
HAL Id: emse-01619212
https://hal-emse.ccsd.cnrs.fr/emse-01619212v1

Submitted on 19 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contextualizing DL axioms: Formalization, a New
Approach, and its Properties

Antoine Zimmermann, José M Giménez-García

To cite this version:
Antoine Zimmermann, José M Giménez-García. Contextualizing DL axioms: Formalization, a New
Approach, and its Properties. Web Stream Processing workshop (WSP 2017) and the 2nd Inter-
national Workshop on Ontology Modularity, Contextuality, and Evolution (WOMoCoE 2017), 16th
International Semantic Web Conference (ISWC 2017), Oct 2017, Vienne, Austria. pp.74-85. �emse-
01619212�

https://hal-emse.ccsd.cnrs.fr/emse-01619212v1
https://hal.archives-ouvertes.fr

Contextualizing DL axioms: Formalization, a
New Approach, and its Properties

Antoine Zimmermann1 and José M. Giménez-Garćıa2

1 Univ Lyon, MINES Saint-Étienne, CNRS, Laboratoire Hubert Curien
UMR 5516, F-42023 Saint-Étienne, France

antoine.zimmermann@emse.fr
2 Université de Lyon, CNRS, UMR 5516,

Laboratoire Hubert-Curien, Saint-Étienne, France
jose.gimenez.garcia@univ-st-etienne.fr

Abstract. We address the problem of providing contextual information
about a logical formula (e.g., provenance, date of validity, or confidence)
and representing it within a logical system. In this case, it is needed to
rely on a higher order or non standard formalism, or some kind of reifi-
cation mechanism. We explore the case of reification and formalize the
concept of contextualizing logical statements in the case of Description
Logics. Then, we define several properties of contextualization that are
desirable. No previous approaches satisfy all of the them. Consequently,
we define a new way of contextually annotating statements. It is inspired
by NdFluents, which is itself an extension of the 4dFluents approach for
annotating statements with temporal context. In NdFluents, instances
that are involved in a contextual statement are sliced into contextual
parts, such that only parts in the same context hold relations to one
another, with the goal of better preserving inferences. We generalize this
idea by defining contextual parts of relations and classes. This formal
construction better satisfies the properties, although not entirely. We
show that it is a particular case of a general mechanism that NdFluents
also instantiates, and present other variations.

Keywords: Annotations, Contexts, Metadata, Ontologies, Description
Logic, Semantic Web, Reasoning, Reification

1 Introduction

The problem of being able to reason not only with logical formulas, but also about
said formulas, is an old one in artificial intelligence. McCarthy [1] proposed to
extend first order logic by reifying context and formulas to introduce a binary
predicate ist(φ, c) satisfied if the formula φ is true (ist) in the context c. However,
a complete axiomatization and calculus for McCarthy’s contextual logic has
never been formalized. Giunchiglia [2] proposed the grouping of “local” formulas
in contexts, and then using other kinds of formulas to characterize how knowledge
from multiple contexts is compatible. This idea of locality+compatibility [3] has
led to several non standard formalisms for reasoning with multiple contexts [4].

Alternatively, the approach of annotated logic programming [5] considers that a
contextual annotation is just a value in an algebraic structure (e.g., a number or
a temporal interval). This idea was later applied to annotated RDF and RDFS [6,
7].

The representation of statement annotation has sometimes being thought of
as a data model problem without consideration of the logical formalism behind.
In particular, several proposals to extend the RDF data model in various ways for
allowing annotations have been made: named graphs [8], RDF+ [9], RDF* [10],
Yago Model [11]. However, the underlying data structures have not a clear formal
semantics. Therefore, some authors advocate another approach to representing
annotation of knowledge: reify the statement or its context and describe it within
the formalism of the statement. This requires modifying the statement so as to
integrate knowledge of the context or statement. Examples of such techniques
are reification [12], N-Ary Relations [13], Singleton Property [14]), and NdFlu-
ents [15]. This paper provides an abstraction of the reification techniques in the
context of Description Logics (DLs) in the form of what we call contextualization
functions. Additionally, we introduce a new technique for the representation of
contextual annotations that satisfies better some desirable properties.

After introducing our notations for DLs in Sec. 2, we provide formal defi-
nitions that allow us to define verifiable properties of the reification techniques
(Sec. 3). Our new technique, named NdTerms, is presented in Sec. 4, where we
also prove to what extent it satisfies the properties of the previous section. Sec. 5
discuss some of the problems that may occur when combining knowledge having
different annotations. In Sec. 6, we present how the other approaches fit in our
formalization and why they do not satisfy well the properties. Finally, we discuss
this and future work in Sec. 7.

2 Preliminaries

In this section, we introduce the notations and definitions we use in relation
to Description Logics. Note that we use an extended version of DL where all
terms can be used as concept names, role names, and individual names in the
same ontology. Using the same name for different types of terms is known as
“punning” in OWL 2 [16, Section 2.4.1]. Moreover, we allow more constructs
than in OWL 2 DL and make no restriction on their use in order to show that
our approach is not limited to a specific DL.

We assume that there is an infinite set of terms N. Every term is an individual.
A role is either a term or, given roles R and S, R t S, R u S, ¬R, R−, R ◦ S
and R+. A concept is either a term, or, given concepts C, D, role R, individuals
u1, . . . , uk, and natural number n, ⊥, >, C tD, C uD, ∃R.C, ∀R.C, ≤ nR.C,
≥ nR.C, ¬C or {u1, . . . , uk}. Finally, we also allow concept product C ×D to
define a role.

Interpretations are tuples 〈∆I , ·Iu , ·Ir , ·Ic〉, where ∆I is a non-empty set (the
domain of interpretation) and ·Iu , ·Ir , and ·Ic are the interpretation functions
for individuals, roles and concepts respectively such that:

– for all u ∈ N, uIu ∈ ∆I ;
– for all P ∈ N, P Ir ⊆ ∆I × ∆I and interpretation of roles is inductively

defined by (R t S)Ir = RIr ∪ SIr , (R u S)Ir = RIr ∩ SIr , (¬R)Ir =
(∆I×∆I)\RIr , (R−)Ir = {〈x, y〉|〈y, x〉∈RIr}, (R◦S)Ir = {〈x, y〉|∃z.〈x, z〉∈
RIr ∧〈z, y〉∈SIr} and (R+)Ir is the reflexive-transitive closure of RIr (with
R and S being arbitrary roles).

– for all A ∈ N, AIc ⊆ ∆I and interpretation of concepts is defined by ⊥Ic = ∅,
>Ic = ∆I , (C t D)Ic = CIc ∪ DIc , (C u D)Ic = CIc ∩ DIc , (∃R.C)Ic =
{x|∃y.y ∈ CIc ∧ 〈x, y〉 ∈ RIr}, (∀R.C)Ic = {x|∀y.〈x, y〉 ∈ RIr ⇒ y ∈ CIc},
(≤ nR.C)Ic = {x|]{y ∈ CIc |〈x, y〉 ∈ RIr} ≤ n}, (≥ nR.C)Ic = {x|]{y ∈
CIc |〈x, y〉∈RIr} ≥ n}, (¬C)Ic = ∆I \ CIc , {u1, . . . , uk} = {uIu1 , . . . , uIuk },
where C and D are arbitrary concepts, R an arbitrary role, u1, . . . , uk are
individual names, and k and n two natural numbers.

– Roles defined as a concept product are interpreted as (C×D)Ir = CIc×DIc
for arbitrary concepts C and D.

In the following, we slightly abuse notations by defining interpretations as
pairs 〈∆I , ·I〉 where ·I denotes the three functions ·Iu , ·Ic , and ·Ir . Moreover,
when we write xI = yI

′
, it means “xIu = yI

′
u and xIc = yI

′
c and xIr = yI

′
r”.

Axioms are either general concept inclusions C vc D, sub-role axioms R vr
S, instance assertions C(a), or role assertions R(a, b), where C and D are con-
cepts, R and S are roles, and a and b are individual names. An interpretation
I satisfies axiom C vc D iff CIc ⊆ DIc ; it satisfies R vr S iff RIr ⊆ SIr ; it
satisfies C(a) iff aIu ∈CIc ; and it satisfies R(a, b) iff 〈aIu , bIu〉 ∈RIr . When I
satisfies an axiom α, it is denoted by I |= α. Instance assertions, role assertions
and individual identities constitute the ABox axioms.

An ontology O is composed of a set of terms called the signature of O and
denoted by Sig(O), and a set of axioms denoted by Ax(O). An interpretation I
is a model of an ontology O iff for all α ∈ Ax(O), I |= α. In this case, we write
I |= O. The set of all models of an ontology O is denoted by Mod(O). A semantic
consequence of an ontology O is a formula α such that for all I ∈ Mod(O), I |= α.

In the rest of the paper, we will use teletype font to denote known individ-
uals, and normal font for unknown individuals and variables (e.g., City(babylon)
and City(x)).

3 Contextualization of Statements

A contextual annotation can be thought of as a set of ABox axioms that describe
an individual representing the statement (the anchor) that is annotated. An
annotated statement (or ontology) is the combination of a DL axiom (or DL
ontology) with a contextual annotation.

Definition 1 (Connected individuals). Two terms a and b are connected
individuals wrt an ABox A iff a and b are used as individual names in A, and
either

– a and b are the same term, or

– there exists R1, · · · , Rn and z1, · · · , zn−1, such that:
• R1(a, z1), or R1(z1, a)
• Ri(zi−1, zi), or Ri(zi, zi−1), 2 ≤ i ≤ n− 2
• Rn(zn−1, b), or Rn(b, zn−1)

Example 1. If we consider the ABox A = {P (a, b), Q(c, b), S(d, e)}, the pairs of
individuals {a, b}, {b, c}, {a, c}, and {d, e} are connected individuals, but {a, d},
{b, d}, {c, d}, {a, e}, {b, e}, and {c, e} are not.

Definition 2 (Contextual annotation). A contextual annotation Ca is an
ABox with signature {a} ∪ Σ where a 6∈ Σ is a distinguished term (called the
anchor) and Σ is a DL signature such that ∀x ∈ Σ, {a, x} are connected indi-
viduals.

Example 2. The Abox CA = {validity(a, t), Interval(t) from(t, 609BC), to(t, 539BC),
prov(a, w), name(w, wikipedia), Wiki(w)} is a contextual annotation, where a is
the anchor and Σ = {t, Interval, w, wikipedia, wiki, 609BC, 539BC}.

Definition 3 (Annotated statement). An annotated statement is a pair
〈α,Ca〉 such that α is a description logic axiom and Ca is a contextual annota-
tion.

Example 3. The pair 〈α,CA〉, where α = capital(babylon, babylonianEmpire)
and CA is the contextual annotation from Ex. 2, is an annotated statement.

Definition 4 (Annotated ontology). An annotated ontology is a pair 〈O,Ca〉
such that O is a description logic ontology and Ca is a contextual annotation.

Each reification technique has an implicit construction plan in order to map
an annotated statement to a resulting ontology. A contextualization (Def. 5)
represents the procedure that generates a single DL ontology from a given anno-
tated statement or ontology. The procedure must not lose information, especially
not the annotation.

Definition 5 (Contextualization). A contextualization is a function f that
maps each annotated statement αCa = 〈α,Ca〉 to a description logic ontology
f(αCa) = St(αCa) ∪ Cx(αCa) such that:

– there exists an individual u in the signature of St(αCa) and of Cx(αCa) such
that:
• for all R(a, x) ∈ Ca, R(u, x) ∈ Cx(αCa);
• for all R(x,a) ∈ Ca, R(x, u) ∈ Cx(αCa);
• for all C(a) ∈ Ca, C(u) ∈ Cx(αCa);
• for all other α ∈ Ca, α ∈ Cx(αCa).

– there is an injective mapping between the signature of α and the signature
of St(αC).

We extend f to all annotated ontologies OCa = 〈O,Ca〉 by defining f(OCa) =⋃
α∈O f(〈α,Ca〉).

Example 4. An example contextualization function fex introduces a fresh term t
for each annotated statement with a role assertion R(a, b), where R, a, and b are
three therms, creates new axioms subject(t, s), predicate(t, R), object(t, o),
and finally removes the axiom R(a, b). Notice that this construction requires the
punning of term R. This function is analogous to RDF Reification. The result of
this contextualization, along with Other possible known approaches, is described
in Sec. 6.

Those are the only structures that we will consider in this paper. The remain-
ing definitions are desirable properties that a contextualization should satisfy,
especially if one wants it to preserve as much of the original knowledge as pos-
sible.

Definition 6 (Soundness). A contextualization function f is sound wrt a set
of annotated ontologies Ω iff for each OCa = 〈O,Ca〉 ∈ Ω such that O and Ca
are consistent, then f(OCa) is consistent.

That is, a contextualization is sound if, when contextualizing a consistent
ontology, the result is also consistent. This property avoids that the contextu-
alization introduces unnecessary contradictions that would result in everything
being entailed by it. Note that this requirement is not necessary in the oppo-
site direction, i.e., if f(OCa) is consistent, it is not required that O and C are
consistent.

Example 5. The contextualization function fex from Ex. 4 is sound wrt the set
of ontologies Ω, where Ω ∪ {subject, predicate, predicate} = ∅.

Definition 7 (Inconsistency preservation). Let f be a contextualization func-
tion. We say that f preserves inconsistencies iff for all annotated ontologies
OCa = 〈O,Ca〉, if O is inconsistent then f(OCa) is inconsistent.

Inconsistency preservation means that a self-contradictory ontology in a given
context is contextualized into an inconsistent ontology, such that bringing ad-
ditional knowledge from other contexts would result in no more consistency. If
something is inconsistent within a context, then it is not really worth to consider
reasoning with this annotated ontology.

Example 6. The contextualization function fex from Ex. 4 does not preserve in-
consistencies. For instance, capitalOf can be defined as irreflexive using the fol-
lowing axiom: ∃capitalOf.> v ∀capitalOf−.⊥. Then, the axiom capitalOf(babylon,
babylon) would make the ontology inconsistent. But when applying fex the re-
sult is consistent.

Definition 8 (Entailment preservation). Let f be a contextualization func-
tion. Given two description logic ontologies O1 and O2 such that O1 |= O2, we
say that f preserves the entailment between O1 and O2 iff for all contextual
annotations Ca, f(〈O1,Ca〉) |= f(〈O2,Ca〉). Given a set K ⊆ Na of contextual
annotations, if f preserves all entailments between ontologies in K, then we say
that f is entailment preserving for K.

In short, a contextualization is entailment preserving if all the knowledge
that could be inferred from the original ontology can also be inferred, in the
same context, in the contextualized ontology.

Example 7. The contextualization function fex from Ex. 4 preserves entailments
for the TBox of ontologies (because no modifications are made on its axioms),
but it does not preserve entailments on role assertions. For instance, the ax-
ioms capitalOf v cityOf, capitalOf(babylon, babylonianEmpire) entails
cityOf(babylon, babylonianEmpire), but this inference is not preserved after
applying fex.

4 The NdTerms Approach

This section defines the NdTerms approach that extends the NdFluent pro-
posal [15]. To this end, we assume that terms are divided into three infinite
disjoint sets Nnc, Nc, and Na called the non contextual terms, the contextual
terms, and the anchor terms respectively. We also assume that there is an in-
jective function A : C → Na and for all Ca ∈ C there is an injective function
renCa : Nnc → Nc and two terms isContextualPartOf, isInContext ∈ Nnc. For
any Ca, we extend renCa to axioms by defining renCa(α) as the axiom built from
α by replacing all terms t ∈ Sig(α) with renCa(t).

4.1 Contextualization Function in NdTerms

The contextualization needs to combine the ontologies from the statements and
the contextual annotation. However, if we näıvely make the union of the ax-
ioms, they could contradict, and it would not be possible to ensure the desired
properties. For example, an ontology may restrict the size of the domain of inter-
pretation to be of a fixed cardinality, while the contextual annotation may rely
on more elements outside the local universe of this context. For this reason we
use the concept or relativization: The ontology is modified in such a way that the
interpretation of everything explicitly described in it is confined to a set, while
external terms or constructs may have elements outside said set. Relativization
has been applied in various logical settings over the past four decades (e.g., [17])
and applied to DLs and OWL [18], among others.

Definition 9 (Relativization). Let Ca be a contextual annotation. Given an
ontology O, the relativization of O in Ca is an ontology RelCa(O) built from O
as follows:

1. Sig(RelCa(O)) = Sig(O)∪>Ca where >Ca is a term not appearing in Sig(O);
2. for all appearances of > in an axiom of O, replace > with >Ca ;
3. for all concepts ¬C appearing in an axiom of O, replace it with ¬C u >Ca ;
4. for all roles ¬R appearing in an axiom of O, replace it with ¬Ru(>Ca×>Ca);
5. for all concepts ∀R.C appearing in an axiom of O, replace it with ∀R.Cu>Ca ;
6. for all roles R+ appearing in an axiom of O, replace it with R+u>Ca ×>Ca .

7. Additionally, for all terms t ∈ Sig(O), the following axioms are in RelCa(O):
– t v >Ca ,
– >Ca(t),
– ∃t.> v >Ca ,
– > v ∀t.>Ca .

The relativization of an ontology can be done systematically by relativizing
its concepts and roles, which in turn can be achieved by using Def. 10.

Definition 10 (Relativization of concepts and roles). Given a contextual
annotation Ca, we define a function relCa that maps concepts and roles to con-
cepts and roles according to the rules of Items 2-6. That is, recursively:

– relCa(t) = t;
– relCa({u1, . . . uk}) = {relCa(u1), . . . relf(uk)};
– relCa(C tD) = relCa(C) t relCa(D);
– relCa(C uD) = relCa(C) u relCa(D);
– relCa(¬C) = ¬relCa(C) u >Ca ;
– relCa(C ×D) = relCa(C)× relCa(D);
– relCa(R t S) = relCa(R) t relCa(S);
– relCa(R u S) = relCa(R) u relCa(S);
– relCa(R ◦ S) = relCa(R) ◦ relCa(S);
– relCa(¬R) = ¬relCa(R) u >Ca ×>Ca ;
– relCa(R−) = relCa(R)−;
– relCa(R+) = relCa(R)+ u >Ca ×>Ca ;
– relCa(∃R.C) = ∃relCa(R).relCa(C);
– relCa(∀R.C) = ∀relCa(R).relCa(C) u >Ca ;
– relCa(≥ nR.C) =≥ n relCa(R).relCa(C);
– relCa(≤ nR.C) =≤ n relCa(R).relCa(C).

where t is a term, C,D are concepts, R,S are roles, u1, . . . uk are individuals,
and k, n are natural numbers.

Example 8. The axiom ∃capitalOf.> v ∀capitalOf−.⊥ from Ex. 6 is rela-
tivized into ∃capitalOf.>Ca v ∀capitalOf−.⊥ u>Ca .

Then, the contextualization in NdTerms is done by: (1) creating the replace-
ment of the anchor using the function A, (2) renaming all the terms in the
statement using the ren function, (3) linking them to the original terms by the
isContextualPartOf relation, and (4) linking the renamed terms to the context
using the isInContext relation.

Definition 11 (Contextualization in NdTerms). Let Ca ∈ C be any con-
textual annotation. Let αCa = 〈α,Ca〉 be an annotated statement such that the
signatures of α and Ca are in Nnc. We define the contextualization function fnd
such that fnd(αCa) = St(αCa) ∪ Cx(Ca) and:

– StCa(α) = {renCa(RelCa(α))}∪{isContextualPartOf(renCa(t), t) | t ∈ Sig(α)}∪
{isInContext(renCa(t),A(Ca)) | t ∈ Sig(α)}.

– Cx(Ca) contains exactly the following axioms:

• for all R(a, x) ∈ Ca, R(A(Ca), x) ∈ Cx(α);

• for all R(x,a) ∈ Ca, R(x,A(Ca)) ∈ Cx(Ca);

• for all C(a) ∈ Ca, C(A(Ca)) ∈ Cx(Ca);

• for all other axioms β ∈ Ca, β ∈ Cx(Ca).

Similarly to Ex. 4, this construction requires punning, since all terms in the
statement are used as individual names in the role assertion isContextualPartOf(renCa(t),
t).

Example 9. The NdTerms contextualization of our running example within the
context CA of Ex. 2 contains the following axioms, where term@Ca is the result
of the renaming function renCa(term):

capitalOf@CA(babylon@CA, babylonianEmpire@CA)

isContextualPartOf(babylon@CA, babylon)

isContextualPartOf(babylonianEmpire@CA, babylonianEmpire)

isInContext(babylon, exampleContext)

isInContext(babylonianEmpire, exampleContext)

validity(exampleContext, t) etc.

4.2 Properties of NdTerms

This subsection presents the properties satisfied by NdTerms. Due to space con-
straints, we omit the proofs of the theorems, but they are provided in the ac-
companying technical report [19].

The contextualization of NdTerms is sound, but only wrt annotated ontolo-
gies that satisfy certain conditions. In order to present the conditions, we need
to introduce the following definition, that is also used in several proofs of this
paper.

Definition 12 (Domain extensibility). Let O be an ontology. A model I =
〈∆I , ·I〉 of O is domain extensible for O iff for all sets ∆+, I ′ = 〈∆I ∪∆+, ·I〉
is also a model of O. An ontology is said to be model extensible iff it has a model
that is domain extensible.

Note that, even if the domain of interpretation of an ontology is infinite, that
does not necessarily mean that its models are domain extensible. This notion is
closely related to the notion of expansion in [18] since if I is domain extensible,
then one can build infinitely many expansions of it.

Theorem 1 (Soundness of NdTerms). Let Ca be a contextual annotation.
If Ca has its signature in Nnc and is model extensible, then the contextualization
function fnd is sound wrt annotated ontologies OCa = 〈O,Ca〉, Sig(O) ⊆ Nnc,
and Sig(O) ∩ Sig(Ca) = ∅.

A model of the union of the of two ontologies can be made from the union
of the models of the original ontologies if both ontologies are domain extensi-
ble. However, this is not a strong restriction, because the relativization of any
consistent ontology is model extensible. Since NdTerms relativizes the ontology
O and requires the contextual annotation Ca to be model extensible, it follows
that a model can be made. Hence NdTerms is sound.

Theorem 2 (Inconsistency preservation of NdTerms). The contextual-
ization function fnd preserves inconsistencies.

If the contextualization of an ontology fnd(OCa) is consistent, then the origi-
nal ontology O is necessarily consistent. Because the renaming function renCa is
injective, there exists an inverse function ren−Ca : renCa(Nnc)→ Nnc which is itself
injective, and the renaming of terms gives us a model. The relativization function
relCa , on the other hand, does not change the interpretation (since >I′′ = >I′′Ca ,
adding u>Ca to a concept does not change its interpretation, and replacing >
with >Ca has no effect on the interpretation of the concepts or roles). There-
fore, if a model satisfies the contextualization function fnd(OCa), it also satisfies
O, and it is not possible to have a consistent NdTerms contextualization of a
non-consistent ontology.

In [15], we were only able to study entailment preservation in the limited set-
ting of pD∗ entailment. Here we present a much stronger theorem for NdTerms.

Theorem 3 (Entailment preservation of NdTerms). Let Ca be a contex-
tual annotation, let Ω be a set of ontologies having their signatures in Nnc and
disjoint from the signature of Ca. If Ca is model extensible, then NdTerms is
entailment preserving for {〈O,Ca〉}O∈Ω.

If the ontology O is inconsistent, the entailment is trivially preserved. If
not, considering that the relativization of a consistent ontology preserves entail-
ments, and that the function renCa is just a renaming (and “truth is invariant
under change of notation” [20]), the entailments of the ontology O are preserved.
Moreover, all axioms in Cx(Ca) are satisfied by the interpretation I, and when-
ever isContextualPartOf(renKa , t) or isInContext(renKa(t),A(Ka)) are in the
entailed contextualized ontology, then they are in original as well as well. There-
fore, all entailments are preserved, and NdTerms satisfies this property.

5 Annotations in Multiple Contexts

So far, we assumed that all axioms of an ontology are annotated with the same
contextual information. In this setting, the core of the contextualization function
in NdTerms amounts to relativizing the axioms and renaming the terms. The
renaming part may seem surprising because, as we said a couple of times already,
“truth is invariant under change of notation”. However, the usefulness of the
renaming part becomes apparent when we want to combine several annotated
ontologies having different contextual annotations (say Ca1 and Ca2). In this

case, if the renaming functions renCa1
and renCa2

are mapping non contextual
terms into disjoint sets of contextual terms, then the contextualization function
fnd ensures that any inference made in a context will not interact with the
knowledge from another context. This avoids the contextualized knowledge to
be inconsistent when combining statements in different contexts that contradict
each others.

The properties presented in Sec. 3 require a little adaptation when applied
to the multi-contextual setting. Indeed, in spite of the soundness theorem of
Sec. 4.2, in the general case if a set of annotated ontologies {〈Oi,Cai〉}i∈I are
satisfying the constraints of Theorem 1, it is still possible that

⋃
i∈I fnd(〈Oi,Cai〉)

is inconsistent. We expect that the preservation of consistency can be guaranteed
if all the signatures of {Oi} are disjoint from all the signatures of {Cai}. Studying
in more details the case of multiple contextual annotations is planned for future
work.

6 Other Approaches

Here we briefly present the most relevant reification approaches in the Semantic
Web. For all of them, the contextualization only annotates the role assertions,
leaving other axioms unmodified.

As seen in Ex. 4, RDF reification replaces α = R(x, y) with three new role
assertions subject(aCa

α , x), predicate(aCa
α , R), and object(aCa

α , y) and the ax-
ioms in the contextual annotation are anchored on aCa

α , which depends on the
role assertion R and the contextual annotation Ca. As shown in Ex. 6 and 7,
this contextualization method preserves neither inconsistencies (in the sense of
Def. 7) nor entailments on role assertions.

Example 10. An RDF reification contextualization of our running example within
the context CA of Ex. 2 contains the following axioms:

subject(stbcobe, babylon)
predicate(stbcobe, capital)
object(stbcobe, babylonianEmpire)
validity(stbcobe, t)
etc.

N-Ary relations replaces R(x, y) by two role assertions p1(R)(x,aCa
α) and

p2(R)(aCa
α , y), where R is a simple role assertion, and p1 and p2 are two injective

functions with disjoint ranges that map non-contextual roles to contextual roles.
Alternatively, a new concept CR is added for the role R, and the following
assertions are added: CR(aCa

α), p1(R)(aCa
α , x), and p2(R)(aCa

α , y).

Example 11. An N-Ary relations contextualization of our running example within
the context CA of Ex. 2 contains the following axioms:

capitalOf#1(babylon, rbcobe)
capitalOf#2(rbcobe, babylonianEmpire)
validity(rbcobe, t)
etc.

Singleton property is using a non-standard semantics of RDF but the same
idea can be simulated with DL axioms. For each simple role axiom R(x, y), the
following axioms are added: aCa

α (x, y) (that is, the term for the anchor is used
as a role), {x} ≡ ∃aCa

α .{y} (which guarantees that the anchor property is a
singleton), and singletonPropertyOf(aCa

α , R).

Example 12. A Singleton Property contextualization of our running example
within the context CA of Ex. 2 contains the following axioms:

capital#1(babylon, babylonianEmpire)
singletonPropertyOf(capital#1, capital)
validity(capital#1, t)
etc.

The remaining approach, NdFluents, uses a similar approach as NdTerms
except that it only renames the terms used as individuals and does not relativize
the ontology. This ensures interesting properties wrt entailment preservation [15],
but TBox axioms in different contexts are not distinguishable.

7 Discussion and Future Work

NdTerms and NdFluents are a concrete instantiations of a general approach
of contextualizing (parts of) the terms in the ontology. Other instantiations
would be possible, such as contextualizing role names (in a similar fashion as
the singleton property), class names, or a combination of them. Then, NdTerms
would be the approach where each and every term is contextualized, while in
NdFluents only individuals are.

In the future, we would like to deepen the analysis of contextualization,
filling gaps still present in this preliminary work. Especially, the combination of
multiple annotations, or annotations of contextualized ontologies, present some
interesting challenges. A more systematic comparison of the various approaches
remains to be presented.

Acknowledgement: This work was partly funded by project WDAqua (H2020-
MSCA-ITN-2014 #64279) and project OpenSensingCity (ANR-14-CE24-0029).

References

1. McCarthy, J.L.: Generality in Artificial Intelligence. Communications of the ACM
30(12) (1987) 1029–1035

2. Giunchiglia, F.: Contextual Reasoning. Epistemologica 16 (1993) 345–364
3. Ghidini, C., Serafini, L.: Distributed First Order Logics. In Gabbay, D.M., de Rijke,

M., eds.: Frontiers of Combining Systems 2. Volume 7 of Studies in Logic and
Computation., Research Studies Press (2000) 121–139

4. Zimmermann, A.: Logical formalisms for Agreement Technologies. In Ossowski,
S., ed.: Agreement Technologies. Springer (2013)

5. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic program-
ming and its applications. Journal of Logic Programming 12(3&4) (1992) 335–367

6. Udrea, O., Recupero, D.R., Subrahmanian, V.S.: Annotated RDF. ACM Trans-
action on Computational Logics 11(2) (2010)

7. Zimmermann, A., Lopes, N., Polleres, A., Straccia, U.: A general framework for
representing, reasoning and querying with annotated Semantic Web data. Journal
of Web Semantics 11 (2012) 72–95

8. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and trust.
In Ellis, A., Hagino, T., eds.: Proceedings of the 14th International Conference on
World Wide Web, WWW 2005, Chiba, Japan, May 10-14, 2005, ACM Press (May
2007) 613–622

9. Dividino, R.Q., Sizof, S., Staab, S., Schueler, B.: Querying for provenance, trust,
uncertainty and other meta knowledge in RDF. Journal of Web Semantics 7(3)
(2009) 204–219

10. Hartig, O., Thompson, B.: Foundations of an Alternative Approach to Reification
in RDF. CoRR abs/1406.3399 (2014)

11. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: A spatially and
temporally enhanced knowledge base from Wikipedia. Artificial Intelligence 194
(2013) 28–61

12. Brickley, D., Guha, R.V.: RDF Schema 1.1, W3C Recommendation 25 February
2014. W3C Recommendation, World Wide Web Consortium (February 25 2014)

13. Noy, N.F., Rector, A.L.: Defining N-ary Relations on the Semantic Web, W3C
Working Group Note 12 April 2006. W3C Note, World Wide Web Consortium
(April 12 2006)

14. Nguyen, V., Bodenreider, O., Sheth, A.: Don’t like RDF reification?: making
statements about statements using singleton property. In Chung, C.W., Broder,
A.Z., Shim, K., Suel, T., eds.: 23rd International World Wide Web Conference,
WWW ’14, Seoul, Republic of Korea, April 7-11, 2014, ACM Press (April 2014)
759–770

15. Giménez-Garćıa, J.M., Zimmermann, A., Maret, P.: NdFluents: An Ontology for
Annotated Statements with Inference Preservation. In Blomqvist, E., Maynard,
D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O., eds.: The Semantic Web -
14th International Conference, ESWC 2017, Portorož, Slovenia, May 28 - June 1,
2017, Proceedings, Part I. Volume 10249 of Lecture Notes in Computer Science.,
Springer (May 2017) 638–654

16. Golbreich, C., Wallace, E.K.: OWL 2 Web Ontology Language, New Features
and Rationale (Second Edition), W3C Recommendation 11 December 2012. W3C
Recommendation, World Wide Web Consortium (December 11 2012)

17. Scott, D.S.: Identity and existence in intuitionalistic logic. In Fourman, M., Mulvay,
C., Scott, D.S., eds.: Applications of Sheaves, Proceedings of the Research Sympo-
sium on Applications of Sheaf Theory to Logic, Algebra, and Analysis, Durham,
July 9-21, 1977. Volume 753 of Lecture Notes in Mathematics., Springer (1979)
660–696

18. Cuenca-Grau, B., Kutz, O.: Modular Ontology Languages Revisisted. In Honavar,
V.G., Finin, T.W., Caragea, D., Mladenic, D., Sure, Y., eds.: SWeCKa 2007: Pro-
ceedings of the IJCAI-2007 Workshop on Semantic Web for Collaborative Knowl-
edge Acquisition, Hyderabad, India, January 7, 2007. (January 2007)

19. Giménez-Garćıa, A.Z.M.: Integrating Context of Statements within Description
Logics. Technical report, Laboratoire Hubert Curien, Saint-Étienne, France (2017)

20. Goguen, J.A., Burstall, R.M.: Institutions: Abstract Model Theory for Specifica-
tion and Programming. Journal of the ACM 39(1) (1992) 95–146

