Rescheduling through stop-skipping in dense railway systems
Résumé
Based on the analysis of the railway system in the Paris region in France, this paper presents a rescheduling problem in which stops on train lines can be skipped and services are retimed to recover when limited disturbances occur. Indeed, in such mass transit systems, minor disturbances tend to propagate and generate larger delays through the shared use of resources, if no action is quickly taken. An integrated Integer Linear Programming model is presented whose objective function minimizes both the recovery time and the waiting time of passengers. Additional criteria related to the weighted number of train stops that are skipped are included in the objective function. Rolling-stock constraints are also taken into account to propose a feasible plan. Computational experiments on real data are conducted to show the impact of rescheduling decisions depending on key parameters such as the duration of the disturbances and the minimal turning time between trains. The trade-off between the different criteria in the objective function is also illustrated and discussed.