (LS and GradLS) with polynomials of
degrees (d◦) 1, 2, 4, 6 and 8. The actual function is y(x) = 1/(1 + 25x2), it is computed at
ns = 9 sample points.
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Figure 3: Rosenbrock’s function, response-only and gradient-enhanced least squares approximations (LS
and GradLS) from polynomials of degree 9 built using ns = 25 sample points.
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where Wg is a diagonal matrix. Note that Eq. (26) encompasses traditional GLS without gradients by
setting Wgs = 0.
In traditional GLS (models without gradients), the definition of the weight matrix Ws depends on

the context of the study:

• If no a priori information on the covariance structure is available, the weights can come from
a chosen weighting function R(): Ws =

[
R(x(i) − x(j))

]
1≤i,j≤ns

. R() must be such that Ws is
positive definite, a condition shared with kernels and further discussed in Section 6.

• If a covariance structure is known: Ws = C−1 where C =
[
cov
[
Y
(
x(i)
)
, Y
(
x(j)

)]]
1≤i,j≤ns

. In
the case of uncorrelated errors, C is reduced to the diagonal matrix

diag
[
σ1 σ2 . . . σns

]
where σi = Var[εi], and GLS degenerates into WLS.

The geometrical interpretation of gradient-enhanced GLS is similar to that of GradLS made in the
previous Section, the only difference being that the projection of the vector of observations onto the
space spanned by the regression functions is no longer orthogonal but oblique, following the null space
of the projection matrix Fβ̂, β̂ given by Eq. (26).

In [78], normalization methods are proposed for calculating the weight matrices of gradient-enhanced
GLS:

• A standard normalization of responses and gradients where

Ws = diag
[
µ1

y21
. . .

µns

y2ns

]
, (27)

Wgs = diag
[
w1 . . . w1 w2 . . . . . . wns

]
with wi =

µiλi
ηi

. (28)

The coefficients λi and µi are meant to balance the influence of the derivatives and responses at
each sample point, respectively. ηi are normalization coefficients calculated as

ηi =

np∑
k=1

∂y
(
x(i)
)

∂xk
. (29)

In this case, Ws contains ns non-null terms and the diagonal of Wgs contains ns blocks of np

terms,
µiλi
ηi

.

• A normalization using logarithmic derivatives where Ws is like that of the standard normalization
above and

Wgs = diag
[
w1 . . . w1 w2 . . . . . . wns

]
with wi =

µiλiδ
2
i

y2i
. (30)

The δk coefficients, which are further described in [78], are based on the logarithmic derivatives
introduced in [85]. µi and λi have the same expressions as in the standard normalization.

To close the presentation on gradient-enhanced generalized least squares, following [86], we show how
the approach can be looked at as a kernel-based method. This comment uses explanations given in
Section 8 so that readers not familiar with kernels as covariances of Gaussian processes may wish to
read that Section first. The kernel is the covariance between two responses at different locations when
the responses are considered as random processes,

cov
[
Ŷ (x), Ŷ (x′)

]
= cov

[
f(x)β̂, f(x′)β̂

]
= E

[
f(x)β̂β̂

>
f(x′)

>
]

= f(x)
(
F>WgF

)−1
f(x′)

>
.

(31)
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This relation is the expression of the kernel associated to the gradient-enhanced GLS. It is obtained
assuming that the responses are centered (i.e., E[Y (x)] = 0) and the weight matrix is the inverse
covariance of the responses and their derivatives, W−1

g = E
[
YgY

T
g

]
. It can then be checked that

by using this kernel in the general prediction equation of kriging (with a null trend, see Table 6, or
equivalently the GRBF prediction formula Eq. (72)),

ỹ
(
x(0)

)
=
[
cov
[
Y
(
x(0)

)
, Y
(
x(1)

)]
, . . . , cov

[
Y
(
x(0)

)
, Y
(
x(ns)

)]]
C−1yg , (32)

one gets back the GLS prediction formula, ỹ
(
x(0)

)
= f
(
x(0)

)
β̂ with β̂ given by Eq. (26).

4.3 Moving Least Squares (MLS)

Classical response surface methods like LS, GradLS or GLS approximate functions by combining once
and for all a priori functions, fi() , i = 1, . . . , nt, that are globally defined throughout the design space.
When it is not possible to decide beforehand which functions to combine, as it is the case when the
function is expected to have local variations, it can be useful to proceed with local approximations. For
example, it was proposed in [87] to apply the classical RSM in neighborhoods of the points of interest.
Moving Least Squares (MLS) [88] is a generalization of GLS that builds a different metamodel at each
x(0):

∀x(0) ∈ D, ỹ
(
x(0)

)
= f
(
x(0)

)
β̂
(
x(0)

)
. (33)

The difference with previous approximations lies in the non constant regression coefficients β̂
(
x(0)

)
(compare Eqs. (19) and (33)). Like other least squares techniques, the gradient-based MLS (also
designated as Hermite version of MLS) [76, 77] is built by minimizing an error function, which here is

E
(
β; x(0)

)
= α

ns∑
i,j=1

wij

(
x(0)

)
εiεj + (1− α)

ns∑
i,j=1

np∑
k,l=1

wijkl

(
x(0)

)
εikεjl

= (ys − ỹs)
>

WMs

(
x(0)

)
(ys − ỹs) (34)

+
(
ygs − ỹgs

)>
WMgs

(
x(0)

)(
ygs − ỹgs

)
=
(
yg − ỹg

)>
WM

(
x(0)

)(
yg − ỹg

)
. (35)

The weights wij
(
x(0)

)
and wijlk

(
x(0)

)
depend of the location of x(0). These coefficients have the following

properties:

∀x(0) ∈ D, ∀(i, j, k, l) ∈ J1, nsK2 × J1, npK2,

wij

(
x(0)

)
=

{
h(‖x(i) − x(0)‖) if i = j,

0 if i 6= j,
(36)

wijkl

(
x(0)

)
=

{
hkl(‖x(i) − x(0)‖) if i = j and k = l,

0 if i 6= j or k 6= l,
(37)

where h() and hkl() are weight functions. Although different weight functions could be chosen for the
responses and gradients, the simplest solution is to take ∀(k, l) ∈ J1, npK2, hkl(r) = h(r) (See [76]). α is
a coefficient for managing the influence of the derivatives. α = 1 leads to a MLS approximation without
gradients.

The matrix WM

(
x(0)

)
is diagonal, WM

(
x(0)

)
= diag

[
WMs

(
x(0)

)
WMgs

(
x(0)

)]
, where WMs

(
x(0)

)
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and WMgs

(
x(0)

)
are ns × ns and nsnp × nsnp matrices, respectively:

∀ ∈ J1, nsK,

WMs

(
x(0)

)
= α diag

[
w11

(
x(0)

)
w22

(
x(0)

)
. . . wnsns

(
x(0)

)]
, (38)

WMgs

(
x(0)

)
= α diag

[
w1111

(
x(0)

)
w1122

(
x(0)

)
. . . w11npnp

(
x(0)

)]
. (39)

The weight functions are non-negative piecewise functions chosen among the non-exhaustive list provided
in Table 3.
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>
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) p)
`
>
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0
≤
p
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2
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e

          1
−

6
( r `

) 2 +

( |r| `

) 3
if
|r|

<
` 2

2

( 1
−
|r| `

)
if
` 2
≤
|r|

<
`

0
if
|r|
≥
`

`
>

0

Table 3: Examples of weighting functions, h(), for MLS approximation.

Finally, the MLS surrogate value at a non-sampled point x(0) is given by Eq. (33) where the coefficients
β̂
(
x(0)

)
are obtained by minimizing the weighted mean squares error of Eq. (35). Because the computation
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of these coefficients has to be done at each requested new point, MLS are computationally more expensive
than other least squares techniques.

5 Shepard Weighting Function (IDW)

Also designated as Inverse Distance Weighting method (IDW), the Shepard Weighting method was
introduced in [91]. The gradient-enhanced version of [46] is based on the modified Shepard Weighting
method of [74]. The IDW approximation to the function is written as local linear combinations of local
approximations to the true function around point x(i), Qi(). Initially chosen as a quadratic function
in [74], Qi() are taken here as the first order Taylor approximation at the sampled point x(i) for the
gradient-enhanced version of IDW [43, 46].

The IDW metamodel is formulated as,

∀x(0) ∈ D, ỹ
(
x(0)

)
=

ns∑
j=1

Wj

(
x(0)

)
Qj

(
x(0)

)
. (40)

The relative weights,

Wj(x
(0)) =

Wj

(
x(0)

)
ns∑
k=1

Wk

(
x(0)

) , (41)

are made of the inverse distance functions,

Wj(x) =

[(
Rw −

∥∥x− x(j)
∥∥)

+

Rw
∥∥x− x(j)

∥∥
]2

, (42)

where ∀d ∈ R, (d)+ = max(0, d), and Rw is a radius of influence around x(j). The weight functions Wj

are such that Qj(x) has an influence on the approximation only in a (hyper)sphere of center x(j) and
radius Rw. Rw is set so that the hypershere includes Nw sample points. A discussion on Rw and Nw
can be found in [74].
The weight functions of Eqs. (41,42) have the following properties:

∀(i, j) ∈ J0, nsK× J1, nsK, ∀x(i) ∈ D,

Wj

(
x(i)
)

= δij =

{
0 if j 6= i ,

1 if j = i .
(43)

The function Qj(x) is a first order Taylor approximation of y at x(j),

∀x ∈ D, Qj(x) = y
(
x(j)

)
+

np∑
k=1

∂y
(
x(j)

)
∂xk

(
xk − x(j)k

)
. (44)

The IDW approximation interpolates responses and gradients of the actual function at the sample
points. To prove it, the IDW prediction and its derivatives are now calculated at the sample points:

∀i ∈ J1, nsK, ∀x(i) ∈ D,

ỹ
(
x(i)
)

=

ns∑
j=1

Wj

(
x(i)
)
Qj

(
x(i)
)

= Qi

(
x(i)
)

= y
(
x(i)
)

;

(45)
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∀(i, l) ∈ J1, nsK× J1, npK, ∀x(i) ∈ D,
∂ỹ
(
x(i)
)

∂xl
=

ns∑
j=1

[
∂Wj

(
x(i)
)

∂xl
Qj

(
x(i)
)

+Wj

(
x(i)
)∂Qj(x(i)

)
∂xl

]

=
∂Qi

(
x(i)
)

∂xl
=
∂y
(
x(i)
)

∂xl
,

(46)

because,
∀(i, j, l) ∈ J1, nsK2 × J1, npK,∀x(i) ∈ D,
∂Wj

(
x(i)
)

∂xl
= 0 .

(47)

The IDW metamodel bears similarities to the kernel methods of Sections 6, 7, 8, 9: Wj(x) is a double
input function that grows with proximity between x and x(j); In IDW, Wj(x) is multiplied with response
estimates (the Qj()’s) in a way that is reminiscent of kriging, cf. GKRG in Table 2. Note also that,
when compared to the other metamodels reviewed in this paper, IDW is the only approach that neither
requires the inversion of large (ns(np + 1) by ns(np + 1)) systems of linear equations nor the resolution
of optimization problems as GSVR will. For this reason, IDW is computationally inexpensive. We now
turn to the already mentioned kernel methods.

6 Kernel functions for gradient-enhanced kernel-based metamodels
Most kernel-based metamodels have been developped in the field of machine learning. While Support
Vector Machines are arguably the most well-known, other approximation techniques belong to kernel-
based techniques. In this article, we will focus on Radial Basis functions (See Section 7), Kriging
(See Section 8) and Support Vector Regression (See Section 9). These three surrogate models, like all
kernel-based metamodels, require choosing a kernel function or kernel, Ψ, which measures a similarity,
Ψ
(
x(i),x(j)

)
, between any two points x(i) and x(j), and is therefore a double input function. Kernel

functions are examples of the functions B() of the general metamodel framework, Eq. (8).
As will be done in Section 8 about kriging, one can look at the responses at each point x as a random

process, Y (x). With this point of view, since a kernel is a similarity measure, it is natural to define a kernel
as the correlation between the responses at different locations, Ψ

(
x(i),x(j)

)
= corr

[
Y
(
x(i)
)
, Y
(
x(j)

)]
.

Kernels must satisfy Mercer’s conditions [92] which means that they must be continuous, symmetric
and positive definite, a necessary condition for correlation functions. This is most easily done by taking
the kernel function in a list of known Mercer’s kernels [86, 92, 93].

In the case of gradient-enhanced approximations, a great simplification comes from the fact that the
kernels involving gradients are deduced from the kernel involving only the responses: the correlation
functions between a response and a gradient is the derivative of the kernel and the correlation between
two gradients is the second derivative of the correlation, cf. Eq. (92).

An additional condition on the kernel functions has then to be satisfied: the kernels used in gradient-
enhanced metamodels must be twice differentiable.
Multidimensional kernel functions Ψ are usually built from unidimensional kernels h by taking the

product,

∀(x(i),x(j), `) ∈ (Rnp)
3
,

Ψ
(
x(i),x(j); `

)
=

np∏
k=1

h(x
(i)
k − x

(j)
k ; `k), (48)

where ` is the vector of the kernel internal parameters. In the above formula, we have introduced the
stationarity assumption that the similarity between two points depends only on the vector separating
them and not on where they are located, h(x

(i)
k , x

(j)
k ) = h(x

(i)
k − x

(j)
k ) = h(r). The sign of r is kept to

simplify the calculations of the kernel derivatives. For gradient-enhanced metamodels, common twice
differentiable kernel functions are summarized in Table 4 (See for example [62, 63, 94, 95]).
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Name h(r) Parameters

Squared exponential exp

(
− r2

2`2

)
` > 0

Cubic spline 1


1− 15

(r
`

)2
+ 30

( |r|
`

)3

if |r| < 0.2`

2

(
1− |r|

`

)
if 0.2` ≤ |r| < `

0 if |r| ≥ `

` > 0

Cubic spline 2


1− 6

(r
`

)2
+ 6

( |r|
`

)3

si |r| < `

2

2

(
1− |r|

`

)
si
`

2
≤ |r| < `

0 si |r| ≥ `

` > 0

Matérn
21−ν

Γ(ν)

(√
2ν|r|
`

)ν
Kν

(√
2ν|r|
`

)
(`, ν) ∈ (R+)

2

Matérn 3/2
(

1 +
√
3|r|
`

)
exp

(
−
√
3|r|
`

)
` > 0

Matérn 5/2
(

1 +
√
5|r|
` + 5r2

3`2

)
exp

(
−
√
5|r|
`

)
` > 0

Table 4: Examples of kernel functions, r = x
(i)
k − x

(j)
k

Introduced by Stein [96] in the context of approximation, the Matérn class [97] of kernels have
parameters that make them highly adjustable. Matérn kernels use a modified Bessel function of the
second kind Kν normalized by a Gamma function Γ(ν). Thanks to the parameter ν, the smoothness of
the kernel function can be accurately controlled. Matérn functions and their derivatives for 3 values of
ν and ` = 0.8 are plotted in Fig. 4. In practice, two specific values of ν leads to the most often used
Matérn 3/2 and Matérn 5/2 (ν = 3/2 or 5/2) functions. Figures 5b and 5c show these functions and
their derivatives for 3 values of the parameter `. They can be compared with the squared exponential
kernel presented on Fig. 5a. The Matérn function is dνe times differentiable [96] (where d•e denotes the
ceiling function). A stronger result is that the second derivative is continuous in 0 and its asymptotic
value is [98]

d2h(r)

dr2
∼
r→0
− ν
`2

Γ(ν − 1)

Γ(ν)
, (49)

Because the k-th derivative of the metamodel exist if the k + 1-th derivative of the kernel at 0 exist
and is finite ([86] for Gaussian Processes), the Matérn function with ν > 1 can be used for building
gradient-based (k = 1) metamodels. This assessment confirms the validity of the choice ν ≥ 3/2 proposed
in [63, 94, 95, 99]. The squared exponential kernel has a very simple expression and is often encountered
in practice. It should be noted that it yields extremely smooth metamodels: it is infinitely differentiable
at r = 0 and so are the associated surrogates. Such smoothness is often not representative of the
true function and, worse, it causes ill-conditioning of matrices in radial basis functions and kriging (cf.
Sections 7 and 8). This is the reason why Matérn kernels should generally be preferred.

The implementation of multidimensionnal kernel functions and their first and second derivatives can
lead to a complicated and time consuming code. In order to improve both aspects, [99] has proposed the
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Figure 4: Matérn function for ` = 0.8 and 3 values of ν

following formulation:

Lm =

m∏
k=1

h(x
(i)
k − x

(j)
k ; `k); (50)

Um =

np∏
k>m

h(x
(i)
k − x

(j)
k ; `k); (51)

Mm,n =

np∏
m<k<n

h(x
(i)
k − x

(j)
k ; `k) with m < n. (52)

The derivatives can then be computed as shown below where only the derivatives of the unidimensional
correlation function are needed,

∂Ψ

∂x
(i)
m

(
x(i),x(j); `

)
= LmUm

dh

dx(i)m

(
x(i)m − x(j)m ; `m

)
; (53)

∂2Ψ

∂x
(i)
m ∂x

(j)
n

(
x(i),x(j); `

)
=
LmMm,nUn

dh

dx(i)m

(
x(i)m − x(j)m ; `m

) dh

dx(j)n

(
x(i)n − x(j)n ; `n

)
if m 6= n,

LmUm
∂2h

∂x
(i)
m ∂x

(j)
m

(
x(i)m − x(j)m ; `m

)
if m = n.

(54)

7 Gradient-enhanced Radial Basis Function (GRBF)

Gradient-enhanced Radial Basis Function (GRBF) has also been designated as Hermite-Birkhoff or
Hermite interpolation [64]. This method was introduced in the more global context of Artificial Neural
Networks [65, 66] and it was used for dealing with optimization problems involving expensive solvers in
the context of computational fluid dynamics [46, 67] and assembly design [56–59].
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Figure 5: Examples of several kernel functions recommended for gradient-based metamodels
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7.1 Building process
The principle of GRBF is similar to that of classical RBF approach [100–102] with an extended basis of
functions. The added functions are chosen as the derivatives of the radial basis functions Ψ. Thus, the
GRBF approximation reads,

∀x(0) ∈ D,

ỹ
(
x(0)

)
=

ns∑
i=1

wiΨ
(
x(0),x(i)

)
+

np∑
j=1

ns∑
i=1

wij
∂Ψ

∂x
(0)
j

(
x(0),x(i)

)

=

np∑
j=0

ns∑
i=1

wijΨ0i,j , (55)

where

∀x(0) ∈ D, ∀(i, j, k) ∈ J0, nsK2 × J1, npK,

wij =

{
wi0 = wi if j = 0,

wij otherwise;
(56)

Ψij,k =


Ψij,0 = Ψij = Ψ

(
x(i),x(j)

)
if k = 0,

Ψij,k =
∂Ψij

∂x
(i)
k

=
∂Ψ

∂x
(i)
k

(
x(i),x(j)

)
otherwise. (57)

Only one half of the first derivatives needs to be calculated because they are odd functions:

∀(i, j, k) ∈ J0, nsK2 × J1, npK,
∂Ψ

∂x
(i)
k

(
x(i),x(j)

)
= − ∂Ψ

∂x
(j)
k

(
x(i),x(j)

)
. (58)

The second derivatives of the radial basis functions will be denoted

∀(i, j, k, l) ∈J0, nsK2 × J0, npK2, ∀(x(i),x(j)) ∈ D,

Ψij,kl =
∂2Ψ

∂xk∂xl

(
x(i),x(j)

)
. (59)

The GRBF building process consists in the determination of the wij ’s coefficients by ensuring that
the GRBF approximation interpolates the responses and gradients of the actual function at the sample
points:

∀(k, l) ∈ J1, nsK×J1, npK,∀x(k) ∈ D,
ỹ
(
x(k)

)
= ỹk = yk = y

(
x(k)

)
, (60)

∂ỹ

∂xl

(
x(k)

)
= ỹk,l = yk,l =

∂y

∂xl

(
x(k)

)
. (61)

Equations (60) and (61) lead to the following matrix formulation:

Ψgwg = yg. (62)

The vectors wg and yg contain the RBF coefficients and the responses and gradients of the actual
function, respectively. The matrix Ψg is built from the classical RBF matrix Ψ and the first and second
derivatives of the radial basis functions matrices, denoted Ψd and Ψdd, respectively:
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Ψg =

[
Ψ −Ψd

Ψ>d Ψdd

]
; (63)

Ψ =


Ψ11 Ψ12 . . . Ψ1ns

Ψ21 Ψ22 . . . Ψ2ns

...
. . .

...
Ψns1 Ψns2 . . . Ψnsns

 ; (64)

Ψd =


Ψ11,1 Ψ11,2 . . . Ψ11,np Ψ12,1 . . . Ψ1ns,np

Ψ21,1 Ψ21,2 . . . Ψ21,np
Ψ22,1 . . . Ψ2ns,np

...
. . .

...
. . .

Ψns1,1 Ψns1,2 . . . Ψns1,np
Ψns2,1 . . . Ψnsns,np

 ; (65)

Ψdd =



Ψ11,11 Ψ11,12 . . . Ψ11,1np
Ψ12,11 . . . Ψ1ns,1np

Ψ11,21 Ψ11,22 . . . Ψ11,2np
Ψ12,21 . . . Ψ1ns,2np

...
. . .

...
. . .

Ψ11,np1 Ψ11,np2 . . . Ψ11,npnp
Ψ12,np1 . . . Ψ1ns,npnp

Ψ21,11 Ψ21,12 . . . Ψ21,1np
Ψ22,11 . . . Ψ2ns,1np

...
. . .

...
. . .

Ψns1,np1 Ψns1,np2 . . . Ψns1,npnp
Ψns2,np1 . . . Ψnsns,npnp


. (66)

The sizes of the Ψ, Ψd and Ψdd matrices are ns × ns, nsnp × ns and nsnp × nsnp, respectively. So,
matrix Ψg contains ns(1 + np)× ns(1 + np) terms. The other terms in Eq. (62) are

wg =
[
w1 . . . wns

w11 w12 . . . w1np
w21 . . . wnsnp

]>
; (67)

yg =
[
y1 . . . yns

y11 y12 . . . y1np
y21 . . . ynsnp

]>
. (68)

The determination of the wij ’s finally consists in the inversion of the Ψg matrix. This square
symmetrical matrix is larger than the Ψ of the classical RBF approach.

In order to reduce the computation time, LU or Cholesky factorisation of the Ψg matrix can be used.
Finally, the derivatives of the GRBF can be easily calculated by deriving Eq. (55).
Figures 6, 7 and 8 provide illustrations on analytical functions. In the figures, the points have

been generated by an Improved Hypercube Sampling technique, IHS, [103]. An indirect version of the
gradient-enhanced RBF is proposed in 1D. This approach works in unidimensional problems but it
becomes unstable as the number of sample points and the number of parameters of the problem increase.

7.2 RBF kernels and conditioning

Many radial basis functions have been proposed in the literature (see for example [104]) and they can be
completed by the kernels presented in Section 6. In the case of gradient-based RBF, the kernels must
be at least twice differentiable to comply with the expressions of Eq. (60) and (61). Thus, Matérn or
squared exponential kernels can be used in GRBF. The matrix made of 0, 1 and 2nd order derivatives
Ψg is guaranteed to be positive definitite as will be explained in Section 8.3 about the Cc matrix which
has the same form. However, the conditioning of the matrix may be bad. As already discussed in
Section 6, the squared exponential kernel is likely to yield an ill-conditioned Ψg matrix, an issue that can
be addressed through any of the following techniques: use more distant sampled points or equivalently
decrease the value of the internal parameters `; replace the squared exponential kernel with a Matérn
kernel. Another solution can be to add a very small value (with an order fo magnitude of the machine
accuracy) to the diagonal of the Ψg matrix. In this case the GRBF approximation will not interpolate
the responses and gradients at the sample point.
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Figure 6: RBF, Indirect RBF (inRBF) and GRBF approximations of the unidimensional analytical
function y(x) = exp(−x/10) cos(x)+x/10. ns = 6 sample points, squared exponential function.

7.3 Estimation of parameters
The internal parameters of the RBF metamodel can be determined by minimizing the Leave-One-Out
error (LOO) with respect to ` = (`i)1≤i≤np (and ν in the case of the Matérn kernel). Based on the
principle of Cross-validation [105, 106], the classical LOO error is detailed hereafter where ỹ−i(x(i)) is
the RBF approximation at point x(i) without taking into account the response and the gradient of the
actual function at that sample point x(i):

LOO(`) =
1

ns

ns∑
i=1

(
ỹ−i(x

(i))− y
(
x(i)
))2

. (69)

Bompard et al. [107] propose an extended LOO criterion by adding the derivatives information:

LOO(`) =
1

ns(np + 1)

ns∑
i=1

[(
ỹ−i(x

(i))− y
(
x(i)
))2

+

np∑
k=1

(
∂ỹ−i,k
∂xk

(x(i))− ∂y

∂xk
(x(i))

)2
]
, (70)

where
∂ỹ−i,k
∂xk

is the approximation of the derivative provided by the metamodel built without taking

into account the true k-th component of the gradient at point x(i). The approximations ỹ−i and
∂ỹ−i,k
∂xk

are therefore obtained through Eq.(60) and partial use of (61) when a gradient is omitted from the
LOO error. In order to avoid the building of numerous metamodels associated to each value of the
internal parameters, an efficient way for computing the LOO was proposed in [108] and extended to
GRBF in [107]. It implies estimating the LOO criterion by inverting the kernel matrix once and for
all and calculating a vector product instead of completely building the metamodel each time a data is
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Figure 7: RBF and GRBF approximations of the two-dimensional Branin’s function, ∀(x1, x2) ∈
[−5, 10]× [0, 15], y(x1, x2) =

(
x2 − 5.1

4π2x
2
1 + 5

π − 6
)2

+ 10
(
1− 1

8π

)
cos(x1) + 1, IHS sampling

with ns = 20, Matérn 3/2 kernel function.
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Figure 8: RBF and GRBF approximations of the two-dimensional Six-hump Camel Back function,
∀(x1, x2) ∈ [−2, 2] × [−1, 1], y(x1, x2) =

(
4− 2.1x21 +

x4
1

3

)
x21 + x1x2 +

(
−4 + 4x22

)
x22, IHS

sampling with ns = 20, Matérn 3/2 kernel function
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removed. Finally, due to the multimodality of the LOO, a global optimizer has to be used such as a
stochastic optimizer (e.g., an evolution strategy or a particle swarm algorithm).

7.4 Variance of a stochastic process obtained with GRBF

As an extension to an idea given in [29], Bompard [54] proposes to look at the deterministic response y
as an instance of a stationary Gaussian stochastic process Y whose correlation is given by the GRBF
kernel and whose constant variance is σ2

Y = Var[Y (x)]. This allows to describe the mean and variance
of the GRBF prediction. Let Ψ

(
x(0)

)
be the vector containing the evaluations and first derivatives of

the RBF kernels Ψ0i,j (from Eq. (55)) at the new point x(0). By solving Eq. (62) for the weights, the
GRBF estimation is expressed as a linear combination of the true responses and their derivatives,

Ỹ (x(0)) = Ψ
(
x(0)

)>
Ψ−1g Yg . (71)

A mean and variance expressions are then calculated in a manner similar to kriging:

∀x(0) ∈ D,

ỹ
(
x(0)

)
= E

[
Ỹ (x(0))

]
= Ψ

(
x(0)

)>
Ψ−1g E[Yg] = y>g Ψ−1g Ψ

(
x(0)

)
, (72)

s2GRBF = E
[
Ỹ (x(0))− Y (x(0))

]2
= σ2

Y

(
1−Ψ

(
x(0)

)>
Ψ−1g Ψ

(
x(0)

))
. (73)

The expression for the mean makes use of the further specification of the observations at the sample
points, E[Yg] = yg, i.e., one considers the conditional process Y knowing the observations at the sample
points.

This variance could be used in infill criteria such as the expected improvement [33]. Unfortunately, as
was said earlier, this variance calculation will often fail due to loss of positiveness of the GRBF matrix
Ψg unless specific measures are undertaken.

8 Gradient-enhanced cokriging (GKRG)

Kriging, an alternative name for conditional Gaussian Processes, is today one of the main techniques for
approximating functions and optimizing expensive to calculate functions. Cokriging is an extension of
kriging for dealing with several correlated functions. Initially introduced for geostatistics [34, 35], many
works focus on the assumptions, principles and formulations of cokriging [36–38, 42]. Gradient-based
cokriging was introduced by Morris et al. [39] as a way to account for gradient information in kriging, and
has since then been applied to many fields. Table 5 summarizes the references and the kind of applications
that concern gradient-enhanced cokriging. Because the concepts underlying gradient-enhanced cokriging
have received various names, the last column of the Table lists the original keywords employed by the
cited authors. It is seen that gradient-enhanced cokriging has been largely used in the context of fluid
problems. The efforts made to calculate gradients in fluid simulations explain this observation.

8.1 Formulation of gradient-enhanced cokriging

Gradient-enhanced cokriging is very similar to the classical kriging approach. Random processes
associated with the deterministic objective function and its gradients are first defined through the
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References Contents Original Keywords

[39] Initial developments for taking into account gradients,
application to water flow through a borehole

Bayesian prediction using
derivatives, Gaussian Pro-
cess

[40] Approximation of functions using gradients Kriging to model gradients
[41] Theoretical developments and application to analyti-

cal functions
First Order Kriging

[43, 44] Gradient-based metamodel for minimizing the drag
of an aerofoil (CFD)

Direct and indirect cokrig-
ing

[45] Gradient-based cokriging for optimization, infill strat-
egy and application to structural optimization

Kriging model including
derivative information

[46] Comparison with other gradient-enhanced metamod-
els and application to fluids

Kriging, gaussian process
including derivative

[21] Developments for using gradient and hessian informa-
tion (code available)

Gradient-/Hessian-
Enhanced Kriging

[47] Application to aerodynamic optimization Cokriging, Gradient-
Enhanced Kriging

[48] Comparison of kriging with and without gradient,
infill strategy and application to aerodynamic opti-
mization

Cokriging

[49] Uncertainty quantification and application to analyti-
cal and CFD examples

Gradient-Enhanced Krig-
ing (GEK)

[50] Application to aircraft aerodynamic shape optimiza-
tion

Gradient-Based Kriging
(GBK)

[51] Uncertainty quantification, approximation quality of
analytical functions and application to design of nu-
clear plants

Gradient-Enhanced Uni-
versal Kriging (GEUK)

[52] Application to structural and aerodynamic optimiza-
tion with multi-fidelity approach

Cokriging

[53] Taking into account gradient and hessian information,
application to analytical functions and aerodynamic
optimization problems

Gradient/Hessian-
enhanced Direct/Indirect
Kriging (GEK)

[55] Approximation quality of analytical functions, uncer-
tainty quantification of a transonic aerofoil

Cokriging, Gradient and
Hessian enhanced Kriging

[54, 107] Comparison of gradient-based metamodels, applica-
tion to analytical functions and CFD problems for
shape optimization

Direct/Indirect Co-kriging

[60] Multi-fidelity approach to aerofoil design direct Gradient-Enhanced
Kriging (GEK)

[61] Comparison between direct and indirect gradient-
based kriging using an analytical function and airfoil
model. Study of the internal parameters estimation
by Likelihood maximization.

direct/indirect gradient-
enhanced kriging

[56–59, 95,
109]

Application to assembly design (nonlinear structural
problems), comparison with gradient-based RBF, com-
parison with multi-fidelity method

Gradient-Enhanced/-
Based cokriging

[62, 63, 110] Gradient-enhanced kriging with and without multi-
fidelity models

Gradient-Enhanced Krig-
ing

Table 5: Summary of works using gradient-enhanced cokriging.
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primary response, Y , and the np auxiliary responses, W i [35]:

∀i ∈ J1, npK,∀x(0) ∈ D,
Y
(
x(0)

)
= µ0

(
x(0)

)
+ Z0

(
x(0)

)
, (74)

W i
(
x(0)

)
= µi

(
x(0)

)
+ Zi

(
x(0)

)
. (75)

In the particular case of gradient-enhanced cokriging, the auxiliary responses W i correspond to the
components of the gradient:

∀i ∈ J1, npK, ∀x(0) ∈ D, W i
(
x(0)

)
=
∂Y

∂xi
(x(0)). (76)

As in regular kriging, µi and Zi represent, for each response, the deterministic trends and the
fluctuations around the trends:

∀x(0) ∈ D,
E
[
Y
(
x(0)

)]
= E

[
µ0

(
x(0)

)
+ Z0

(
x(0)

)]
= µ0

(
x(0)

)
, (77)

σ2
Y = Var

[
Y
(
x(0)

)]
= Var

[
µ0

(
x(0)

)
+ Z0

(
x(0)

)]
= Var

[
Z0

(
x(0)

)]
= σ2

Z0
; (78)

∀i ∈ J1, npK,∀x(0) ∈ D,
E
[
Zi(x

(0))
]

= 0, E
[
W i
(
x(0)

)]
= µi(x

(0)), (79)

σ2
W i = Var

[
W i
(
x(0)

)]
= Var

[
µi

(
x(0)

)
+ Zi

(
x(0)

)]
= Var

[
Zi

(
x(0)

)]
= σ2

Zi
. (80)

All Zi’s are centered stationary Gaussian Processes. As in usual kriging, the covariance of Z0 is a
function of a generalized distance among the sample points. Some other cross-covariance relations have
to be introduced for the auxiliary variables. These covariances and cross-covariances are defined in
Sections 8.3 and 8.5.

The trend models µi can be chosen independently of one another [111] and this choice leads to different
kinds of (co)kriging (simple when µi is a known constant, ordinary when µi is an unknown constant and
universal in the general case that it is both unknown and a function of x). In this paper, the universal
cokriging model where the trend is built using polynomial regression will be detailed, see Eq. (81)). In
order to limit the amount of required inputs, the trend models of the auxiliary responses, µi, i ∈ J1, npK,
will be obtained by differentiation of the primary response trend, µ0 (See [39] and Eq. (82)).

∀x(0) ∈ D,

µ0

(
x(0)

)
=

nt∑
j=1

βjfj

(
x(0)

)
= f>0 β, (81)

∀i ∈ J1, npK, µi
(
x(0)

)
=
∂µ0

∂xi

(
x(0)

)
=

nt∑
j=1

βj
∂fj
∂xi

(x(0)) = f iT0 β, (82)

where

β =
[
β1 β2 . . . βnt

]>
;

f0 =
[
f1
(
x(0)

)
f2
(
x(0)

)
. . . fnt

(
x(0)

)]>
;

∀i ∈ J1, npK, f i0 =

[
∂f1
∂xi

(x(0))
∂f2
∂xi

(x(0)) . . .
∂fnt

∂xi
(x(0))

]>
.
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The Best Linear Unbiased Predictor (BLUP) of the response using both primary and auxiliary responses
makes the cokriging model [35]. This predictor is a linear combination of deterministic functions called
λ()’s and the evaluations of primary and auxiliary responses at the sample points:

∀x(0) ∈ D, Ŷ
(
x(0)

)
=

ns∑
i=1

λ0i

(
x(0)

)
Y
(
x(i)
)

+

ns∑
i=1

np∑
j=1

λji

(
x(0)

)
W j
(
x(i)
)
. (83)

The functions λ() are evaluated by minimizing the variance of the estimation error ε
(
x(0)

)
=

Ŷ
(
x(0)

)
− Y

(
x(0)

)
while accounting for the unbiasedness condition. Finally, the expressions of the

cokriging prediction and variance are obtained. These steps are further explained in the next sections.

8.2 No bias condition

The condition for the cokriging estimator to be unbiased is

∀x(0) ∈ D,
E
[
Ŷ
(
x(0)

)
− Y

(
x(0)

)]
= 0

E

 ns∑
i=1

λ0i

(
x(0)

)
Y
(
x(i)
)

+

np∑
i=1

np∑
j=1

λji

(
x(0)

)
W j
(
x(i)
)
− Y

(
x(0)

) = 0

ns∑
i=1

λ0i

(
x(0)

)
E
[
Y
(
x(i)
)]

+

ns∑
i=1

np∑
j=1

λji

(
x(0)

)
E
[
W j
(
x(i)
)]
− E

[
Y
(
x(0)

)]
= 0

ns∑
i=1

λ0i

(
x(0)

)
µ0

(
x(i)
)

+

ns∑
i=1

np∑
j=1

λji

(
x(0)

)
µj

(
x(i)
)
− µ0

(
x(0)

)
= 0. (84)

Inserting the expression of the trend (Eq. (81) and (82)) leads to

ns∑
i=1

λ0i

(
x(0)

) nt∑
k=1

βkfk

(
x(i)
)

+

ns∑
i=1

np∑
j=1

λji

(
x(0)

) nt∑
k=1

βk
∂fk
∂xj

(x(i))−
nt∑
k=1

βkfk

(
x(0)

)
= 0 , or,

λ>0 Fβ + λ>WFWβ − f>0 β = 0. (85)
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with

λ0 =
[
λ01 λ02 . . . λ0ns

]> size 1× ns;
λW =

[
λ11 λ21 . . . λ

np

1 λ12 . . . λ
np
ns

]> size 1× nsnp;

F =


f1
(
x(1)

)
f2
(
x(1)

)
. . . fnt

(
x(1)

)
f1
(
x(2)

) . . .
...

f1
(
x(ns)

)
. . . . . . fnt

(
x(ns)

)

 size nt × ns;

FW =



∂f1
∂x1

(
x(1)

) ∂f2
∂x1

(
x(1)

)
. . .

∂fnt

∂x1

(
x(1)

)
...

...
∂f1
∂xnp

(
x(1)

) ∂f2
∂xnp

(
x(1)

)
. . .

∂fnt

∂xnp

(
x(1)

)
∂f1
∂x1

(
x(2)

) ∂f2
∂x1

(
x(2)

)
. . .

∂fnt

∂x1

(
x(2)

)
...

...
∂f1
∂xnp

(
x(ns)

) ∂f2
∂xnp

(
x(ns)

)
. . .

∂fnt

∂xnp

(
x(ns)

)


size nt × nsnp.

Equation (85) can be further condensed after a simplification with respect to β:

λcFc = f>0 , (86)

where the vector λc =
[
λ>0 λ>W

]>
includes (np + 1)× ns cokriging coefficients and Fc =

[
F> F>W

]>
is a nt × (ns + 1)ns matrix. It should be remembered that λc and f0 depend on the non-sampled point
x(0). For simplicity’s sake the functions λ() have and will been written without specifying that they are
defined only at the non-sampled point x(0).

8.3 Formulation of the variance

The variance of the cokriging error estimate is
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∀x(0) ∈ D,
s2UCK(x(0)) = Var

[
Ŷ
(
x(0)

)
− Y

(
x(0)

)]
= Var

[
Ŷ
(
x(0)

)]
+ Var

[
Y
(
x(0)

)]
− 2cov

[
Ŷ
(
x(0)

)
, Y
(
x(0)

)]
= Var

 ns∑
i=1

λ0i (x
(0))Z0

(
x(i)
)

+

ns∑
i=1

np∑
j=1

λji (x
(0))Zj

(
x(i)
)

+ Var
[
Z0

(
x(0)

)]
− 2cov

 ns∑
i=1

λ0i (x
(0))Z0

(
x(i)
)

+

ns∑
i=1

np∑
j=1

λji (x
(0))Zj

(
x(i)
)
, Z0

(
x(0)

)
= σ2

Z0
+

ns∑
i=1

np∑
j=1

λ0iλ
0
jcov

[
Z0

(
x(i)
)
, Z0

(
x(j)

)]

+

ns∑
i=1

ns∑
k=1

np∑
j=1

np∑
l=1

λjiλ
l
jcov

[
Zj

(
x(i)
)
, Zl

(
x(k)

)]

+ 2

ns∑
i=1

ns∑
k=1

np∑
j=1

λ0iλ
j
kcov

[
Z0

(
x(i)
)
, Zj

(
x(k)

)]

− 2

ns∑
i=1

np∑
j=1

λji cov
[
Zj

(
x(i)
)
, Z0

(
x(0)

)]
− 2

ns∑
i=1

λ0i cov
[
Z0

(
x(i)
)
, Z0

(
x(0)

)]
.

The following notations are introduced for simplifying the covariances :

∀(i, j, k, l) ∈ J0, nsK2 × J1, npK2,

cov
[
Z0

(
x(i)
)
, Z0

(
x(j)

)]
= cov

[
Y
(
x(i)
)
, Y
(
x(j)

)]
= cij ,

cov
[
Z0

(
x(i)
)
, Zk

(
x(j)

)]
= cov

[
Y
(
x(i)
)
,W k

(
x(j)

)]
= cij,k,

cov
[
Zk

(
x(i)
)
, Zl

(
x(j)

)]
= cov

[
W k
(
x(i)
)
,W l

(
x(j)

)]
= cij,kl.

(87)

Now the variance of the cokriging error estimation can be written in matrix notation,

∀x(0) ∈ D, s2UCK(x(0)) = σ2
Z0

+ λ>c Ccλc − 2λ>c c0c, (88)

where Cc =

[
C CWY

C>WY CWW

]
is the cokriging covariance/cross-covariance matrix. It is composed of the

classical kriging covariance matrix C, the cross-covariance matrix CWY made of covariances between
primary and auxiliary responses and the cross-covariance matrix CWW between the auxiliary responses.
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Using the notations introduced in Eq. (87), these matrices are defined as:

(C)ij = cij ;

CWY =


c11,1 c11,2 · · · c11,np

c12,1 · · · c1ns,np

c21,1 c21,2 · · · c21,np
c22,1 · · · c2ns,np

c31,1 c31,2 · · ·
...

. . .
...

cns1,1 · · · cnsns,np

 size ns × nsnp;

CWW =


C11
WW C12

WW · · · C1ns

WW

C21
WW C22

WW · · ·
...

...
. . .

...
Cns1
WW Cns2

WW · · · Cnsns

WW

 size nsnp × nsnp,

with ∀(k, l) ∈ J1, nsK2, Ckl
WW =


ckl,11 ckl,12 · · · ckl,1np

ckl,21 ckl,22 · · ·
...

...
. . .

...
ckl,np1 ckl,np2 · · · ckl,npnp

 .
The global cokriging covariance matrix Cc obtained is symmetric and contains ns(np + 1) rows and

columns. c0c is the vector of covariances and cross-covariances between the sampled and any non-
sampled points and it is expressed as c0c =

[
c10 . . . cns0 c10,1 c10,2 . . . c20,1 . . . cns0,np

]>
(size 1×nsnp). The matrix Cc is positive definite. The proof is the following: ∀v ∈ Rns(np+1), v>Ccv =

Var
[
v>
(

Y
W

)]
≥ 0 since a variance is always positive. The matrix Ψg of GRBF (see Eq. (63)) is also

positive definite because it has the same structure and is made of the same kernels. Above, positive
definitness is not strict so that bad conditionning and even non invertibility may happen (e.g., when two
sample points are identical).

8.4 Constrained optimization problem for cokriging building

Using the notations introduced in Eq. (86) and (88), a cokriging model is built by solving the following
constrained optimization problem.

Problem 8.1 (Universal cokriging). Find λc ∈ Rns(np+1) that minimizes

λ>c Ccλc − 2λ>c c0c + σ2
Z0
,

subject to F>c λc = f0

Universal kriging and universal cokriging lead to the same constrained optimization problem. In
the case of cokriging however, additional cross-covariances are taken into account. This constrained
optimization problem is solved by the lagrangian technique which yields the following expressions for
cokriging prediction and variance:

∀x(0) ∈ D,

ỹUCK

(
x(0)

)
=

[
c0c + Fc

(
F>c C−1c Fc

)−1 (
f0 − F>c C−1c c0c

)]>
C−1c yg, (89)
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with yg =

[
y1 . . . yns

∂y1
∂x1

∂y1
∂x2

. . .
∂yns

∂xnp

]>
, and

∀x(0) ∈ D, s2UCK
(
x(0)

)
= σ2

Z0
− c0

>
c C−1c c0c + u>0

(
F>c C−1c Fc

)−1
u0, (90)

with u0 = u
(
x(0)

)
= F>c C−1c c0c − f0.

Like usual kriging, cokriging interpolates the responses at the data points by having the prediction equal
to the response and the variance null there. The proof of this property is based on c0c being equal to
the ith column of Cc at x(0) = x(i).
Simple and ordinary cokriging can be easily deduced from the previous equations by considering

µ0(x) = m where m is a known real or µ0(x) = β where β is an unknow real. In both cases and
according to Eq. (82), ∀i ∈ J1, npK, µi(x) = 0. So, Fc =

[
1>ns

0>ns×np

]>
where 1ns

and 0ns×np
are

matrices containing ns 1’s and nsnp 0’s, respectively.

8.5 Covariance structure
The most critical choice when creating a cokriging model is that of the covariance functions. In
applications such as geostatistics (see for instance [35]), this choice can be governed by expert information.
In the more general context of computer experiments, there is a wide range of covariance functions
to choose from. However, noting that covariance functions are kernel functions such as introduced in
Section 6, multidimensional kernels can be formed by multiplying unidimensional kernels. Continuing
this strategy for gradient-enhanced cokriging, Morris et al. [39] have proposed a general form for the
cross-covariance relations:

∀k ∈ J1, npK, ∀(ak, bk) ∈ N2, ∀(x(i),x(j)) ∈ D,
cov
[
Y (a1,a2,...,anp )

(
x(i)
)
, Y (b1,b2,...,bnp )

(
x(j)

)]
=

σ2
Y (−1)

∑
bj

np∏
k=1

[
h(ak+bk)(x

(i)
k − x

(j)
k ; `k)

]
, (91)

where

Y (a1,a2,...,anp )
(
x(i)
)

=
∂a1+a2···+anpY

∂xa11 ∂x
a2
2 . . . ∂x

anp
np

(
x(i)
)
,

and h(r; `) is a unidimensional correlation function depending on the real r and the correlation length `
and h(k) is its k-th derivative.
Readers can note that kernels are even functions but their first derivative are odd, cf. for example

Fig. 5. Therefore, referring to the covariance notation of Eq. (87), the following relation is found:
∀(i, j, k) ∈ J1, nsK2 × J1, npK, cij,k = −cji,k. More generally, in the case of gradient-enhanced cokriging,
the covariances satisfy,

∀(i, j, k, l) ∈ J0, nsK2 × J1, npK2,

cov
[
Y
(
x(i)
)
, Y
(
x(j)

)]
= cij = cji = σ2

Y Ψ
(
x(i),x(j); `

)
,

cov
[
Y
(
x(i)
)
,
∂Y

∂xk

(
x(j)

)]
= cij,k = −σ2

Y

∂Ψ

∂rk

(
x(i),x(j); `

)
,

cov
[
∂Y

∂xk

(
x(i)
)
, Y
(
x(j)

)]
= cji,k = σ2

Y

∂Ψ

∂rk

(
x(i),x(j); `

)
,

cov
[
∂Y

∂xk

(
x(i)
)
,
∂Y

∂xl

(
x(j)

)]
= cij,kl = −σ2

Y

∂2Ψ

∂rk∂rl

(
x(i),x(j); `

)
,

(92)
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where rk = x
(i)
k − x

(j)
k , and Ψ

(
x(i),x(j); `

)
=

np∏
k=1

h(x
(i)
k − x

(j)
k ; `k) =

np∏
k=1

h(rk; `k) is the multidimensional

correlation function.
In the literature, mainly squared exponential functions have been used for building kriging and

cokriging approximations. Recently, many works [63, 86, 95, 96] have focused on Matérn [97] covariances,
in particular Matérn 3

2 and 5
2 [63, 95]. Similarly to RBF and GRBF approximations, Matérn kernels

improve the condition number of the covariance matrix, therefore improving the stability of the method.
With the product covariances introduced (see Eq. (92)), the process variance can be factored out of

the different covariances in Eq. (89):

Cc = σ2
Y Kc; (93)

c0c = σ2
Y r0c. (94)

8.6 Summary of cokriging formulations and first illustrations

Table 6 summarizes the different cokriging formulations which look similar to kriging formulations
with an extended definition of the correlation matrix and vector. If we only consider the metamodel
predictions and not its variance or internal parameter learning, the functional forms of simple cokriging
without trend and gradient-enhanced radial basis functions are identical (compare Eq. (71) with SCK
where m = 0 in Table 6).

Type Formulation with

ỹ•
(
x(0)

) SCK m+ r0
>
c K−1c

(
yg −mF>10

)
–

OCK β̂ + r0
>
c K−1c

(
yg − β̂F>10

)
β̂ =

(
F>10K−1c F10

)−1
F>10K−1c yg

UCK f>0 β̂ + r0
>
c K−1c

(
yg − Fcβ̂

)
β̂ =

(
F>c K−1c Fc

)−1
F>c K−1c yg

s2•
(
x(0)

) SCK σ2
Y

(
1− r0

>
c K−1c r0c

)
–

OCK σ2
Y

(
1− r0

>
c K−1c r0c + u>0

(
F>10K−1c F10

)−1
u0

)
u0 = F>10K−1c r0c − 1

UCK σ2
Y

(
1− r0

>
c K−1c r0c + u>0

(
F>c K−1c Fc

)−1
u0

)
u0 = F>c K−1c r0c − f0

Table 6: Cokriging predictions and variances (SCK, Simple CoKriging; OCK, Ordinary CoKriging; and
UCK, Universal CoKriging) with F10 = [1>ns

0>ns×np
].

The Figures 9, 10 and 11 illustrate how kriging, indirect kriging (the principle of indirect gradient-
enhanced metamodels is presented in Section 3) and ordinary cokriging approximate one and two-
dimensional functions. The indirect version of the gradient-enhanced cokriging is only proposed in 1D, in
Figure 9, where it can be seen that it yields very accurate results (the line cannot be visually separated
from the true function on the plot). The Figures 9, 10 and 11 show that, like for RBF approximation,
the use of the gradient information improves the approximation of the analytical function, in particular
for multimodal functions such as the Six-hump Camel Back in Fig. 11 .
Figure 12 shows confidence intervals calculated with the predictions and the variances of ordinary

kriging and cokriging. Remark that the use of the gradients reduces the approximation uncertainty.
When compared to GRBF, GKRG has the same covariance structure: Cc is the same matrix as Ψg.

Without trend and when the kernels are the same, the GRBF approximation of Eq. (72) is the same as
that of GKRG (cf. Table 6). Differences arise because of the trend and the way the internal parameters
are tuned. As a result, as will be observed in section 10, gradient-enhanced cokriging and GRBF have
very similar performances with a slight advantage for the cokriging.
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Figure 9: Ordinary KRG, Indirect ordinary KRG (InOK) and ordinary GKRG (OCK) approximations
of an unidimensional analytical function (y(x) = exp(−x/10) cos(x) + x/10, sampling with
ns = 6) using squared exponential function.
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Figure 10: Ordinary kriging and gradient-enhanced cokriging approximations of the two-dimensional
Branin’s function (See Fig. 7a, IHS sampling with ns = 30) using Matérn 3/2 kernels.
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Figure 11: Ordinary kriging and gradient-enhanced cokriging approximations of the two-dimensional
Six-hump Camel Back function (See Fig. 8a, IHS sampling with ns = 20) using Matérn 3/2
kernels.
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Figure 12: Confidence intervals of kriging (a) and cokriging (b), ns = 6, y(x) given in Fig. 9.
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8.7 Derivatives of the cokriging approximation

Derivatives of the cokriging approximation to the response,
∂Ŷ

∂xi

(
x(0)

)
, i = 1, ..., np, can be obtained in

two equivalent ways.
Firstly, Eq. (83) can be differentiated with respect to xi which means taking the derivatives of the

functions λ(). Substituting the expression of the λ()’s amounts to differentiating the correlation vectors
r0c (and the trend functions f0 for universal cokriging) in the expressions for the approximation ỹ() given
in Table 6. To do so, the second derivatives of the kernel functions, which appear in the derivatives of r0c,
are needed. The choice of the kernel must be adapted to this goal: squared exponential or Matérn (with
ν > 1) kernels are appropriate. It is remarkable that the second derivatives of the kernel functions were
already required in the making of the cross-covariance matrix CWW , so approximating the derivative
does not add requirements to the kernels.

Secondly and in an equivalent manner, the cokriging equations for predicting the response derivatives,
∂Ŷ

∂xi

(
x(0)

)
, can be obtained following the same path as that followed for the response: the cokriging

estimate to the derivative is written as a linear combination of both the responses and their derivatives
at sample points like in Eq. (83); the no bias condition of Eq. (84) is replaced by a no bias on the

derivatives, E

[
∂Ŷ

∂xi

(
x(0)

)
− ∂Y

∂xi

(
x(0)

)]
= 0, and results in a relation like Eq. (86) with

∂f0
∂xi

instead of f0;

similarly, the variance minimized is that of the error between derivatives, Var

[
∂Ŷ

∂xi

(
x(0)

)
− ∂Y

∂xi

(
x(0)

)]
,

leading to an equation identical to Eq. (88) but c0c is replaced by the vector
∂c0c
∂xi

. Therefore, the

cokriging models summarized in Table 6 provide models for the derivatives by just differentiating the
trend and the correlation vectors. As a result in these (differentiated) models, the kriging interpolation
property also applies to the derivatives. A notable feature of such gradient-enhanced cokriging is that
the uncertainty of the estimated response derivative is also calculated [99]. This property was not used
in previous works but it should turn out to be useful in the context of uncertainty quantification or
reliability-based optimization.

8.8 Estimation of the cokriging parameters

As in the case of kriging, the estimation of the cokriging parameters, `i, σY and β (and ν for the general
Matérn kernel), can be achieved using Leave-One-Out or Maximum likelihood techniques. Leave-One-Out
(LOO) was already introduced for GRBF in Section 7.3 and has also been applied to Gradient-Based
cokriging (see for example [54]). The Maximum likelihood approach [112] is made possible by the
probabilistic interpretation of cokriging and more common than LOO.

Maximum likelihood estimation operates by maximizing the following likelihood function (or minimizing
the opposite of its log):

L(β, σ2
Y , `) = (

2πσ2
Y

)−ns(np+1)/2 |Kc(`)|−1/2 exp

[
− 1

2σ2
Y

(
yg − Fβ

)>
Kc(`)

−1(yg − Fβ
)]
. (95)

At a given `, L() can be analytically maximized over β and σ2
Y which yields the expression of their

estimates:

β̂(`) =
(
F>Kc(`)

−1F
)−1

F>Kc(`)
−1yg; (96)

σ̂2
Y (`) =

1

ns

(
yg − Fβ

)>
Kc(`)

−1(yg − Fβ
)
. (97)
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The correlation lengths `i are obtained by a numerically minimizing the following expression which is
the relevant part of minus the log-likelihood where β̂ and σ̂2

Y have been input:

ˆ̀ = arg min
`∈L

ψ(`) where ψ(`) = σ̂2
Y (`)|Kc(`)|1/ns(np+1). (98)

Because ψ() is multimodal, it is essential to perform the minimization with a global optimization
algorithm [113]: for example, a stochastic optimizer such as the Particle Swarm Optimizer can be
employed [114]. In order to reduce the number of optimization iterations, the gradient of the likelihood
function is sometimes calculated and accounted for in the optimization [63, 115]. During the numerical
optimization for finding the correlation lengths, `, the correlation matrix Kc has to be rebuilt, factorized
and inverted at each iteration, which goes along with a noticeable computational cost. However, in most
practical situations where metamodels are called in, the objective function relies on numerical simulation
such as nonlinear finite elements and remains much more costly than the metamodel. Furthermore, the
gain in accuracy of the gradient-based approximations allows in many cases to contain the computational
time by reducing the necessary number of sample points [94, 95, 116].

9 Gradient-enhanced Support Vector Regression (GSVR)
Support Vector Regression (SVR) is a nonlinear regression method that appeared within the framework
of statistical learning theory. It is an extension of the Support Vector Machines (SVMs) originally
designed for nonlinear classification [117] and pattern recognition [118].

The literature on SVR is already rich and general introductions may be found in [119–121]. Initially
built for learning from function responses at sample points, many extensions of SVR to additionally
account for derivatives have been proposed. In compliance with the rest of the text, we shall call
them gradient-enhanced SVR or GSVR. Initially introduced in [68] with an iteratively re-weighted least
squares procedure, GSVR has then been revisited, again with a least squares approach in [70], with
regularized least squares in [71], and by the Twin SVR technique in [69, 73]. A general framework
for incorporating prior knowledge in SVR which has been applied to function derivatives was also put
forward in [72]. More recently, GSVR has been applied to shape optimization in CFD problems [54].

9.1 Building procedure

We now present the method introduced by [68] and applied in [54]. The approximation is built from a
linear combination of the basis functions φi() and their derivatives (all of which are independent of the
observations) added to a constant trend term µ. The ϑ’s are the coefficients of the combination, and
will be adjusted using the observed responses yg:

∀x(0) ∈ D,

ỹ
(
x(0)

)
= µ+

ns∑
i=1

ϑiφ
(
x(0),x(i)

)
+

np∑
j=1

ns∑
i=1

ϑij
∂φ

∂xj

(
x(0),x(i)

)

= µ+

np∑
j=0

ns∑
i=1

ϑijφ0i,j (99)

= µ+ ϑ>φg
(
x(0)

)
, (100)

where ϑ and φg
(
x(0)

)
contain the ns × (np + 1) coefficients and evaluations of the basis function and its

derivatives at the sample points, respectively.
At this point, the expression of the approximation ỹ

(
x(0)

)
is the same as that in any least squares

approach, cf. Eq. 19 for example with ϑ and β̂, and φg
(
x(0)

)
and f

(
x(0)

)
playing the same roles,

respectively. However, the coefficients ϑ will be calculated through a different approach and the a priori
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functions φi,j(x) will never be used as such but will always occur in products and hence they will be
indirectly specified through a kernel and its derivatives, cf. Section 9.2.

Support vector regression seeks to approximate the function responses, y
(
x(i)
)
, within a ε0 accuracy

and, additionally, GSVR requires the derivatives,
∂y

∂xk

(
x(i)
)
, to be approximated within εk accuracy.

The SVR approximation is made more stable to changes in data by minimizing the vector norm ‖ϑ‖2 (cf.
[117, 120] for explanations on how reducing ‖ϑ‖2 makes the approximation less flexible, therefore more
stable). These considerations lead the constrained convex quadratic optimization problem 9.1 where
ξ+, ξ−, τ+ and τ− are slack variables on the accuracies for avoiding problems with no feasible solution:

Problem 9.1 (GSVR as a minimization problem). Find
(
ϑ, µ, ξ+, ξ−, τ+, τ−

)
a that minimize

1

2
‖ϑ‖2 +

Γ0

ns

ns∑
i=1

(
ξ+(i) + ξ−(i)

)
+

np∑
k=1

Γk
ns

ns∑
i=1

(
τ+k

(i) + τ−k
(i)
)
,

subject to

∀(i, k) ∈ J1, nsK× J1, npK,



y
(
x(i)
)
− ϑ>φ

(
x(i)
)
− µ ≤ ε0 + ξ+(i),

ϑ>φ
(
x(i)
)

+ µ− y
(
x(i)
)

≤ ε0 + ξ−(i),

∂y

∂xk

(
x(i)
)
− ϑ> ∂φ

∂xk

(
x(i)
)
≤ εk + τ+k

(i),

ϑ>
∂φ

∂xk

(
x(i)
)
− ∂y

∂xk

(
x(i)
)
≤ εk + τ−k

(i),

ξ+(i), ξ−(i), τ+k
(i), τ−k

(i) ≥ 0.

aRecall that bold notations designate vectors. For example, ξ+ =
[
ξ+(1) ξ+(2) . . . ξ+(ns)

]>

The hyper-parameters of the method, Γk, k = 0, . . . , np, are user-defined penalty parameters that control
the trade-off between approximation regularity (low ‖ϑ‖2) and approximation accuracy in response and
derivatives of the response. Geometrically, the constraints on accuracy are tubes of half-width εi in the
space of responses and derivatives outside of which the GSVR criterion is subject to a linear loss at a
rate determined by the hyper-parameters Γk.

Problem 9.1 can be rewritten as a saddle-point problem involving a Lagrangian and positive Lagrange
multipliers α±(i), λ±k

(i), η±(i) and θ±k
(i) (a.k.a., dual variables):
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Problem 9.2 (GSVR as a saddle-point problem). Find
(
ϑ, µ, ξ+, ξ−, τ+, τ−

)
and(

α+,α−,λ+,λ−,η+,η−,θ+,θ−
)
that, respectively, minimize and maximize the Lagrangian

L =
1

2
‖ϑ‖2 +

Γ0

ns

ns∑
i=1

(
ξ+(i) + ξ−(i)

)
+

np∑
k=1

Γk
ns

ns∑
i=1

(
τ+k

(i) + τ−k
(i)
)

−
ns∑
i=1

α+(i)
[
ε0 + ξ+(i) − y

(
x(i)
)

+ ϑ>φ
(
x(i)
)

+ µ
]

−
ns∑
i=1

α−(i)
[
ε0 + ξ−(i) + y

(
x(i)
)
− ϑ>φ

(
x(i)
)
− µ

]
−

np∑
k=1

ns∑
i=1

λ+k
(i)

[
εk + τ+k

(i) − ∂y

∂xk

(
x(i)
)

+ ϑ>
∂φ

∂xk

(
x(i)
)]

−
np∑
k=1

ns∑
i=1

λ−k
(i)

[
εk + τ−k

(i) +
∂y

∂xk

(
x(i)
)
− ϑ> ∂φ

∂xk

(
x(i)
)]

−
ns∑
i=1

(
η+(i)ξ+(i) + η−(i)ξ−(i)

)
−

np∑
k=1

ns∑
i=1

(
θ+k

(i)τ+k
(i) + θ−k

(i)τ−k
(i)
)
.

At a solution, the partial derivatives of the Lagrangian with respect to the primal variables have to
vanish:

∂L

∂ϑ
= ϑ−

ns∑
i=1

(
α+(i) − α−(i)

)
φ
(
x(i)
)

−
np∑
k=1

ns∑
i=1

(
λ+i

(k) − λ−i (k)
) ∂φ

∂xk

(
x(i)
)

= 0; (101)

∂L

∂µ
= −

ns∑
i=1

(
α+(i) − α−(i)

)
= 0; (102)

∂L

∂ξ+(i)
=

Γ0

ns
− α+(i) − η+(i) = 0 ∀i ∈ J1, nsK; (103)

∂L

∂ξ−(i)
=

Γ0

ns
− α−(i) − η−(i) = 0 ∀i ∈ J1, nsK; (104)

∂L

∂τ+k
(i)

=
Γk
ns
− λ+k (i) − θ+k (i) = 0 ∀(i, k) ∈ J1, nsK× J1, npK; (105)

∂L

∂τ−k
(i)

=
Γk
ns
− λ−k (i) − θ−k (i) = 0 ∀(i, k) ∈ J1, nsK× J1, npK. (106)

ϑ, η± and θ± can readily be solved for from Eq. (101) and Eq. (103)-(106) which leads to the
constrained convex quadratic optimization Problem 9.3. Notice that the positive sign of the Lagrangian
multipliers α±(i), λ±k

(i), η±(i) and θ±k
(i) produces the inequality constraints.
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Problem 9.3 (GSVR as a Convex Constrained Quadratic Optimization). Find
(
α+,α−,λ+,λ−

)
that minimize

1

2


α+

α−

λ+

λ−


> 

Ψr −Ψr Ψrd −Ψrd

−Ψr Ψr −Ψrd Ψrd

Ψ>rd −Ψ>rd Ψdd −Ψdd

−Ψ>rd Ψ>rd −Ψdd Ψdd



α+

α−

λ+

λ−

+


−ys
ys
−ygs
ygs


> 
α+

α−

λ+

λ−



+


ε01
ε01
ε
ε


> 
α+

α−

λ+

λ−

 , (107)

subject to 

[
1
−1

]> [
α+

α−

]
= 0,

0
0
0
0

 ≤

α+

α−

λ+

λ−

 ≤


Γ0/ns1
Γ0/ns1

Γ
Γ

 .

The vectors ys and ygs contain the responses and the derivatives of the actual function at the sample
points, respectively. ε is made of the εk values (∀k ∈ J1, npK). The matrices Ψr, Ψrd and Ψdd consist of
the evaluations and derivatives of the kernel function (see Section 9.2), and Γ designates the vector of
Γk/ns.

Responses or derivatives that are inside their εk tube, that is, responses and derivatives for which
the accuracy constraints are satisfied, do not impact the solution of any of the above problems and
could be removed altogether from the metamodel building without changing the result. This is because
the Lagrange multipliers associated to these points are both (upper and lower limit) null. On the
opposite, responses or derivatives at points that have one non-zero Lagrange multiplier influence the
metamodel and are called support vectors. The dual variables α± and λ± are determined by solving the
Constrained Quadratic Optimization Problem 9.3. Classical Quadratic Programming algorithms [120]
such as the Interior Point algorithm can be applied. For dealing with large number of sample points and
parameters, dedicated algorithms, such as Sequential Minimal Optimization [122], are preferable. In
order to reduce the computational cost of GSVR, a few works introduce new formulations: Lázaro et al.
propose the IRWLS algorithm [68]; Jayadeva et al. have devised a regularized least squares approach
[71]; Khemchandani et al. have come up with the Twin SVR [73].

9.2 Kernel functions

Problem 9.3 has the variables x(i) involved only through products of φ() and their derivatives. In SVR
also, a kernel is defined as the inner product Ψ(x,x′) = φ(x)

>
φ(x′). The “kernel trick” consists in not

explicitely giving φ() but directly working with the kernel Ψ(, ). As was already stated in Section 6, any
function with two inputs cannot be a kernel, it has to satisfy the Mercer’s conditions (see [120]) in order
to be continuous, symmetric and positive definite. In the case of GSVR, the basis functions intervene in

42

http://dx.doi.org/10.1007/s11831-017-9226-3
https://hal-emse.ccsd.cnrs.fr/emse-01525674


Luc Laurent, Rodolphe Le Riche, Bruno Soulier, and Pierre-Alain Boucard. An overview of
gradient-enhanced metamodels with applications. Archives of Computational Methods in Engineering,
Jul 2017. doi: 10.1007/s11831-017-9226-3, hal: emse-01525674

the following products:

∀(i, j, k, l) ∈ J1, nsK2 × J1, npK2,

φ
(
x(i)
)>
φ
(
x(j)

)
= Ψ

(
x(i),x(j)

)
= Ψij , (108)

∂φ

∂xk

(
x(i)
)>
φ
(
x(j)

)
=

∂Ψ

∂x
(i)
k

(
x(i),x(j)

)
= Ψij,k0, (109)

φ
(
x(i)
)> ∂φ

∂xk

(
x(j)

)
=

∂Ψ

∂x
(j)
k

(
x(i),x(j)

)
= Ψij,0k, (110)

∂φ

∂xk

(
x(i)
)> ∂φ

∂xl

(
x(j)

)
=

∂2Ψ

∂x
(i)
k ∂x

(j)
l

(
x(i),x(j)

)
= Ψij,kl. (111)

Therefore, in addition to the Mercer’s conditions, a kernel used in GSVR must be twice differentiable.
Again, like in GRBF and GKRG, squared exponential or Matérn (ν > 1) functions can be used as
kernels for GSVR (a list of kernels has been given in Section 6). With the notations introduced in
Eq. (108)-(111), the matrices present in Problem 9.3 can now be detailed:

(Ψr)ij = Ψij ; (112)

Ψrd =


Ψ11,10 Ψ11,20 . . . Ψ11,np0 Ψ12,10 . . . Ψ1ns,0np

Ψ21,10 Ψ21,20 . . . Ψ21,np0 Ψ22,10 . . . Ψ2ns,0np

...
. . .

...
...

. . .
...

Ψns1,10 Ψns1,20 . . . Ψns1,np0 Ψns2,10 . . . Ψnsns,0np

 ; (113)

Ψdd =



Ψ11,11 Ψ11,12 . . . Ψ11,1np
Ψ12,11 . . . Ψ1ns,1np

Ψ11,21 Ψ11,22 . . . Ψ11,2np
Ψ12,21 . . . Ψ1ns,2np

...
. . .

...
...

. . .
...

Ψ11,np1 Ψ11,np2 . . . Ψ11,npnp
Ψ12,np1 . . . Ψ1ns,npnp

Ψ21,11 Ψ21,12 . . . Ψ21,1np
Ψ22,11 . . . Ψ2ns,1np

...
. . .

...
...

. . .
...

Ψns1,np1 Ψns1,np2 . . . Ψns1,npnp
Ψns2,np1 . . . Ψnsns,npnp


. (114)

The sizes of matrices Ψr, Ψrd and Ψdd are ns × ns, ns × nsnp and nsnp × nsnp, respectively. The
full matrix of kernel functions and their derivatives at the sample points in Problem 9.3 is square and
contains 2ns(1 + np) rows.

9.3 Evaluating the GSVR metamodel
Solving the Convex Constrained Quadratic problem for α± and λ± allows to calculate the ϑ’s from
Eq. (101). The GSVR response estimate at a new point x(0) is then given by:

∀x(0) ∈ D,

ỹ
(
x(0)

)
= µ+

ns∑
i=1

(
α+(i) − α−(i)

)
Ψ
(
x(i),x(0)

)
+

np∑
k=1

ns∑
i=1

(
λ+k

(i) − λ−k (i)
) ∂Ψ

∂x
(i)
k

(
x(i),x(0)

)

= µ+


α+

−α−
λ+

−λ−


> 

Ψ
(
x(0)

)
Ψ
(
x(0)

)
Ψd

(
x(0)

)
Ψd

(
x(0)

)
 , (115)
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where Ψ
(
x(0)

)
and Ψd

(
x(0)

)
are the vectors of kernels functions

(
x(i),x(0)

)
and their derivatives,

respectively. The derivative of the approximation given by the GSVR metamodel is obtained by
differentiating Eq. (115). To be able to do this, the kernel function Ψ must be at least twice differentiable.
The trend term, µ, has not been calculated yet. Its value stems from the Karush-Kuhn-Tucker conditions
for the Convex Constrained Problem 9.3: at a solution, the products between the dual variables and the
associated constraints vanish:

∀(i, k) ∈ J1, nsK× J1, npK,

α+(i)
(
ε0 + ξ+(i) − y

(
x(i)
)

+ ϑ>φ
(
x(i)
)

+ µ
)

= 0, (116)

α−(i)
(
ε0 + ξ−(i) + y

(
x(i)
)
− ϑ>φ

(
x(i)
)
− µ

)
= 0, (117)

λ+k
(i)

(
εk + τ+k

(i) + ϑ>
∂φ
(
x(i)
)

∂xk
− ∂y

∂xk

(
x(i)
))

= 0, (118)

λ−k
(i)

(
εk + τ−k

(i) − ϑ> ∂φ
∂xk

(
x(i)
)

+
∂y

∂xk

(
x(i)
))

= 0, (119)

ξ+(i)

(
Γ0

ns
− α+(i)

)
= 0, (120)

ξ−(i)

(
Γ0

ns
− α−(i)

)
= 0, (121)

τ+k
(i)

(
Γk
ns
− λ+k (i)

)
= 0, (122)

τ−k
(i)

(
Γk
ns
− λ−k (i)

)
= 0. (123)

Eq. (116)-(117) and (120)-(121) are the same as those for the classical (non-gradient based) SVR for
which the following conclusions hold:

• from Eq. (120) and (121), either
(
Γ0/ns − α±(i)

)
= 0 and ξ±(i) > 0, or ξ±(i) = 0 and Γ0/ns >

α±(i).

• from Eq. (101) for ϑ, Eq. (116) and (117), and because ỹ
(
x(i)
)
cannot be below and above y

(
x(i)
)

at the same time so that, in terms of the dual variables α+(i)α−(i) = 0, µ can be calculated:

µ = y
(
x(i)
)
− ϑ>φ

(
x(i)
)

+ ε0 if α+(i) = 0 and α−(i) ∈]0,Γ0/ns[, (124)

or

µ = y
(
x(i)
)
− ϑ>φ

(
x(i)
)
− ε0 if α−(i) = 0 and α+(i) ∈]0,Γ0/ns[. (125)

The above bounds on α±(i) are enforced as constraints of the quadratic optimization problem.

9.4 Gradient-enhanced ν-SVR
The classical GSVR discussed so far requires choosing Γk and εk (k ∈ J0, npK), and is sometimes called
εk-GSVR. εk is typically taken as the standard deviation of the noise of the response data and its
derivatives. Often though, there is no prior knowledge on an eventual noise on the response. Furthermore,
if the εk’s are taken small, there will be many non-zero Lagrange multipliers (i.e., among α+,α−,λ+,λ−),
in other terms there will be many support vectors, and the SVR model will lose some of its “sparsity” in
the sense that the ability to drop some of the terms when evaluating the metamodel (Eq. (115)) will
decrease.
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ν-GSVR is an alternative support vector regression model where the εk’s are no longer given but
calculated. ν-GSVR uses new scalars, νk ∈ [0, 1]np+1, which act as upperbounds on the proportion of
points that will be support vectors. This approach is inherited from ν-SVM (Support Vector Machines,
[123, 124]), and has been compared with classical ε-SVR in [125]. The larger the νk’s, the more the
approximation is required to approach the data points and made flexible (or “complex” in an information
theory sense). A ν-GSVR model solves the following optimization problem (compare with Problem 9.1):

Problem 9.4 (GSVR as optimization problem). Find (ϑ, µ, ξ+, ξ−, τ+, τ−, εa ) that minimize

1

2
‖ϑ‖2 +

Γ0

ns

[
ν0ε0 +

ns∑
i=1

(
ξ+(i) + ξ−(i)

)]

+

np∑
k=1

Γk
ns

[
νkεk +

ns∑
i=1

(
τ+k

(i) + τ−k
(i)
)]

,

subject to

∀(i, k) ∈ J1, nsK× J1, npK,



y
(
x(i)
)
− ϑ>φ

(
x(i)
)
− µ ≤ ε0 + ξ+(i),

ϑ>φ
(
x(i)
)

+ µ− y
(
x(i)
)

≤ ε0 + ξ−(i),

∂y

∂xk

(
x(i)
)
− ϑ> ∂φ

∂xk

(
x(i)
)
≤ εk + τ+k

(i),

ϑ>
∂φ

∂xk

(
x(i)
)
− ∂y

∂xk

(
x(i)
)
≤ εk + τ−k

(i),

ξ+(i), ξ−(i), τ+k
(i), τ−k

(i) ≥ 0,

ε0, εk ≥ 0.

a As usual the boldface notation denotes the vector, ε = [ε0, . . . , εnp ]>, which should not be mistaken with the
errors in Section 4.

This problem is solved with a Lagrangian approach in a manner similar to that of εk-GSVR [54].
The np + 1 new constraints on the positivity of the εk’s induce np + 1 new Lagrange multipliers. The
resulting quadratic dual optimization problem is similar to that given as Problem 9.3 with the additional
Lagrange multipliers. The ν-GSVR developped here has been implemented in the GRENAT Toolbox
[12].

Figures 13 shows approximations of an analytical unidimensional function using ν-SVR, ν-GSVR and
their derivatives (obtained by differentiating Eq. (115)). The filled areas correspond to the ε-tube of
both approximations. Just as for the previous GRBF and GKRG metamodels, the gradient-enhanced
ν-GSVR exhibits more accurate approximations than ν-SVR does.

9.5 Tuning GSVR parameters
The GSVR model involves the same parameters are the version without gradients, that is the εi and Γi
internal parameters, plus the parameters of the kernels `. Several works, summarized in [126], discuss
how to tune these parameters for non-gradient SVR, either in the form of empirical choices or of
methodologies. Both ν-SVR and ν-GSVR (see Section 9.4) help in choosing the εi by replacing them by
νi, a targeted proportion of points that are support vectors.

Algorithms have been proposed for determining the values of the aforementioned internal parameters
using Leave-one-out bounds (Eq. (69)) for support vector regression. Introduced in [127], these bounds
have been completed with the Span concept [128] that currently stands as the most accurate bound.
A method for the minimization of this bound is described and studied in [129]. The gradient of the
leave-one-out bound for SVR with respect to the internal parameters has been calculated in [130] and
used for tuning the parameters.
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(a) ν-SVR (ν0 = 0.7, Γ0 = 104, ` = 0.13)
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Figure 13: Approximations of a unidimensional analytical function (y(x) = exp(−x/10) cos(x) + x/10)
by ν-SVR and ν-GSVR (ns = 6).
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Recently, an extension of the Span bound to gradient-based SVR has been proposed in [54]: because
the evaluation of the Span bound is computationally expensive, the authors have proposed to estimate
the internal parameters of the kernel function as those of a gradient-enhanced RBF.

10 Applications and discussion

10.1 Procedure for comparing performances
Comparisons of response-only and gradient-enhanced metamodels will be carried out for modeling the 5
and 10 dimensional (np =5 or 10) Rosenbrock and Schwefel functions which are respectively defined as,

∀x ∈ [−2, 2]np , y(x) =

np−1∑
i=1

[
100

(
x2i − xi+1

)2
+ (xi − 1)

2
]

; (126)

∀x ∈ [−500, 500]np , y(x) = 418.9829 +

np∑
i=1

xi sin
(√
|xi|
)
. (127)

Rosenbrock’s function has only one basin of attraction but it is located in a long curved valley, that
is the variables significantly interact with each other. Schwelfel’s function is highly multimodal and,
worse, the function is challenging for many surrogates in that the frequency and the amplitude of the
sin() function that composes it changes through the design space, making the function non stationary.
Schwefel’s difficulty is nevertheless limited because it is an additively decomposable and smooth function.
Between ns = 5 and ns = 140 points are generated by Improved Hypercube Sampling [103]. Each

sampling and metamodel building is repeated 50 times. The global approximation quality of the
metamodel is measured by computing the mean value and the standard deviation of the R2 and Q3
criteria for the 50 metamodels at nv = 1000 validation points which are different from the sample points.

These metamodel quality criteria are now defined.

R2 =

(
σxy
σxσy

)2

with σxy =
1

nv

nv∑
i=1

(
y
(
x(i)
)
− y
)(
ỹ
(
x(i)
)
− ỹ
)
,

σx =

√√√√ 1

nv

nv∑
i=1

(
y
(
x(i)
)
− y
)2

, σy =

√√√√ 1

nv

nv∑
i=1

(
ỹ
(
x(i)
)
− ỹ
)2

.

(128)

As usual, the symbol denotes the average. R2 Pearson’s correlation coefficient, measures how well the
surrogate predictions are correlated to the true responses. The closer R2 is to 1, the better. Q3 is a
normalized leave-one-out criterion (cf. Eq. (69)):

Q3 =
1

nv

nv∑
i=1

ei with ei =

(
ỹ−i
(
x(i)
)
− y
(
x(i)
))2

max
i∈J1,nvK

y
(
x(i)
)2 (129)

The closer Q3 is to 0, the better the prediction accuracy of the surrogate.
The results presented next have been obtained on a computer equipped with an Intel R© Xeon R©

E5-2680 v2 processor (20 cores at 2.8 GHz) and 128Gb of volatile memory (DDR3-1866). The execution
times given are CPU times which correspond to the time required for running the computer code on a
single processor loaded at 100%.

10.2 Comparison of LS and GradLS models
The response-only and gradient-enhanced least squares metamodels, LS and GradLS, are compared in
details when approximating the 3 and 5 dimensional Rosenbrock’s functions. The least squares fit are
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carried out with polynomials of degrees d◦ = 1 to 10. Fig. 15 and 16 show the results in terms of R2 and
Q3 (mean and standard deviation) for the 3 dimensional function and Fig. 17 and 18 show the results for
the 5 dimensional function. The approximation quality improves as the mean of R2 increases and its
standard deviation simultaneously decreases or, as the mean of Q3 decreases and its standard deviation
simultaneously decreases. In order to help understanding the outcome of the experiments, Fig. 14
summarizes both, i) the number of terms in the polynomials, nt, which is a function of their degree as
seen in Eq. (1) and, ii) the number of equations in the least squares approximations (Eq. (11)) which is
equal to ns and ns(np + 1) for the LS and GradLS models, respectively. The number of polynomial
terms are plotted, for each np separately, with the continuous lines. The number of equations are plotted
as marks, blue marks for the LS, and black marks with a dependency on np for GradLS: the dotted
lines give the number of equations in GradLS as a function of np for each different ns. The GradLS
formulation uses more equations than LS does thanks to the gradients. As long as there are more
independent equations than terms in the polynomial, the solution (21) to the Mean Squares Error exists
and is unique. In this case in our implementation a QR factorization of the F>F is performed. On the
contrary, if the degree of the polynomial is such that there are more polynomial terms than equations,
the problem is ill-posed and the matrix F>F in Eq. (21) is no longer invertible. In our implementation of
least squares, solution unicity is then recovered by using the Moore-Penrose pseudo-inverse1 of F, written
F+, i.e., by solving β̂ = F+yg. The portions of the solid lines that are below the marks associated to
each ns indicate the polynomial degrees for which there are sufficiently many equations to solve the
original least squares problem, in other terms, the polynomials which are fully defined by the data points.
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Figure 14: Number of terms in the polymonials, nt, as a function of the polynomial degree (solid lines),
and number of available equations (blue and black marks for LS and GradLS, respectively) as
a function of the number of parameters np. The number of equations depends on np only for
GradLS: the dotted lines join, for each number of sample points ns, the number of equations
for varying np.

General trends are visible in Figures 15 to 18 concerning Rosenbrock’s function and in Figures 19 to
20 concerning Schwefel’s function. They are particularly clear on the mean of Q3, and they are confirmed
by R2. Not surprisingly, the quality of the approximations increases (i.e., the mean of Q3 diminishes)
with the number of sample points ns; at a given ns (larger than 5), the approximations improve from
polynomial degree d◦ = 1 up to 4, and then degrade as the degrees of the polynomials go to 10. The
1 In the case where there are not enough equations, pseudo-inverse recovers solution unicity by choosing, out of the
infinite number of solutions to Fβ = yg , the β of minimal euclidean norm.
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Figure 15: Performance of the LS metamodel in approximating the 3 dimensional Rosenbrock’s function
in terms of the number of sample points (ns) and the degree of the polynomial (d◦).
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Figure 16: Performance of the GradLS metamodel in approximating the 3 dimensional Rosenbrock’s
function in terms of the number of sample points (ns) and the degree of the polynomial (d◦).
Compare with the response-only LS metamodel in Fig. 15.
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Figure 17: Performance of the LS metamodel in approximating the 5 dimensional Rosenbrock’s function
in terms of the number of sample points (ns) and the degree of the polynomial (d◦).
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Figure 18: Performance of the GradLS metamodel in approximating the 5 dimensional Rosenbrock’s
function in terms of the number of sample points (ns) and the degree of the polynomial (d◦).
Compare with the response-only LS metamodel in Fig. 17.
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Figure 19: Performance of the LS metamodel in approximating the 3 dimensional Schwefel’s function in
terms of the number of sample points (ns) and the degree of the polynomial (d◦).
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Figure 20: Performance of the GradLS metamodel in approximating the 3 dimensional Schwefel’s function
in terms of the number of sample points (ns) and the degree of the polynomial (d◦). Compare
with the response-only LS metamodel in Fig. 19.
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explanation is that Rosenbrock’s function is a polynomial of degree 4. Below d◦ = 4, the true function
cannot be represented by the approximations. Beyond d◦ = 4 it can, but higher order terms of the
polynomial need to be cancelled, which requires sufficiently many sample points to be accurately done.
An estimate of the limit on the number of sample points is ns such that there are as many equations
as polynomial terms nt. This limit is seen in Fig. 14: for LS in dimension np =3, the lower bound on
ns is 35, 84 and 120 for d◦ = 4, 6, 7; a ridge where Q3 suddenly degrades crosses the upper right plot
of Fig. 15 and this ridge closely follows these limits on ns. The same estimate (number of polynomial
terms equal to number of equations) applied to GradLS yields ns limits np + 1 smaller than those of
LS: in Fig. 16, np + 1 = 4, and the Q3 degradation ridge follows (d◦ = 4, ns = 35/4 ≈ 9), (d◦ = 6,
ns = 84/4 = 21), (d◦ = 7, ns = 120/4 = 30). In dimension 5, the Q3 degradation ridges in Figs. 17 and
18 can be interpreted in the same way. In all of the figures, the less regular variation of the quality
indicators with d◦ for ns =5 is because it is too small a sample size.
Schwefel’s function is not easily approximated with a polynomial. This is noticed in Figs. 19 and

20 which gather approximation performance indicators for the 3 dimensional version of the function
and where the levels of R2 and Q3 are respectively smaller and larger than those of the 3 dimensional
Rosenbrock function. By comparing Fig. 19 to Fig. 20, it is also seen that the gradient-enhanced GradLS
outperforms LS.

Two conclusions can already be drawn from these tests. Firstly, least squares approximations have a
high performance domain characterized by a number of equation larger than the number of polynomial
terms. This shows that the regularization performed by the pseudo-inverse does not produce as good
least squares approximations as additional data points do. Secondly, because the gradient-enhanced
least squares GradLS require sample sizes np + 1 smaller than those of classical LS, they have a much
larger high performance domain.
In addition, even outside of the high performance domain, it is observed in Figs. 15 to 20 that, at a

given ns and d◦, GradLS consistently outperforms LS when approximating Rosenbrock’s function.
Fig. 21 shows the CPU time needed to calculate the LS and GradLS metamodels as a function of the

number of sample points ns for degrees of the polynomial approximation d◦ ranging from 2 to 10 and in
dimensions np =3, 5 and 10. In 10 dimension, the polynomials are limited to the degrees {2, 3, 4, 5, 6} to
keep calculation times reasonable. In both LS and GradLS models, it is observed that the CPU time
grows with ns, np and d◦ and that the main factors for CPU time increase are np and d◦ (a log scale is
applied to the CPU axis). The effect of np and d◦ is comparable in both metamodels so that the CPU
times are close to each other. The CPU time of the gradient-enhanced GradLS grows slightly faster
than that of LS with ns and in a manner independent of np and d◦, which is mainly noticeable at low
CPU times. It therefore turns out that enhancing least squares through the gradients is not as costly as
one could fear. The reason is that, for high degree polynomials in high dimensions, the main numerical
cost comes from the factorization of the nt × nt matrix F>F, which has O(n3t ) complexity, and nt is a
function of np and d◦ but not of ns (cf. Eq. (1)). The additional computation time of GradLS comes
from the storage of the (ns(np + 1)× nt) matrix F and its product with other matrices.

Note also in Fig. 21 that the geometric evolution of the CPU time sometimes exhibits a discontinuity.
For example, for LS, np = 3 and d◦ = 6, there is a CPU time step at ns = 84. These discontinuities
correspond to the change in least squares algorithms when there are or not sufficient equations for
determining the nt polynomial terms: when the problem is well-posed, a QR factorization of F>F is
performed, when the problem is ill-posed, it is the pseudo-inverse method that is called. For high degree
polynomials the CPU evolution curves are continuous because the problem is always ill-posed and the
pseudo-inverse is the only active algorithm.

10.3 Comparison of kernel-based models
We now compare kernel-based metamodels that use or do not use gradients. These are variants of the
RBF and KRG approaches. The SVR metamodels were not tested because of the large computational
cost induced by tuning their internal parameters which does not allow repeated runs. The tested
approaches are Ordinary Kriging (OK), Radial Basis Functions (RBF), both of which do not utilize
gradients, Indirect gradient-based Ordinary Kriging (InOK), Indirect gradient-based RBF (InRBF),
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Figure 21: CPU time required for building the LS and GradLS metamodels as a function of the number
of sample points ns for dimensions np = 3, 5 and 10 and polynomial degrees d◦ ranging from
2 to 10.
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gradient-enhanced Ordinary CoKriging (OCK), and Gradient-enhanced RBF (GRBF). All these examples
take Matérn 3/2 as kernel function.
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Figure 22: Performances of kernel-based metamodels in approximating the 5 dimensional Rosenbrock’s
function, obtained from 50 repetitions for each number of sample points ns. The metamod-
els are: ordinary kriging (OK), ordinary gradient-enhanced cokriging (OCK), radial basis
functions (RBF), gradient-enhanced radial basis functions (GRBF), indirect gradient-based
ordinary kriging (OK) and indirect gradient-based RBF (InRBF.)
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Figure 23: Performances of kernel-based metamodels in approximating the 10 dimensional Rosenbrock’s
function, obtained from 50 repetitions for each number of sample points ns.

Figures 22 to 25 show the values of the R2 and Q3 criteria for the Rosenbrock and Schwefel test
functions in 5 and 10 dimensions. It can be seen in Figures 22 and 23 that all the surrogates tested
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Figure 24: Performances of kernel-based metamodels in approximating the 5 dimensional Schwefel’s
function, obtained from 50 repetitions for each number of sample points ns.
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Figure 25: Performances of kernel-based metamodels in approximating the 10 dimensional Schwefel’s
function, obtained from 50 repetitions for each number of sample points ns.
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provide a good approximation to the Rosenbrock function in 5 and 10 dimensions, as measured by
R2 tending to 1 and Q3 to 0 with ns, which is likely because the function is smooth and unimodal.
Nevertheless, the methods that directly or indirectly utilize gradients have a visible advantage, that is,
OK and RBF converge much slower to good values of Q3 and R2 as ns increases.

Schwefel’s function is the approximation target in Figures 24 and 25. For modeling such a multimodal
non stationary function, it is observed that directly accounting for gradients is a determining asset: The
surrogates relying only on the response, OK and RBF, cannot approximate well the function, even when
the number of sampled points ns is large (equal to 140); surrogates directly using gradients, OCK and
GRBF, manage to represent well Schwefel’s function in both 5 and 10 dimensions. The performances of
OCK and GRBF, are similar for the two test functions. The only noticeable difference is with Schwefel’s
function in 10 dimensions where OCK converges slightly faster than GRBF.
On the average of Figures 22 to Fig. 25, The indirect gradient-enhanced metamodels, InOK and

InRBF, approximate the test functions with an accuracy that is between that of response-only and direct
gradient-enhanced metamodels. A closer comparison of Fig. 22 and Fig. 24, and Fig. 23 and Fig. 25,
suggests that InRBF performs better than InOK for the multimodal Schwefel function and vice versa for
the smooth Rosenbrock’s function. Once again, the main difference between InRBF and InOK is that
InRBF tunes its internal parameters by cross-validation when InOK tunes them by maximum likelihood.
Cross-validation shows a better ability to deal with multimodality than maximum likelihood does.

To sum up, these results illustrate the advantage of direct gradient-enhanced metamodels in approxi-
mating non stationary, multimodal functions. They confirm other experiments carried out in the more
complete study [57].
Fig. 26 shows the CPU time taken for building the kernel-based metamodels for varying number of

sample points and in dimensions 3, 5 and 10. SVR and GSVR are omitted in 10 dimensions because
they take too much CPU time.

The building process includes the tuning of the metamodels’ internal parameters which is performed
here with an Particle Swarm Optimizer.
The typical CPU times of the kernel methods in Fig. 26 are larger than those of the least squares

methods reported in Fig. 21. Furthermore, kernel methods show a higher sensitivity to the number of
sample points ns and a larger CPU penalty for including gradients in the model than least squares do.
The main reason for the larger CPU time of kernel methods is the tuning of their internal parameters,
which least squares do not do. The higher sensitivity of kernel methods to ns and, consequently, to
the presence of gradients, comes from the inversion of the ns × ns or ns(np + 1) × ns(np + 1) (in
the gradient-enhanced version) matrices Ψg and Cc. Similarly, SVR and GSVR have a number of
constraints that scales with ns and ns (np +1), respectively. The advantage in terms of CPU time of the
gradient-enhanced least squares methods should be assessed against an inferior approximation capacity
as exemplified by the poor performance of GradLS on the Schwefel’s function.
Among kernel methods, SVR and GSVR are the most time consuming techniques while KRG and

GKRG (here OK/OCK, i.e. ordinary kriging/cokriging) are faster to calculate.

10.4 Available softwares for gradient-enhanced metamodels
Despite the wide use and availability of metamodels that exclusively use simulation responses, y(), the
more recent gradient-enhanced metamodels are only proposed in a few codes.

GRENAT [12], which stands for GRadient ENhanced Approximation Toolbox, is the toolbox that was
used for generating all results and plots proposed in this review and in [59, 94, 95, 131, 132]. GRENAT
is written in Matlab/Octave and follows the object oriented Matlab’s syntax. It allows building and
exploiting response-only, and indirect and direct gradient-enhanced kriging, radial basis functions and
support vector regression. It can be linked to the MultiDOE toolbox [133] which compiles many sampling
techniques.

The ooDACE Toolbox [134, 135], also developed in object-oriented Matlab, has an implementation of
cokriging that could accomodate accounting for gradients.

In addition to mathematical descriptions, Forrester et al. [21] also propose code samples for building
gradient-enhanced metamodels.
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Figure 26: CPU times taken for building kernel-based metamodels as a function of the number of sample
points ns in dimensions np = 3, 5 and 10.
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10.5 Remarks about missing data and higher order derivatives
In keeping with previous works [21, 136], the RBF, kriging and SVR metamodels and their gradient-
enhanced versions that have been described in the review can readily be adapted for dealing with missing
data: Hybrid version of these metamodels can be considered by removing responses, components of
gradient or full gradient at certain sample points. Components of the vector yg are deleted and the
corresponding terms in the linear combinations making the approximations (in generalized least squares,
GRBF, GKRG) are removed from the equations. In the case of GSVR, the constraints in the model
defining optimization problem for which there is no longer an observation are removed. With IDW, terms
of the first order Taylor approximations Qj(x) can be dropped, at the cost of loosing the corresponding
gradient interpolation properties.

Deleting observations can even be a choice for minimizing the computational cost needed to build the
metamodels and evaluate the responses and/or gradients. For example, when dealing with a function
with known flat behavior in a part of the design space and a multimodal behavior in another part,
accounting for gradient information is useful only in the latter. On the basis of relations like Eq. (26)
for least squares, or Eq. (62) for radial basis functions, or Eq. (89) for cokriging, which all involve
the inversion of a ns(np + 1) by ns(np + 1) covariance matrix, the computational complexity of each
observation is at least cubic: assuming the number of operations required to invert a square matrix is
slightly less than cubic, it will be at least cubic when multiplied by the number of repetitions of the
inversion required for tuning internal parameters; then, accounting for all the gradients multiplies the
complexity of the metamodels by at least (np + 1)3. This metamodel complexity, although non negligible,
will typically remain orders of magnitude smaller than the complexity of calculating the true response.

The formulations of gradient-enhanced RBF, cokriging and SVR can be also extended for taking into
account higher order derivatives of the objectif function. Examples of formulations of Hessian-enhanced
cokriging can be found in [21, 53]. In the case of SVR, an Hessian formulation may be based on the
development proposed in [72]: the “prior knowledge”, which is added to the classical SVR formulation
(Problem 9.1 in Section 9), consists in terms of the Hessian which are accounted for through new
constraints.

11 Conclusions
We have reviewed the main surrogates (or metamodels) for approximating functions observed at a
finite number of points that not only use function values but also their gradients. These surrogates
are variations around the least squares methods, the Shepard weighting function, radial basis functions,
kriging and support vector machines. Indirect methods, where the knowledge of the gradients produces
new points to learn from, have also been covered. An effort was made to detail the logic and the
formulations that led to these models. To the authors’ knowledge, the ν-SVR formulation with gradients
was given here for the first time. Another goal was to compare the metamodels. It was first done
theoretically, in particular by casting all metamodels as linear combinations of functions chosen a
priori and coefficients that depend on the observations. The comparison between metamodels was then
substantiated by simple examples.

These examples, confirming other studies [9, 57, 132], show that exploiting gradient information is a
determining advantage for approximating functions with locally changing behaviors. Including gradients
in least squares methods comes at a negligible additional numerical cost. The more versatile kernel-based
surrogates pay a numerical cost for also approximating gradients: all methods but Shepard weighting
function have a complexity that scales at least with the cube of the number of observations, and each
gradient at a point in a space of dimension np adds np observations.

The litterature on gradient-enhanced metamodels is recent but already rich. Today, many perspectives
should be considered.
From a methodological point of view, there is a need for more robust, numerically less complex

approaches that can account for large numbers (say, millions) of data points with their gradients, in
higher dimensions (say, thousands). The current kernel methods can approximate a larger family of
functions than least squares do, but they would not allow data sets beyond of the order of 1000 points
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because of bad conditionning issues and because of the rapidly growing number of operations. Beyond
10000 points, computer memory would be an additional limitation. Recent works on Gaussian Processes
have introduced strategies to deal with large number of points [137, 138] and high-dimensional problems
[139, 140]. However these approaches remain currently limited to response-only data.
On the applicative side, surrogates that learn and predict gradients should contribute to progress in

local and global sensitivity analysis, uncertainty propagation, local trust region and global surrogate-based
optimization methods.
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Acronyms

ν-GSVR ν-version of the gradient-enhanced Support Vector Regression (surrogate model). 1, 44, 45
ε-SVR ε-version of the Support Vector Regression (surrogate model). 44
ν-SVR ν-version of the Support Vector Regression (surrogate model). 45, 61
εk-GSVR εk-version of the gradient-enhanced Support Vector Regression (surrogate model). 44, 45

BLUP Best Linear Unbiased Predictor. 29

EGO Efficient Global Optimization [33]. 4

GBK Gradient-based kriging (surrogate model). 27, 63
GEK Gradient-enhanced kriging (surrogate model). 27, 63
GEUK Gradient-enhanced universal kriging (surrogate model). 27, 63
GKRG Gradient-enhanced cokriging (surrogate model, same as GBK, GEK and GEUK). 2, 6, 7,
18, 27, 35, 43, 45, 59
GLS Generalized Least Square regression (surrogate model). 2, 9, 11, 14, 15
GradLS gradient-enhanced Least Square regression (surrogate model). 2, 9, 10, 11, 14, 15, 47, 48,
55, 59
GRBF Gradient-enhanced Radial Basis Function (surrogate model). 2, 6, 7, 9, 14, 20, 22, 23, 27,
33, 35, 38, 43, 45, 55, 57, 59
GRENAT GRadient-ENhanced Approximation Toolbox (Matlab/Octave’s toolbox, [12]). 45, 59
GSVR Gradient-enhanced Support Vector Regression (surrogate model). 2, 6, 7, 18, 39, 40, 42, 43,
44, 45, 59

IDW Inverse Distance Weighting method also called Shepard Weighting method (surrogate
model). 2, 6, 7, 17, 18, 59
IHS Improved Hypercube Sampling (Sampling technique, [103]). 23
InOK Indirect gradient-enhanced ordinary kriging (surrogate model). 9, 35, 55, 59
InRBF Indirect gradient-enhanced Radial Basis Function (surrogate model). 9, 55, 57, 59

KRG Kriging (surrogate model). 9, 35, 55, 59

LOO Leave-One-Out. 23, 24, 38
LS Least Square regression (surrogate model). 2, 6, 7, 9, 11, 15, 47, 48, 55

MLS Moving Least Square regression (surrogate model). 2, 6, 7, 15, 16
MSE Mean Square Error (quality criterion). 11
MultiDOE Multiple Design Of Experiments (Matlab/Octave’s toolbox, [133]). 59

OCK Gradient-enhanced Ordinary cokriging (surrogate model). 9, 35, 55, 57, 59
OK Ordinary kriging (surrogate model). 55, 57, 59

RBF Radial Basis Function (surrogate model). 2, 9, 22, 23, 27, 35, 45, 55, 57, 59, 61
RSM Response Surface Methodology. 4, 9, 15

SBAO Surrogate-Based Analysis and Optimization [18]. 4
SVM Support Vector Machine. 39
SVR Support Vector Regression (surrogate model). 39, 40, 42, 44, 45, 55, 59, 61

WLS Weigthed Least Square regression (surrogate model). 6, 7, 11, 14
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