G. Gradient-based and . Kriging, 27, 63 GEK Gradient-enhanced kriging (surrogate model) 27, 63 GEUK Gradient-enhanced universal kriging (surrogate model). 27, 63 GKRG Gradient-enhanced cokriging (surrogate model, same as GBK, GEK and GEUK, p.15

K. Kriging, 9, 35, 55, 59 LOO Leave-One-Out. 23, 24, 38 LS Least Square regression (surrogate model, pp.47-55

G. F. Hughes, On the mean accuracy of statistical pattern recognizers, IEEE Transactions on Information Theory, vol.14, issue.1, pp.55-63, 1968.
DOI : 10.1109/TIT.1968.1054102

J. Lions, Optimal Control of Systems Governed by Partial Differential Equations, 1971.
DOI : 10.1007/978-3-642-65024-6

D. G. Cacuci, Sensitivity theory for nonlinear systems. I. Nonlinear functional analysis approach, Journal of Mathematical Physics, vol.75, issue.12, pp.2794-2802, 1981.
DOI : 10.1063/1.524870

A. and J. English, Aerodynamic design via control theory, Journal of Scientific Computing, vol.33, pp.233-260, 1988.

L. Beda, Programs for automatic differentiation for the machine, Precise Mechanics and Computation Techniques, 1959.

R. E. Wengert, A simple automatic derivative evaluation program, Communications of the ACM, vol.7, issue.8, pp.463-464, 1964.
DOI : 10.1145/355586.364791

A. Griewank, On automatic differentiation Mathematical Programming: recent developments and applications, Amsterdam, pp.83-108, 1989.

V. Paoletti, Inversion of gravity gradient tensor data: does it provide better resolution?, Geophysical Journal International, vol.205, issue.1, pp.192-202, 2016.
DOI : 10.1093/gji/ggw003

P. Qin, Integrated gravity and gravity gradient 3D inversion using the non-linear conjugate gradient, Journal of Applied Geophysics, vol.126, pp.52-73, 2016.
DOI : 10.1016/j.jappgeo.2016.01.013

R. Lorentz, Multivariate Hermite interpolation by algebraic polynomials: A survey Numerical Analysis in the 20th Century, II: Interpolation and Extrapolation, pp.1-2, 2000.

M. Lai, Multivariate splines for data fitting and approximation " . In: Approximation Theory XII, pp.210-228, 2007.

L. Laurent, GRENAT (Matlab/Octave Toolbox) https, pp.59-63

G. E. Box and K. Wilson, On the Experimental Attainment of Optimum Conditions, Journal of the Royal Statistical Society. Series BMethodological), vol.131, issue.9, pp.1-45, 1951.
DOI : 10.1007/978-1-4612-4380-9_23

T. W. Simpson, Comparison of response surface and kriging models for multidisciplinary design optimization, 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, pp.98-4755, 1998.
DOI : 10.2514/6.1996-4138

A. A. Giunta and L. T. Watson, A comparison of approximation modeling techniques - Polynomial versus interpolating models, 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, pp.7-10, 1998.
DOI : 10.1002/(SICI)1099-1514(199612)17:5<329::AID-OCA581>3.0.CO;2-W

R. Jin, W. Chen, and T. Simpson, Comparative studies of metamodeling techniques under multiple modeling criteria, 8th Symposium on Multidisciplinary Analysis and Optimization, pp.10-2514, 2000.
DOI : 10.2307/1269548

L. Laurent, R. Le-riche, B. Soulier, P. Boucard, S. Varadarajan et al., An overview of gradient-enhanced metamodels with applications Robust concept exploration of propulsion systems with enhanced model approximation capabilities, Archives of Computational Methods in Engineering In: Engineering Optimization, vol.323, pp.309-334, 2000.

N. V. Queipo, Surrogate-based analysis and optimization, Progress in Aerospace Sciences 41, 2005.
DOI : 10.1016/j.paerosci.2005.02.001

J. Peter, Comparison of surrogate models for the actual global optimization of a 2D turbomachinery flow, Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, pp.46-51, 2007.

M. Marcelet, Etude et mise en oeuvre d'une méthode d'optimisation de forme couplant simulation numérique en aérodynamique et en calcul de structure, 2008.

A. I. Forrester, A. Sóbester, and A. J. Keane, Engineering Design via Surrogate Modelling: A Practical Guide, pp.59-61, 2008.
DOI : 10.1002/9780470770801

B. Kim, Y. Lee, and D. Choi, Comparison study on the accuracy of metamodeling technique for non-convex functions, Journal of Mechanical Science and Technology, vol.21, issue.2, pp.1175-1181, 2009.
DOI : 10.1007/s12206-008-1201-3

D. Zhao and D. Xue, A comparative study of metamodeling methods considering sample quality merits " . English. In: Structural and Multidisciplinary Optimization 42, pp.923-938, 2010.

M. D. Mckay, R. J. Beckman, and W. J. Conover, Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code, Technometrics, vol.212, 1979.

T. J. Santner, B. J. Williams, and W. I. Notz, The Design and Analysis of Computer Experiments, p.283, 2003.
DOI : 10.1007/978-1-4757-3799-8

K. Fang, R. Li, and A. Sudjianto, Design and modeling for computer experiments, 2005.
DOI : 10.1201/9781420034899

J. Franco, Planification d'expériences numériques en phase exploratoire pour la simulation des phénoménes complexes, 2008.

M. Schonlau, Computer Experiments and Global Optimization, 1997.

A. Sóbester, S. J. Leary, and A. J. Keane, On the Design of Optimization Strategies Based on Global Response Surface Approximation Models, Journal of Global Optimization, vol.27, issue.5, pp.31-59, 2005.
DOI : 10.1007/978-1-4613-1997-9

N. M. Alexandrov, A trust-region framework for managing the use of approximation models in optimization, Structural Optimization, vol.12, issue.1, pp.16-23, 1998.
DOI : 10.1007/BF01197433

M. J. Sasena, Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations, 2002.

A. G. Watson and R. J. Barnes, Infill sampling criteria to locate extremes, Mathematical Geology, vol.15, issue.no. 3, pp.589-608, 1995.
DOI : 10.1007/978-1-4612-4856-9

URL : https://researchspace.csir.co.za/dspace/bitstream/10204/2034/3/watson_1995.pdf

D. R. Jones, M. Schonlau, and W. J. Welch, Efficient global optimization of expensive black-box functions, Journal of Global optimization, vol.134, issue.27, pp.455-492, 1998.

G. Matheron, La théorie des variables régionalisées et ses applications, 1970.

E. H. Isaaks and R. M. Srivastava, An introduction to applied geostatistics, 1989.

J. M. Hoef and N. A. English, Multivariable spatial prediction, Mathematical Geology, vol.252, issue.27, pp.219-240, 1993.

P. Goovaerts, Geostatistics for natural resources evaluation, 1997.

M. D. Morris, T. J. Mitchell, and D. Ylvisaker, Bayesian design and analysis of computer experiments: use of derivatives in surface prediction, Technometrics, vol.353, issue.34, pp.243-255, 1993.

J. R. Koehler and A. B. Owen, 9 Computer experiments, Handbook of statistics 13, pp.261-308, 1996.
DOI : 10.1016/S0169-7161(96)13011-X

R. M. Lewis, Using sensitivity information in the construction of kriging models for design optimization, 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
DOI : 10.1145/200979.201043

M. Arnaud and X. Emery, Estimation et interpolation spatiale

H. Chung and J. J. Alonso, Using gradients to construct cokriging approximation models for high-dimensional design optimization problems AIAA-2002-0317, 40th AIAA Aerospace Sciences Meeting & Exhibit, pp.10-2514, 2002.

H. Chung and J. J. Alonso, Design of a Low-Boom Supersonic Business Jet Using Cokriging Approximation Models, 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, pp.10-2514, 2002.
DOI : 10.1007/s001620050060

S. J. Leary, A. Bhaskar, and A. J. Keane, A Derivative Based Surrogate Model for Approximating and Optimizing the Output of an Expensive Computer Simulation, Journal of Global Optimization, vol.30, issue.1, pp.39-58, 2004.
DOI : 10.1023/B:JOGO.0000049094.73665.7e

S. J. Leary, A. Bhaskar, and A. J. Keane, Global Approximation and Optimization Using Adjoint Computational Fluid Dynamics Codes, AIAA Journal, vol.42, issue.3, pp.631-641, 2004.
DOI : 10.1137/1.9781611970920

J. Laurenceau and P. Sagaut, Building Efficient Response Surfaces of Aerodynamic Functions with Kriging and Cokriging, AIAA Journal, vol.2, issue.3, pp.498-507, 2008.
DOI : 10.2514/6.2000-4895

J. Laurenceau, M. Meaux, and A. Structures, Comparison of Gradient and Response Surface Based Optimization Frameworks Using Adjoint Method, 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference <br> 16th AIAA/ASME/AHS Adaptive Structures Conference<br> 10t, p.49, 1889.
DOI : 10.1109/4235.585893

R. Dwight, Z. Han, and A. Structures, Efficient Uncertainty Quantification Using Gradient-Enhanced Kriging AIAA-2009-2276, Structural Dynamics, and Materials Conference, pp.50-60, 2009.
DOI : 10.2514/6.2009-2276

URL : http://elib.dlr.de/63754/1/PV2009_2276.pdf

Y. Xuan, Gradient-based Kriging approximate model and its application research to optimization design, Science in China Series E: Technological Sciences, pp.1117-1124, 2009.
DOI : 10.1002/9781119115151

B. A. Lockwood and D. J. Mavriplis, Parameter Sensitivity Analysis for Hypersonic Viscous Flow Using a Discrete Adjoint Approach, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010.
DOI : 10.1115/1.1446068

A. March, K. Willcox, and Q. Wang, Abstract, The Aeronautical Journal, vol.34, issue.1174, pp.1174-729, 2010.
DOI : 10.2514/1.45331

W. Yamazaki, M. Rumpfkeil, and D. Mavriplis, Design Optimization Utilizing Gradient/Hessian Enhanced Surrogate Model, 28th AIAA Applied Aerodynamics Conference
DOI : 10.2514/3.58379

M. Bompard, Modéles de substitution pour l'optimisation globale de forme en aérodynamique et méthode locale sans paramétrisation, pp.27-28, 2011.

M. P. Rumpfkeil, W. Yamazaki, and D. J. Mavriplis, A Dynamic Sampling Method for Kriging and Cokriging Surrogate Models, 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2011.
DOI : 10.2514/3.25229

L. Laurent, P. Boucard, and B. Soulier, Gradient-Enhanced Metamodels and Multiparametric Strategies for Designing Structural Assemblies, Proceedings of the Eleventh International Conference on Computational Structures Technology, p.28
DOI : 10.4203/ccp.99.230

URL : https://hal.archives-ouvertes.fr/hal-01431905

L. Laurent, Stratégie multiparamétrique et métamodèles pour l'optimisation multiniveaux de structures, pp.28-59, 2013.

L. Laurent, P. Boucard, and B. Soulier, Combining Multiparametric Strategy and Gradient- Based Surrogate Model for Optimizing Structure Assemblies, 10th World Congress on Structural and Multidisciplinary Optimization, pp.19-24
URL : https://hal.archives-ouvertes.fr/hal-01431904

L. Laurent, Global optimisation on assembly problems using gradient-based surrogate model and multiparametric strategy, PhD Olympiad ECCOMAS, 11th World Congress on Computational Mechanics, pp.28-59, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01431902

Z. Han, S. Görtz, and R. Zimmermann, Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function, Aerospace Science and Technology, vol.25, issue.1, pp.177-189, 2013.
DOI : 10.1016/j.ast.2012.01.006

R. Zimmermann, On the Maximum Likelihood Training of Gradient-Enhanced Spatial Gaussian Processes, SIAM Journal on Scientific Computing, vol.35, issue.6, pp.2554-2574, 2013.
DOI : 10.1137/13092229X

S. Ulaganathan, Performance study of multi-fidelity gradient enhanced kriging, Structural and Multidisciplinary Optimization, vol.35, issue.6, p.28, 2015.
DOI : 10.1137/13092229X

S. Ulaganathan, Performance study of gradient-enhanced Kriging, Engineering with Computers, vol.27, issue.2, pp.15-34, 2016.
DOI : 10.1007/s00366-009-0173-y

W. and Z. English, Hermite-Birkhoff interpolation of scattered data by radial basis functions In: Approximation Theory and its Applications 8, pp.1-10, 1992.

I. C. Kampolis, E. I. Karangelos, and K. C. Giannakoglou, Gradient-assisted radial basis function networks: theory and applications, Applied Mathematical Modelling, vol.28, issue.2, pp.197-209, 2004.
DOI : 10.1016/j.apm.2003.08.002

URL : http://doi.org/10.1016/j.apm.2003.08.002

K. C. Giannakoglou, D. I. Papadimitriou, and I. C. Kampolis, Aerodynamic shape design using evolutionary algorithms and new gradient-assisted metamodels, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.44-47, pp.44-47, 2006.
DOI : 10.1016/j.cma.2005.12.008

Y. Ong, K. Lum, and P. B. Nair, Hybrid evolutionary algorithm with Hermite radial basis function interpolants for computationally expensive adjoint solvers, Computational Optimization and Applications, vol.36, issue.6, pp.97-119, 2008.
DOI : 10.2514/2.1999

URL : https://eprints.soton.ac.uk/64451/1/Ong_08.pdf

M. Lázaro, Support Vector Regression for the simultaneous learning of a multivariate function and its derivatives, Neurocomputing, vol.69, issue.1-3, pp.69-70, 2005.
DOI : 10.1016/j.neucom.2005.02.013

R. Jayadeva, S. Khemchandani, and . Chandra, Regularized Least Squares Twin SVR for the Simultaneous Learning of a Function and its Derivative, IJCNN'06. International Joint Conference onIJCNN '06. International Joint Conference on, 2006.

G. Bloch, Support vector regression from simulation data and few experimental samples Special Issue on Industrial Applications of Neural Networks -10th Engineering Applications of Neural Networks, Information Sciences, vol.17820, pp.3813-3827, 2007.

R. Jayadeva, S. Khemchandani, and . Chandra, Regularized least squares support vector regression for the simultaneous learning of a function and its derivatives, Information Sciences, vol.178, issue.17, pp.3402-3414, 2008.
DOI : 10.1016/j.ins.2008.04.007

F. Lauer and G. English, Incorporating prior knowledge in support vector regression, Machine Learning, vol.82, issue.397, pp.89-118, 2008.
DOI : 10.1007/978-1-4757-2440-0

URL : https://hal.archives-ouvertes.fr/hal-00178619

R. Khemchandani, A. Karpatne, and S. C. English, Twin support vector regression for the simultaneous learning of a function and its derivatives, International Journal of Machine Learning and Cybernetics, vol.2, issue.3, pp.51-63, 2013.
DOI : 10.1007/s13042-011-0031-2

R. J. Renka, Multivariate interpolation of large sets of scattered data, ACM Transactions on Mathematical Software, vol.14, issue.2, pp.139-148, 1988.
DOI : 10.1145/45054.45055

S. Lauridsen, Response surface approximation using gradient information, Proceedings of 4th world congress on structural and multidisciplinary optimization, p.5, 2001.

C. Kim, S. Wang, and K. K. Choi, Efficient Response Surface Modeling by Using Moving Least-Squares Method and Sensitivity, AIAA Journal, vol.11, issue.1, 2005.
DOI : 10.1109/20.767218

P. Breitkopf, Moving least squares response surface approximation: Formulation and metal forming applications Advances in Meshfree Methods, Computers & Structures, vol.83, pp.17-18, 2005.

L. Laurent, R. Le-riche, B. Soulier, P. Boucard, F. Van-keulen et al., An overview of gradient-enhanced metamodels with applications Noise and discontinuity issues in response surfaces based on functions and derivatives, 41st Structures, Structural Dynamics, and Materials Conference and Exhibit. AIAA-00-1363, 2000.

K. Vervenne, F. Van-keulen, and A. Structures, An Alternative Approach to Response Surface Building Using Gradient Information AIAA-2002-1584, Structural Dynamics, and Materials Conference, pp.43-53, 2002.
DOI : 10.2514/6.2002-1584

F. Van-keulen, K. Vervenne, and . English, Gradient-enhanced response surface building In: Structural and Multidisciplinary Optimization 27, pp.337-351, 2004.

W. Liu, Development of Gradient-Enhanced Kriging Approximations for Multidisciplinary Design Optimization, 2003.

R. H. Myers and D. C. Montgomery, Response Surface Methodology Process and Product Optimization Using Designed Experiments, 1995.

V. Mazja, Sobolev spaces, 1985.
DOI : 10.1007/978-3-662-09922-3

C. Runge, Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten, Zeitschrift für Mathematik und Physik, pp.224-243, 1901.

R. T. Haftka, Semi-analytical static nonlinear structural sensitivity analysis, AIAA Journal, vol.317, pp.1307-1312, 1993.

C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine Learning Adaptive Computation and Machine Learning, pp.248-266, 2006.

N. Stander, The successive response surface method applied to sheet-metal forming, Proceedings, First MIT Conference on Computational Fluid and Solid Mechanics, pp.481-486, 2001.
DOI : 10.1016/B978-008043944-0/50688-0

P. Lancaster and K. Salkauskas, Surfaces generated by moving least squares methods Mathematics of computation 37, pp.141-158, 1981.

L. Zhou and W. X. Zheng, Moving least square Ritz method for vibration analysis of plates, Journal of Sound and Vibration, vol.290, issue.3-5, pp.3-5, 2006.
DOI : 10.1016/j.jsv.2005.05.004

U. Häussler-combe and C. Korn, An adaptive approach with the Element-Free-Galerkin method, Computer Methods in Applied Mechanics and Engineering, vol.162, issue.97, pp.1-4, 1998.

D. Shepard, A two-dimensional interpolation function for irregularly-spaced data, Proceedings of the 1968 23rd ACM national conference on -, pp.517-524, 1968.
DOI : 10.1145/800186.810616

J. Mercer, Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.209, pp.441-458, 1909.

M. G. Genton, Classes of Kernels for Machine Learning: A Statistics Perspective, In: J. Mach. Learn. Res, vol.2, pp.299-312, 2001.

L. Laurent, P. Boucard, and B. Soulier, Generation of a cokriging metamodel using a multiparametric strategy, Computational Mechanics, vol.195, issue.44???47, pp.151-169, 2013.
DOI : 10.1016/j.cma.2005.12.008

URL : https://hal.archives-ouvertes.fr/hal-01376462

L. Laurent, P. Boucard, and B. Soulier, A dedicated multiparametric strategy for the fast construction of a cokriging metamodel, Computers & Structures, vol.124, issue.28, pp.61-73, 2013.
DOI : 10.1016/j.compstruc.2013.03.012

URL : https://hal.archives-ouvertes.fr/hal-01376464

M. L. Stein, Interpolation of Spatial Data: some theory for kriging, 1999.
DOI : 10.1007/978-1-4612-1494-6

B. Matérn, Spatial Variation (Lecture NotesStatist. 36), 1960.

M. Abramowitz and I. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables Applied mathematics series, U.S. Govt. Print. Off, vol.55, 1964.

B. A. Lockwood and M. Anitescu, Gradient-Enhanced Universal Kriging for Uncertainty Propagation, Nuclear Science and Engineering, vol.170, issue.2, pp.168-195, 2012.
DOI : 10.13182/NSE10-86

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.187.6097

R. L. Hardy, Multiquadric equations of topography and other irregular surfaces, Journal of Geophysical Research, vol.71, issue.8, pp.1905-1915, 1971.
DOI : 10.1029/JZ071i004p01105

M. J. Powell, Approximation Theory and Methods, 1981.

D. Broomhead and D. Lowe, Multivariable functional interpolation and adaptive networks, Complex Systems, vol.2, pp.321-355, 1988.

B. Beachkofski, R. Grandhi, and A. Structures, Improved Distributed Hypercube Sampling, 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, pp.43-47
DOI : 10.2514/6.2002-1274

R. Schaback, A Practical Guide to Radial Basis Functions Book for teaching, 2007.

M. Stone, Cross-validatory choice and assessment of statistical predictions, Journal of the Royal Statistical Society. Series B (Methodological), pp.111-147, 1974.

S. and G. English, The Predictive Sample Reuse Method with Applications, Journal of the American Statistical Association, vol.70350, pp.320-328, 1975.

M. Bompard, J. Peter, and J. Desideri, Surrogate models based on function and derivative values for aerodynamic global optimization, Proceedings of the V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00537120

S. Rippa, An algorithm for selecting a good value for the parameter c in radial basis function interpolation, Advances in Computational Mathematics, vol.11, issue.2/3, pp.193-210, 1999.
DOI : 10.1023/A:1018975909870

B. Soulier, Métamodèles à gradients et multiniveaux de fidélité pour l'optimisation d'assemblages, 12ème Coloque National en Calcul des Structures, pp.12-22

S. Ulaganathan, High dimensional Kriging metamodelling utilising gradient information, Applied Mathematical Modelling, vol.40, issue.9-10, 2016.
DOI : 10.1016/j.apm.2015.12.033

P. Chauvet, Aide mémoire de la géostatistique linéaire, 1999.

K. Mardia and R. Marshall, Maximum likelihood estimation of models for residual covariance in spatial regression, Biometrika, vol.71, issue.1, p.135, 1984.
DOI : 10.1093/biomet/71.1.135

L. Laurent, R. Le-riche, B. Soulier, and P. Boucard, An overview of gradient-enhanced metamodels with applications. Archives of Computational Methods in Engineering, p.1525674, 2017.
URL : https://hal.archives-ouvertes.fr/emse-01525674

J. Warnes and B. Ripley, Problems with likelihood estimation of covariance functions of spatial Gaussian processes, Biometrika, vol.74, issue.3, p.640, 1987.
DOI : 10.1093/biomet/74.3.640

L. Laurent, Multilevel optimisation of structures using a multiparametric strategy and metamodels, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00972299

V. N. Vapnik, The Nature of Statistical Learning Theory, pp.39-40, 1995.

V. N. Vapnik and A. Y. Chervonenkis, Theory of Pattern Recognition, Russian]. USSR: Nauka, 1974.

A. J. Smola, Asymptotically Optimal Choice of ??-Loss for Support Vector Machines, 8th International Conference on Artificial Neural Networks, pp.105-110, 1998.
DOI : 10.1007/978-1-4471-1599-1_11

A. J. Smola, B. Schölkopf, and . English, A tutorial on support vector regression, Statistics and Computing, vol.14, issue.3, pp.39-40, 2004.
DOI : 10.1023/B:STCO.0000035301.49549.88

N. Cristianini and J. Shawe-taylor, An Introduction to Support Vector Machines: And Other Kernel-based Learning Methods, 2000.
DOI : 10.1017/CBO9780511801389

J. Platt, Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines, p.21, 1998.

B. Schölkopf, Shrinking the tube: a new support vector regression algorithm Advances in Neural Information Processing Systems 11. Max-Planck-Gesellschaft, pp.330-336, 1999.

B. Schölkopf, New Support Vector Algorithms, Neural Computation, vol.20, issue.5, pp.1207-1245, 2000.
DOI : 10.1016/S0893-6080(98)00032-X

C. Chang and C. Lin, -Support Vector Regression: Theory and Algorithms, Neural Computation, vol.14, issue.8, pp.1959-1977, 2002.
DOI : 10.1162/089976600300015565

URL : https://hal.archives-ouvertes.fr/hal-00700384

V. Cherkassky and Y. Ma, Selection of Meta-parameters for Support Vector Regression, Artificial Neural Networks ? ICANN 2002: International Conference Madrid, Spain Proceedings, pp.687-693, 2002.
DOI : 10.1007/3-540-46084-5_112

V. N. Vapnik, Statistical Learning Theory, 1998.

V. N. Vapnik and O. Chapelle, Bounds on Error Expectation for Support Vector Machines, Neural Computation, vol.12, issue.9, pp.2013-2036, 2000.
DOI : 10.1162/089976600300015042

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.297.2806

O. Chapelle, Choosing Multiple Parameters for Support Vector Machines, Machine Learning, vol.46, pp.1-3, 2002.

M. Chang and C. Lin, Leave-One-Out Bounds for Support Vector Regression Model Selection, Neural Computation, vol.20, issue.5, 2005.
DOI : 10.1162/089976600300015042

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.305.487

L. Laurent, R. Le-riche, B. Soulier, and P. Boucard, An overview of gradient-enhanced metamodels with applications. Archives of Computational Methods in Engineering, p.1525674, 2017.
URL : https://hal.archives-ouvertes.fr/emse-01525674

L. Laurent, P. Boucard, and B. Soulier, Fast Multilevel Optimization using a Multiparametric Strategy and a Cokriging Metamodel, Proceedings of the Second International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering, 2011.
DOI : 10.4203/ccp.97.50

URL : https://hal.archives-ouvertes.fr/hal-01431906

L. Laurent, On the use of gradient-enhanced metamodels for global approximation and global optimization, VII European Congress on Computational Methods in Applied Sciences and Engineering, vol.59, p.61, 2016.
URL : https://hal.archives-ouvertes.fr/emse-01411135

L. Laurent, MultiDOE (Matlab/Octave Toolbox) https, p.59

I. Couckuyt, T. Dhaene, and P. Demeester, ooDACE Toolbox: A Flexible Object-Oriented Kriging implementation, In: Journal of Machine Learning Research, vol.151, pp.3183-3186, 2014.

S. Ulaganathan, A Matlab Toolbox for Kriging Metamodelling, Procedia Computer Science, vol.51, pp.2708-2713, 2015.
DOI : 10.1016/j.procs.2015.05.395

URL : http://doi.org/10.1016/j.procs.2015.05.395

A. I. Forrester, A. Sóbester, and A. J. Keane, Optimization with missing data, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.4, issue.2067, pp.2067-61, 2006.
DOI : 10.1098/rspa.2005.1608

J. Fritz, I. Neuweiler, and W. Nowak, Application of FFT-based Algorithms for Large-Scale Universal Kriging Problems, Mathematical Geosciences, vol.32, issue.1/2, pp.509-533, 2009.
DOI : 10.5194/hess-8-220-2004

J. Hensman, N. Durrande, and A. Solin, Variational Fourier features for Gaussian processes, 2016.
URL : https://hal.archives-ouvertes.fr/emse-01411206