
HAL Id: emse-01644333
https://hal-emse.ccsd.cnrs.fr/emse-01644333

Submitted on 22 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Layer Cross Domain Reasoning over Distributed
Autonomous IoT Applications

Muhammad Intizar, Pankesh Patel, Soumiya Kanti Datta, Amelie Gyrard

To cite this version:
Muhammad Intizar, Pankesh Patel, Soumiya Kanti Datta, Amelie Gyrard. Multi-Layer Cross Domain
Reasoning over Distributed Autonomous IoT Applications. Open Journal of Internet of Things, 2017,
3. �emse-01644333�

https://hal-emse.ccsd.cnrs.fr/emse-01644333
https://hal.archives-ouvertes.fr

c© 2017 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Internet of Things (OJIOT)
Volume 3, Issue 1, 2017

http://www.ronpub.com/ojiot
ISSN 2364-7108

Multi-Layer Cross Domain Reasoning over
Distributed Autonomous IoT Applications

Muhammad Intizar Ali A, Pankesh Patel B

Soumya Kanti Datta C , Amelie Gyrard D

A Insight Centre for Data Analytics, National University of Ireland, Galway Ireland, ali.intizar@insight-centre.org,
B ABB Corporate Research, India, pankesh.patel@in.abb.com,

C Communication Systems Department, EURECOM, France, dattas@eurecom.fr
D Univ Lyon, MINES Saint-Etienne, CNRS, Laboratoire Hubert Curien, France, amelie.gyrard@emse.fr

ABSTRACT

Due to the rapid advancements in the sensor technologies and IoT, we are witnessing a rapid growth in the use
of sensors and relevant IoT applications. A very large number of sensors and IoT devices are in place in our
surroundings which keep sensing dynamic contextual information. A true potential of the wide-spread of IoT devices
can only be realized by designing and deploying a large number of smart IoT applications which can provide
insights on the data collected from IoT devices and support decision making by converting raw sensor data into
actionable knowledge. However, the process of getting value from sensor data streams and converting these raw
sensor values into actionable knowledge requires extensive efforts from IoT application developers and domain
experts. In this paper, our main aim is to propose a multi-layer cross domain reasoning framework, which can
support application developers, end-users and domain experts to automatically understand relevant events and
extract actionable knowledge with minimal efforts. Our framework reduces the efforts required for IoT applications
development (i) by supporting automated application code generation and access mechanisms using IoTSuite, (ii) by
leveraging from Machine-to-Machine Measurement (M3) framework to exploit semantic technologies and domain
knowledge, and (iii) by using automated sensor discovery and complex event processing of relevant events (ACEIS
Middleware) at the multiple data processing layers and different stages of the IoT application development life
cycle. In the essence, our framework supports the end-users and IoT application developers to design innovative
IoT applications by reducing the programming efforts, by identifying relevant events and by suggesting potential
actions based on complex event processing and reasoning for cross-domain IoT applications.

TYPE OF PAPER AND KEYWORDS

Regular research paper: IoT, Cross-Domain Reasoning, Discovery, IoT Applications Design and Development.

This paper is accepted at the International Workshop on Very
Large Internet of Things (VLIoT 2017) in conjunction with the
VLDB 2017 Conference in Munich, Germany. The proceedings of
VLIoT@VLDB 2017 are published in the Open Journal of Internet
of Things (OJIOT) as special issue.

1 INTRODUCTION

The growing popularity of IoT and easy access to sensing
technologies are leading to a great increase in the number
of sensors available in our surrounding. These sensors
produce a tremendous amount of data in a streaming
fashion. However, a true value from this large amounts

75

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojiot

Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

of data can only be realized by harnessing these large
amounts of sensor streams and analyze these streams in
real-time to detect relevant events [3]. A large number
of IoT applications are being designed to process sensor
data streams and provide various valuable services. IoT
technologies have a great potential of bringing a very
positive impact on many aspects of our day-to-day lives
[2, 28].

Nowadays, we can see different innovative IoT
applications are designed in various areas such as
agriculture and smart farming, health and fitness, smart
home, smart cars and smart-x applications in smart cities.
While an easy and cheap access to sensor technologies
(e.g. raspberry pi) have made it possible for everyone to
design and build their own innovative IoT applications,
still it is not easy to learn underlying technologies
required to build a complete IoT application. There are
a few IoT toolkits available to support IoT application
development but they are still in their infancy and
usually, developers have to tackle many development
and domain related issues before designing any IoT
application.

With the growing popularity of IoT, we can easily
foresee that in the near future there will be a massive
deployment of IoT devices in various domains, bringing
tremendous challenges and opportunities for scientific
and economic activities. The biggest challenge for IoT
applications is to bridge the gap between the physical
and the cyber world [21, 27]. A few of the sample
questions any IoT developer faces before designing an
IoT applications are;

Q1: What kind of data is produced by this sensor?

Q2: How can I access data from this sensor?

Q3: What kind of meaningful events be detected and
extracted from sensor data?

Q4: Can I quickly design and build my own IoT
application?

Q5: Can I combine multiple sensors data in a single IoT
application?

Q6: How can I easily make multiple IoT silo
applications inter-operable?

In this paper, our aim is to support IoT application
developers by reducing the efforts and expertise
required to build any IoT application and facilitate
developers to easily get answers to the above mentioned
questions. We propose a framework for Multi-layer
Cross-domain Reasoning over Distributed Autonomous
IoT Applications, and our framework reduces the
application development effort. The framework is

designed by combining three existing frameworks,
namely (i) IoTSuite, (ii) M3 Framework, and (iii) ACEIS
Middleware. The main functionalities of our main
framework can be described as;

• Understanding sensor data and identifying
relevant events (Q1 & Q3): Our framework
support developers and end-users to understand the
structure of data produced by any sensor. It uses
semantic technologies to identify relevant events
from sensor data. A high level specification
or domain area is provided to our framework,
these specifications are used to identify relevant
information model and ontologies already designed
for the given domain. Reasoning and querying
over the relevant ontologies help to identify relevant
events which can be produced and monitored using
the given sensor.

• Providing automation at different phases of
application development life-cycle (Q2): Our
toolkit provides a set of high-level modeling
languages to specify each development concern
and abstracts the heterogeneity related complexity.
It integrates code generation, task-mapping, and
linking techniques. Code generation supports the
application development phase by producing a
programming framework that allows stakeholders
to focus on the application logic, while our
mapping and linking techniques together support
the deployment phase by producing device-specific
code to result in a distributed system collaboratively
hosted by individual devices.

• Reducing the time spent for developing WoT
application (Q4): In order to create inter-
operable and cross-domain SWoT applications,
developers have to perform various tasks such as
designing an application, semantically annotating
data and interpreting data. To perform these tasks,
developers have to learn semantic web technologies
and tools, which is a time consuming process and
can take a substantial amount of time. Reducing
this gap as much as possible can be done by
empowering a framework that assists developers in
designing inter-operable applications with minimal
knowledge of semantic web technologies.

• Reducing the learning curve required by
WoT developers to integrate semantic web
technologies (Q5 & Q6): Fast prototyping of
semantic-based WoT applications by hiding the
use of semantic web technologies as much as
possible is required to avoid the developers’ burden
on designing ontologies, semantic annotators and

76

M. I. Ali, P. Patel, S. K. Datta, A. Gyrard.: Multi-Layer Cross Domain Reasoning over Distributed Autonomous IoT Applications

reasoning mechanisms to enrich their data. An
extensive work with Web frameworks (e.g. Drupal,
Wordpress) has been done to design pre-defined
templates to automatically generate websites to
avoid users dealing with Web technologies. Based
on this idea, pre-defined templates to design SWoT
applications can be created.

Outline. The remainder of this paper is organized as
follows: We emphasize the need of our framework by
presenting a motivating scenario in Section 2. In Section
3 we present an overview of the existing frameworks
for IoT application development. Section 4 presents our
multi-layer cross domain reasoning framework and its
underlying components. We evaluate the information
flow and applicability of our framework in Section 5. We
discuss state of the art technologies in Section 6 before
concluding in Section 7.

2 MOTIVATING SCENARIO

Consider a real world scenario, where Alice, an
enthusiastic IoT developer, wishes to design and
build innovative IoT applications. She has access to
basic IoT hardware such as raspberry pi and a few
sensors like temperature, humidity, and proximity sensor
etc. Alice wishes to design her own innovative IoT
applications performing basic smart home automation
tasks. The home automation system should be capable
of performing various daily tasks automatically such
as controlling heating system, lights, and burglar alarm
system. Starting to develop such application, Alice needs
to understand the data produced by sensors, their access
mechanisms, and relevant events. This can be easily
done by using a combination of functionalities supported
by M3 and IoTSuite, where M3 processes a single sensor
data and provides a concrete list of relevant events for
that particular sensor, while IoTSuite generates code to
access data from the sensor. We call single sensor based
reasoning and code generation support as the first layer
of IoT application for a singular device.

Now consider that Alice can process high-level events
by combining data from multiple sensors e.g. a
combination of temperature and humidity sensor can
detect events like the presence of fog. Again, a
combination of M3 & IoTSuite can identify relevant
multi-sensor level events and facilitate code generation
to detect these events. We call multiple sensors based
reasoning and code generation support as a second layer
of IoT application for multiple sensing devices.

Using the singular sensor and multiple sensors based
reasoning and developing support, Alice is able to build
a complete home automation system. Additionally,
Alice also owns a smart car, which is well equipped

with modern sensing technologies and a smart car
supporting software (developed using IoTSuite & M3) is
also available for communication among various sensors
within the car as well as with external sources of
information. Both the home automation and smart car
applications are performing their required tasks within
the specified domain of each application.

Now, consider a cross-domain reasoning and events
processing scenario, where both applications could
leverage from data and information collected from each
of these two applications as well as external information
sources. These combined rich sources of information
can extend the functionality of existing applications
by benefiting from the knowledge derived by another
application in a completely different domain. For
example, a smart home automation system at Alice
home operates using a pre-planned schedule for home
heating system after considering daily routine patterns
of Alice arrival and departure times form the home to
work. On a busy Monday evening on her way back
to home from work, Alice is stuck into a severe traffic
jam and her car automation system reports an expected
delay of more than an hour than her usual arrival time at
home. Our framework can support building applications
that could potentially process the information from
car automation system to deploy actuation over the
home automation system for delaying the triggering of
an automated heating system and thus conserving the
energy consumption. ACEIS can support an automated
discovery and integration of relevant IoT streams by
querying over cross domain IoT applications.

We also envision another scenario related to
autonomous vehicles and their intersection with
the IoT. Consider, Alice is traveling on such a vehicle.
The car must be able to detect environmental situations
(e.g. fog, heavy precipitation) and react to them
automatically. For this purpose, the vehicular sensors
(e.g. location, speed) can obtain data from other
platforms like local environment sensors (e.g. humidity,
precipitation) and combine them to determine if there is
fog. Our cross-domain reasoning framework can support
building intelligent applications which can process data
form multiple silo IoT applications by (i) converting
the heterogeneous sensor data formats into a uniform
format (e.g., RDF) and (ii) providing a uniform and
interoperable mechanism for cross-domain reasoning
and computation. Various actuation suggestions can be
generated by our framework e.g., in the case of dense
fog in the environment, the vehicle driver can receive
suggestions to turn on fog lamps and reduce the speed to
a certain level.

77

Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

Domain
Spec.

User
Interaction Spec.

Architecture
Spec.

Deployment
Spec.

IoTSuite
Compiler

IoTSuite
DeploymentModule

Programming Framework

Application
Logic

User
Interface

Code

In-Built
Framewrk

Android
Packages

NodeJs
Packages

Java
Packages

1

3

2

Figure 1: IoTSuite – Application Development Framework

Semantic Annotator

Semantic
 IoT data

IoT Data

Ontologies
DataSets

TripleStore

Rules SPARQL
Queries SPARQL

Query Editor

LOV4IoT
dataset

Rule-based
Reasoning Engine

Query
Engine

SPARQL Queries

Semantic IoT Data +
Inferred KnowledgeOntologies

Knowledge
Manager

Web Services

Persistence Storage

Suggestions on browser

Figure 2: M3 Framework architecture

78

M. I. Ali, P. Patel, S. K. Datta, A. Gyrard.: Multi-Layer Cross Domain Reasoning over Distributed Autonomous IoT Applications

3 EXISTING FRAMEWORKS

Our framework for multi-layer cross domain reasoning
is a combination of three frameworks, to provide a
necessary background for readers. In this section, we
summarize these frameworks:

• IoTSuite [10] creates a necessary infrastructure
that enables IoT applications1. It takes high-
level specifications as input, parses them, and
generates device-specific code to result in a
distributed software system collaboratively hosted
by individual IoT devices. It is described in
Section 3.1.

• The Machine-to-Machine Measurements (M3)
framework2 [20] takes semantic data as inputs,
reasons over them by leveraging semantic web
technologies and provides suggestions to users. It
is described in Section 3.2.

• ACEIS Middleware3 can process IoT application
request to automatically discover and integrate
relevant IoT streams to address application
requests. It can also perform complex event
processing over streams and their events. ACEIS is
discussed in detail in Section 3.3.

3.1 IoTSuite

A generic framework of IoTSuite is depicted in Figure
1, in what follows we present necessary steps to develop
IoT application using IoTSuite:

Specifying high-level specification. This step involves
the writing of high-level specifications (Step 1 in
Figure 1). This step involves the writing of four
specifications: (1) Domain specification: It includes the
writing of domain-specific concepts such as sensors (it
observes entities of interest), actuators (it affects the
environment), and storage (it stores information about
entities of interest). (2) Architecture specification:
It includes the writing specification of computational
components and interactions with other components.
Computational services are fueled by sensors and
storage. They process inputs data and take appropriate
decisions by triggering actuators. (3) User interaction
specification: It includes data exchange between an
application and a user. (4) Deployment specification:
It describes a device and its properties of a target
deployment.

1 https://github.com/pankeshlinux/IoTSuite
2 https://github.com/pankeshlinux/SWoTSuite
3 https://github.com/CityPulse/
Stream-Discovery-and-Integration-Middleware

Compiling high-level specification. This step generates
a framework (Step 2 in Figure 1) in a general-purpose
programming language. The framework contains
abstract classes, corresponding to each concept defined
in high-level specifications. The abstract classes contain
concrete and abstract methods as well as interfaces.
The concrete methods are used to hide interactions
with other software components. The abstract methods
are implemented to write application-specific logic (an
example of application logic could be, e.g. opening a
window when an average temperature value is greater
than a certain threshold). The generated interfaces
implement user interfaces that connect UI elements to
concrete methods of the generated framework.

Generating deployment packages. It consists of two
steps (Step 3 in Figure 1). The first step is to map
a set of computational components (specified in an
architecture specification) to a set of devices (specified
in a deployment specification). The second step
combines the mapping outputs and the generated code
of Step 2 , and generates device-specific packages as
final outputs that result into a distributed software system
collaboratively hosted by individual devices.

3.2 M3 Framework

Figure 2 represents M3 framework, M3 contains the
following sub-components;

Semantic annotator. It transforms varying formats to
the standardized RDF format. A common RDF format
enables reasoning over sensor data in a unified way. It
annotates sensor data according to the M3 taxonomy [20,
p. 93], which is an extension of W3C Semantic Sensor
Network (SSN).

Storage. It stores M3 ontologies, datasets and rules as
well as annotated RDF sensor data in a triple store [20].
Moreover, M3 compatible SPARQL queries are stored as
flat files to assist developers.

Knowledge manager. It updates the storage with a
domain-specific knowledge that is further used in a
reasoning process. M3 uses Linked Open Vocabularies
for the Internet of Things (LOV4IoT)4. The LOVIoT
provides domain ontologies, datasets, and rules that
could be reused to design cross-domain IoT applications.

Reasoning engine. It infers high-level knowledge using
Jena inference engine and M3 rules. The M3 rules are
extracted from LOV4IoT and they are re-designed in
compliance with M3 taxonomy [22].

Query engine. It executes SPARQL queries and
provides suggestions to users. The query engine executes

4 http://sensormeasurement.appspot.com/?p=
ontologies

79

 https://github.com/pankeshlinux/IoTSuite
 https://github.com/pankeshlinux/SWoTSuite
https://github.com/CityPulse/Stream-Discovery-and-Integration-Middleware
https://github.com/CityPulse/Stream-Discovery-and-Integration-Middleware
http://sensormeasurement.appspot.com/?p=ontologies
http://sensormeasurement.appspot.com/?p=ontologies

Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

Figure 3: ACEIS Architecture

SPARQL queries overloaded M3 ontologies, datasets,
and knowledge deduced from the reasoning engine in
order to provide suggestions to users. M3 implements
the query engine using ARQ5, a SPARQL process for
Jena.

3.3 ACEIS Middleware

The ACEIS core module serves as a middleware between
low-level IoT data streams and upper-level Smart City
applications [16]. ACEIS core is capable of discovering,
composing, consuming and publishing complex event
processing capabilities as reusable services [17]. We
call these services (primitive or complex) event services.
ACEIS architecture is depicted in Figure 3. ACEIS
core consists of two major components: resource
management and data federation & complex event
processing. In the following, we introduce their
functionalities and interactions.
Resource Manager. The resource management
component is responsible for discovering and composing
event services based on static service descriptions. It
receives event requests generated by the application
interface containing users functional/non-functional
requirements and preferences, and creates composition
plans for event requests, specifying which event
services are needed to address the requirements in
5 https://jena.apache.org/documentation/query/

event requests and how they should be composed.
Resource management component contains two sub-
components: resource discovery component and event
service composer. The resource discovery component
uses conventional semantic service discovery technique
to retrieve IoT services delivering primitive events.
It deals with the primitive event requests specified
within event requests. The event service composer
creates service composition plans to detect the complex
events specified by event requests based on event
patterns. We refer readers to [18] for further details
of the composition algorithm used by the event service
composer.

Data Federation & Complex Event Processing.
The data federation component is responsible for
implementing the composition plan over event service
networks and process complex event logics using
heterogeneous data sources. The composition plan
is firstly used by the subscription manager which
will make subscriptions to the event services involved
in composition plan. Later, the query transformer
transforms the semantically annotated composition plan
into a set of stream reasoning queries to be executed on
a stream query engine. The query transformer produces
two kinds of stream queries: regular event queries that
detect the complex events specified by event requests and
constraint validation queries that monitor the constraints
specified in event requests. Thus the query engine

80

https://jena.apache.org/documentation/query/

M. I. Ali, P. Patel, S. K. Datta, A. Gyrard.: Multi-Layer Cross Domain Reasoning over Distributed Autonomous IoT Applications

produces two kinds of results: (i) event query results are
forwarded to the application interface and (ii) constraint
violations are detected by constraint validation queries
and sent to the adaptation manager. Adaptation manager
decides whether an automatic adaptation is possible. If
so, it creates and deploys a new composition plan that
conforms with the constraints to replace the existing one.
It dispatches a notification to the application interface.

4 MULTI-LAYER CROSS DOMAIN
REASONING OVER DISTRIBUTED
AUTONOMOUS IOT APPLICATIONS

We propose a generic framework for cross-domain
reasoning over multiple IoT applications by combining
the strengths of three different frameworks designed to
serve specific tasks in their respective domains. Our
proposed framework is capable to extensively support
IoT application developers to understand data produced
by individual sensors, combine multiple sensors to get
meaningful events, and perform cross-domain reasoning
over multiple autonomous distributed application for
knowledge extraction and use this knowledge for
actuation across multiple distributed and autonomous
applications.

4.1 System Architecture

Figure 4 presents an overall architecture of the
framework. Our cross domain reasoning framework
facilitates an easy access of data from sensors by
automatically generating and deploying applications for
IoT devices using IoTSuite. These applications hide the
technicalities of accessing physical plane (e.g., sensor
hardware specifications), communication plane (e.g.,
network protocols) and data access plane (e.g., data
wrappers, APIs).

The M3 framework supports a multi-layer reasoning
facility, at the single sensor based reasoning level
it processes individual sensor data (e.g., temperature
sensor data) and suggests potential events (e.g., cold,
warm etc.). At multiple sensors based reasoning level,
it processes multiple sensor data in combination (e.g.,
temperature, humidity etc.) to suggest relevant events
(e.g., fog, rain, and snow etc.). At the cross-domain
application level reasoning, M3 supports processing
of events collected from autonomous applications by
extracting additional knowledge to deduce additional
events. Additional extracted knowledge and deduced
events are processed by complex event processing engine
in ACEIS middleware to produce actionable knowledge.
Once the actionable knowledge is extracted IoTSuite
can trigger actuation for individual sensors or for the
complete IoT application.

In the following, we present elements of the
architecture (Figure 4) and describe the functionality of
each element realized using our frameworks: IoTSuite,
M3, and ACEIS middleware.

4.2 System Components for Data Processing &
Reasoning Layers

In this section, we discussed different data processing
layers, reasoning layers at a singular sensor, multiple
sensors and applications’ levels. Below, we briefly
introduce different components used at these layers.

4.2.1 Device Plane

This layer consists of a variety of devices ranging from
resource constrained devices (e.g., microcontrollers)
to powerful devices (e.g., smartphones, desktop
computers). An IoT application may execute on a
network consisting of different types of devices. For
example, a smart home application consists of devices,
including sensing devices (e.g., temperature sensors),
actuating devices (e.g., heaters), user interface devices
(e.g., smart phones, monitors), storage devices (e.g.,
profile storages on different database systems such as
MySQL or MongoDB). Moreover, each device may
exhibit heterogeneous platforms. For instance, a device
could be running Android mobile OS, Raspbian on
Raspberry PI, a desktop computer with OS such as
GNU/Linux, Windows, or microcontroller with no OS.

To address the above mentioned heterogeneity
challenges at the device plane, IoTSuite lets developers
write a domain specification. In a domain specification,
concepts such as sensors, actuators, storage are
specified in a high-level manner to abstract low-level
platform specific details from developers. For instance,
while writing a temperature sensor code in a domain
specification, developers do not have to think about a
temperature sensor is hosted on which a platform (e.g.,
Android OS, Raspbian OS). This complexity is taken
care by IoTSuite.

4.2.2 Communication Plane

This layer is responsible for communicating data
from devices at the device plane to the outside
world. The communication with devices is realized
using different communication protocols. Each
protocol exhibits its own interaction patterns. Some
of the common interaction modes with devices
are request/response, publish/subscribe, stream, and
command. An IoT application executes on a network
consisting of heterogeneous devices, each may have
different interaction mode and implement a different
protocol. This heterogeneity at the communication plane

81

Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

Figure 4: An overview of the cross-domain reasoning framework

largely spreads into the application code and makes the
portability of code difficult.

To address these challenges, IoTSuite provides
high-level abstractions that abstract heterogeneous
interactions among devices. So, a developer does
not have to handle these low-level details. Moreover,
to integrate a communication protocol, IoTSuite
implements well-defined interfaces [31]. The
implementation of these interfaces with a protocol
library which integrates the support of a communication
protocol into a system.

4.2.3 Data Access Plane

This layer is responsible for accessing devices using
different interaction modes and protocols available at the
communication plane. The accessed data is generally
in a raw format and may not provide any explicit
information. In order to address data interoperability
problems among heterogeneous devices, this layer
annotates raw sensor data and transforms it into a format
that can be used further at the layer above. A popular
data representation format, such as Resource Description
Framework (RDF), can be used as a data exchange
format for IoT devices. However, sometimes devices
may not be able to annotate data with RDF because
of its resource constraints such as memory, processing
& transmission power, and bandwidth. An alternate
solution is to use a lightweight format such as Sensor
Markup Language (SenML)6 and transform it to RDF

6 https://tools.ietf.org/html/
draft-jennings-senml-10

format at the application level.
To perform the above mentioned functionality,

M3 framework interacts with devices using various
interaction modes and protocols. It gets sensor metadata
(such as measurement type, sensor type, and value)
from devices and converts sensor metadata in a unified
description using semantic web technologies such as
RDF/XML. Sensor metadata is semantically annotated
using M3 ontology. This is an essential step to provide a
basis for reasoning, described in the next section.

4.2.4 Singular Sensor Reasoning & Event
Detection

This layer takes RDF data as inputs and processes them
further to derive new knowledge and facts. It is essential
to push a part of reasoning over RDF data on a device
because it has several advantages such as: (i) scalability
can be achieved at a device because it distributes the
computation, (ii) data transmission cost from a device
to a centralized node could be reduced because a device
has to send refined results rather than raw data, and (iii)
the local data processing contributes to privacy as only
pre-defined processed data is sent.

The above mentioned functionality is implemented
in M3. It integrates Jena inference engine and M3
rules. The M3 rules are extracted from LOV4IoT and
they are re-designed in compliance with M3 taxonomy.
Moreover, M3 ports a lightweight version of the
reasoning engine to enable the reasoning process on
Android devices [14].

82

https://tools.ietf.org/html/draft-jennings-senml-10
https://tools.ietf.org/html/draft-jennings-senml-10

M. I. Ali, P. Patel, S. K. Datta, A. Gyrard.: Multi-Layer Cross Domain Reasoning over Distributed Autonomous IoT Applications

4.2.5 Application Level Reasoning & Event
Detection

At the application level reasoning and event detection,
we used multiple sensors within an application, a
combination of two independent sensor data can be used
to detect additional events which are not possible to
detect from two individual sensors. For example, a
combination of temperature and humidity sensors can
suggest a possibility of detecting fog.

4.2.6 Cross Domain Reasoning & Event
Detection

IoT applications are currently designed while keeping
a single application domain in view, most of these
applications target a domain specific problem. We
used cross domain reasoning techniques to monitor and
process events from totally independent applications and
a cross domain reasoning over a combination of data
from these two separate applications supports additional
knowledge extraction and inference which was not
possible from data generated by a single application.
As described earlier in the motivating scenario, a cross
domain reasoning allows to deduce additional events
from silo IoT applications and can be turned into useful
actuation for different applications, e.g., a delay in the
traffic and estimated travel time can be used to delay
the predefined schedule of heating system by the number
minutes of delay reporting by traffic navigation system or
a fog forecast from weather stations can be used by smart
car to make decisions and suggestions such as turning
on fog lamps and reducing the car speed based on the
density of fog.

4.2.7 Actuation Module

It consumes the extracted knowledge from the cross-
domain reasoning layer and uses this information to take
appropriate actions of an application. An automated
actuation from the cross-domain reasoning layer could
be: (1) triggering an actuator (e.g., switching off a
heater by an application), (2) event-based interaction
with users such as notifying users (e.g., informing users
whenever a dangerous situation such as fire around), or
(3) periodic updates to users (e.g., displaying average
energy consumption of a house on users dashboard or
mobile device periodically). To define user interactions,
IoTSuite provides a set of abstract interactors, similar to
work [5], which denotes information exchange between
an application and a cross domain reasoning layer.
A developer specifies abstract interactors in a user
interaction specification [9]. The compilation of this
specification generates code that can be deployed on

mobile devices or display devices, which let users
interact with applications.

4.2.8 Sensor Discovery & Complex Event
Processing

To lower the barrier between on-demand application
request by end-users and IoT infrastructure, this module
enables dynamic service discovery and automatic service
composition over IoT infrastructure. We use ACEIS
middle-ware to map the end-users or application request
to discover relevant IoT resources and sensors. ACEIS
is capable of processing application requests on the
fly and can trigger its universal discovery module to
search relevant sensors that can answer application
request. ACEIS considers every sensor data stream as
a service, hence the granularity level of the discovery
module is at the sensor level rather than the application
level. This feature allows cross-domain application
requests to process individual sensors data from multiple
applications.

Once the relevant data stream are identified ACEIS
can compose sensor data streams by using complex event
processing techniques. A composition plan generated by
ACEIS ensures that a combination of individual sensor
data streams provides answers to the application request
specified by the end-user.

5 SYSTEM INFORMATION FLOW

In this section, we evaluate the feasibility of our
system by showing information flow between various
components of the framework. We provide various code
snippets and examples to showcase the overall procedure
which can be followed by IoT applications’ developers
while designing any application. In what follows, we
use different examples to show the support provided by
our framework at the different levels of the cross-domain
reasoning frameworks.

5.1 Reasoning and Application Development
Support for Singular Sensor Based
Applications

Listing 1 provides a sample set of events for temperature
sensors. M3 gets user input about a sensor type (e.g.
temperature sensor) and its specific domain (weather
forecast). M3 uses its internal repository of ontologies
and provides a set of events with their specific thresholds.
These events are helpful for the developers to monitor
and detect relevant events for that sensor.

Listing 2 shows a sample excerpt of the code
generated by IoTSuite, which is automatically generated
and creates templates for developers to specify their

83

Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

1

2 [Cold:
3 (?measurement rdf:type m3:Temperature)
4 (?measurement m3:hasValue ?v)
5 greaterThan(?v,0)
6 lessThan(?v,10)
7 −>
8 (?measurement m3:isRelatedTo weather−dataset:Cold)
9]

10

11 [SunnyTemperature:
12 (?measurement rdf:type m3:WeatherTemperature)
13 (?measurement m3:hasValue ?v)
14 greaterThan(?v,25)
15 −>
16 (?measurement m3:isRelatedTo weather−dataset:Sunny)
17]
18

19 [WinterTemperature:
20 (?measurement rdf:type m3:WeatherTemperature)
21 (?measurement m3:hasValue ?v)
22 lessThan(?v,10)
23 −>
24 (?measurement m3:isRelatedTo naturopathy−dataset:Winter

)
25]

Listing 1: Rule interpreting temperature
measurements

1 structs:
2 TempStruct
3 tempValue: double;
4 unitOfMeasurement : String;
5 SmokeStruct
6 smokeValue:double;
7 unitOfMeasurement:String;
8 resources:
9 sensors:

10 periodicSensors:
11 TemperatureSensor
12 generate tempMeasurement:TempStruct;
13 sample period 1000 for 6000000;
14 eventDrivenSensors:
15 SmokeDetector
16 generate smokeMeasurement:SmokeStruct;
17 onCondition smokeValue > 650 PPM ;
18 actuators:
19 Alarm
20 action On();

Listing 2: IoTSuite Sensor code example

desired values, e.g. monitoring interval, events threshold
etc.

5.2 Reasoning and Application Development
Support for Multi Sensor Based
Applications

Listing 3 shows an example with two different kinds
of measurement (temperature and precipitation) to

1

2 @prefix rdf: http://www.w3.org/1999/02/22−rdf−syntax−ns#
3 @prefix m3: http://sensormeasurement.appspot.com/m3#
4 @prefix weather−dataset: http://sensormeasurement.appspot.com/

weather−dataset/
5

6 [Snowy:
7 (?measurement rdf:type m3:WeatherTemperature)
8 (?measurement m3:hasValue ?value)
9 le(?value,0)

10

11 (?measurement2 rdf:type m3:Precipitation)
12 (?measurement2 m3:hasValue ?value2)
13 greaterThan(?value2,0)
14 −>
15 (?measurement m3:isRelatedTo weather−dataset:Snowy)
16 (?measurement2 m3:isRelatedTo weather−dataset:Snowy)
17]
18]

Listing 3: Rule requiring measurement from two
sensors

1 structs:
2 VisualizationStruct
3 tempValue:double;
4 humidityValue:double;
5 resources:
6 userInteractions:
7 DashBoard
8 notify DisplaySensorMeasurement(

sensorMeasurement :
VisualizationStruct);

Listing 4: IoTSuite Dashboard code

deduce more complicated events (e.g., Snowy).
The rule also takes into account the context,
and indeed a temperature measurement can be
generated in different locations (outside, inside,
body thermometer). The rule explicitly explains that the
rule applies only for weather temperature measurements
through the triple ?measurement rdf:type
m3:WeatherTemperature.

IoTSuite also creates templates containing sample
code to design a dashboard for IoT applications. Listing
4 contains a sample code to generate a visualization
module to design a dashboard for temperature and
humidity sensors.

5.3 Reasoning and Application Development
Support for Cross-Domain Applications

Listing 5 shows a logical rule example implemented
as a Jena Rule language. The rule checks the type of
the measurement (eg., precipitation) according to the
dictionary compliant with the M3 framework. The value
is compared to specific values to be able to deduce higher

84

M. I. Ali, P. Patel, S. K. Datta, A. Gyrard.: Multi-Layer Cross Domain Reasoning over Distributed Autonomous IoT Applications

1

2 @prefix rdf: http://www.w3.org/1999/02/22−rdf−syntax−ns#
3 @prefix m3: http://sensormeasurement.appspot.com/m3#
4 @prefix weather−dataset: http://sensormeasurement.appspot.com/

weather−dataset/
5

6 [HeavyRain:
7 (?measurement rdf:type m3:Precipitation)
8 (?measurement m3:hasValue ?value)
9 (?measurement m3:hasUnit ?unit)

10 greaterThan(?value,20)
11 lessThan(?value,50)
12 −>
13 (?measurement m3:isRelatedTo weather−dataset:HeavyRain)
14]

Listing 5: Rule to interpret precipitation
measurement

1 <transport:SafetyDevice rdf:about=”Wiper”>
2 <rdfs:label xml:lang=”en”>Wipers</rdfs:label>
3 <m3:hasRecommendation rdf:resource=”&weather−dataset;

Rainy”/>
4 <m3:hasRecommendation rdf:resource=”&weather−dataset;

LightRain”/>
5 <m3:hasRecommendation rdf:resource=”&weather−dataset;

HeavyRain”/>
6 </transport:SafetyDevice>

Listing 6: RDF instance to link cross-domain datasets
(weather and transport)

level, in this example greaterThan(?value,20).
The main novelty of such rules is to follow Linked
Data principles. The property m3:isRelatedTo
enables the linking with external domain knowledge
(e.g., weather dataset).

Listing 6 shows that a transport dataset is
using the weather dataset through the property
m3:hasRecommendation. This example
demonstrates that from a precipitation measurement,
new knowledge can be inferred and linked to cross-
domain knowledge: weather and transport. These
rule-based mechanisms can be integrated into a smart
car, with a precipitation sensor deployed on the car to
automatically switch on wipers for instance.

5.4 Cross-Domain Reasoning in Mobile
Applications

Cross-domain semantic reasoning is possible in high-
end smartphones and tablets due to the availability
of resources. Also, at present, mobile devices have
become the de-facto human-to-IoT interfacing system.
To integrate the building blocks of the M3 Framework
in a mobile application, its life-cycle is categorized into
following steps.

Figure 5: Semantic reasoning and suggestions in the
Android application

Discovery and Provisioning. The first step triggers a
discovery method which searches for available sensors
and domains. We assume that the sensors are described
using IETF standard protocols like CoRE Link Format7

and each the descriptions are registered into a central
registry database. During the first step, the Android
application connects to the registry and queries the
database. It returns one/more URI(s) corresponding to
the sensor(s). A detailed mechanism of the discovery
procedure is mentioned in [13]. This is followed by
provisioning where a sensor or a combination of sensors
and domain(s) of operation (corresponding to the overall
application scenario) are communicated to the M3 cloud.

Provisioning M3 Templates. Following the discovery
and provisioning, the M3 cloud returns a set of cross-
domain templates to the Android application. Based
on the application logic, one of the templates should
be chosen. This step can also be configured in the
background to run as an Android service.

Semantic Reasoning and Suggestions. Once a
template is chosen, the M3 cloud internally generates a
template containing rules, ontologies, datasets, domain
knowledge necessary for cross-domain reasoning. The
template is downloaded into the Android application.
The sensor(s) are queries directly to get sensor metadata.
Following the semantic reasoning, SPARQL queries are
executed to generate suggestions. These suggestions
are presented to the end-users who can select an action.
It triggers an actuation module from the application.
Figure 5 shows this mechanism embedded in Android
powered devices. In the same way that the wiper
suggestion has been proposed previously, in the case, fog
lamp suggestion is provided.

The advantage behind the above three steps is that
the process is generic enough to accommodate with a
range of cross-domain M3 templates. This allows the

7 https://tools.ietf.org/pdf/rfc6690.pdf

85

https://tools.ietf.org/pdf/rfc6690.pdf

Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

same application to be reused in multiple application
logics, which in turn reduces the time for development
and shortens time-to-market.

6 RELATED WORK

To address the research challenges and questions
discussed in Section 1, a commonly accepted technique
is to design a framework or middleware. Initial
approaches for IoT platforms design focused on data
collections and sensors interoperability, while later on
the focus shifted towards the provision of value added
services. In this article, we mainly focus on semantics
based solutions proposed for IoT applications.

6.1 Semantics based IoT Middlewares,
Frameworks and Toolkits

We classify the existing frameworks/middleware into
three broad categories: (1) to hide IoT system
complexity, middleware (such as ACEIS) exposes
services (such as service discovery, service composition)
through various APIs and let developers to use their APIs
to develop an application, (2) to address interoperability
issues in IoT, frameworks (such as M3) leverage
semantic web technologies and provide intelligent
suggestions in cross-domain to users, and (3) to reduce
IoT application development complexity, toolkits (such
as IoTSuite) provides high-level abstractions to develop
an IoT application.

In the following, we present a state of the art of each
category briefly:

Semantic Based IoT Middlewares. Different
middlewares for IoT data collection have been proposed
over the past [15,23,32]. OpenIoT is designed to reduce
the heterogeneity issues and provide a universal platform
for IoT data collection and acquisition [23]. The Global
Sensor Network (GSN) middleware facilitates flexible
discovery and integration of physical sensors [1],
while X-GSN is its extension to support virtual as
well as physical sensors [7]. In the context of smart
cities, various semantic based IoT data platforms are
proposed [28]. ACEIS middleware is part of large-scale
realtime data analytics platform of CityPulse Framework
and contains various on-the-fly sensor discovery and
composition tools for real-time data analytics over IoT
streams.

Semantic-Enabled Framework. Similar to the M3
framework, Chen et al. have discussed intelligent
processing for IoT data related to domain specific-
applications [11]. The need for cross-domain
applications with semantic interoperability and data
management in IoT applications are described in [25].

They clearly explain a lack of standardization related
to ontologies and data formats but do not provide any
solutions. The authors of [29] have presented know-how
on semantically annotating IoT sensor data and the need
of domain ontologies. This is further explained in [26]
where the authors employ domain-specific ontologies
and ontologies matching and alignment tools to build IoT
applications. However, they do not explicitly describe
the issues encountered if developers want to combine the
domain ontologies.

IoT Toolkits. To reduce IoT application development
effort, a macro-programming is a popular approach.
Developers use high-level programming constructs (such
as visual programming constructs that can be dragged
and dropped) around APIs provided by a middleware
to develop various applications. For instance, Node-
RED is a programming tool for wiring together IoT
devices, APIs, and online services. However, one of the
limitations of this approach is that platform-dependent
design prevents its portability and re-usability across
different platforms.

To address development effort and platform-
dependent design issues, Model-driven Development
(MDD) approach has been proposed. It applies the basic
separation of concerns [24] principle both vertically
and horizontally. Vertical separation principle reduces
the application development complexity by separating
the specification (Platform Independent Model–PIM)
of the system functionality from its platform (Platform-
Specific Model–PSM) such as programming languages
and run-time systems. Horizontal separation principle
reduces the development complexity by describing a
system using different system views, where each view
describes a certain facet of the system. MDD tools such
as IoTSuite, DiaSuite [8] adopts MDD approaches.

6.2 Delineation from similar IoT Frameworks

In this section, we briefly discuss two of the most
well-known frameworks for IoT application design e.g.
FIWARE and SOFIA2 Platform. We then discuss
novelties presented in our framework and how our
proposed framework can support application developers
to easily build semantics based IoT applications from
cross-domain reasoning and also compliments individual
components designed and developed for the above
mentioned existing frameworks.

FIWARE. FIWARE8 aims at providing an open
cloud based system to design, develop and deliver
cost-effective Future Internet (FI) applications and
services including the IoT. The main ingredients of
the architecture are Generic Enablers (GE) [12], [4]

8 http://www.fi-ware.org/

86

http://www.fi-ware.org/

M. I. Ali, P. Patel, S. K. Datta, A. Gyrard.: Multi-Layer Cross Domain Reasoning over Distributed Autonomous IoT Applications

which allows IoT service enablement. Through the
GEs, physical devices (e.g. sensors, actuators) become
available, search-able, accessible and usable by high
level IoT applications and services that belong to various
vertical markets. The GEs relevant to IoT are - (i)
IoT Service Enablement (further categorized into IoT
Backend and IoT Edge) which is hosted in a Cloud
Data center [30], (ii) Data/Context Management which
enables development of smart, personalized and context
aware IoT applications, (iii) Applications, Services and
Data Delivery which is responsible for creating an
IoT ecosystem of applications, services and business
intelligence, (iv) Security which is centered around
identity [6] & access management and access control
policies.

SOFIA2 Platform. This platform9 [19] provides several
functionalities to the IoT ecosystems–(i) implementing
standard data formats (e.g., JSON), protocols (e.g.,
MQTT), RESTful web services, (ii) Independence of
IoT device firmware (e.g., Android, Linux, iOS),
(iii) Support for Java based application toolkits, (iv)
scalability and extendibility. The SOFIA2 platform
performs well for vertical IoT markets.

6.3 Progress Beyond State-of-the-art

While both FIWARE and SOFIA2 are considered
successful platforms for IoT applications development
support, we consider that our proposed approach for
multi-layer and cross domain reasoning progresses
beyond state-of-the-art for two main reasons, (i)
provision of cross-domain reasoning at the horizontal
layer among multiple IoT applications and (ii) a
comprehensive support for application developer to
automatically build cross domain IoT applications. The
above mentioned current platforms mainly focused
on vertical applications design while we promote
horizontal reasoning over distributed autonomous IoT
applications. Moreover, the interoperability among the
mentioned platforms among is not tested while our work
successfully integrated three separate frameworks into
one.

It is worth mentioning that contrary to the single
application design as advocated in FIWARE and
SOFIA, we emphasize on cloud-based applications,
where two totally independent applications can benefit
from cross-domain reasoning and get fruitful insights
from data analytics which were not possible from an
application designed to build a single domain dependent
applications. Additional to interoperability and cross
domain reasoning, we also believe that our work on
facilitating application developers by providing useful

9 http://sofia2.com

templates and reduce the learning curve of application
development is also a considerable advancement beyond
state of the art. We expect that our framework will
gain the attention of a wider community and have good
potential for noticeable impact on IoT research and
development community.

7 CONCLUSION & FUTURE WORK

In this paper, we propose a multi-layer cross-
domain reasoning framework, which combines various
features of three separate frameworks in order to
support a complete application design and development
framework for cross-domain IoT applications. Our main
aim in this paper was to showcase the feasibility of this
approach and emphasize the usability of our framework
to assist and expedite the IoT application development
process.

In future, we intend to extensively evaluate the
performance of our framework and attract a large
community of application developers to get benefit
from application development support provided by our
framework.

ACKNOWLEDGEMENTS

This research work has been partially supported by
Science Foundation Ireland (SFI) under grant No.
SFI/12/RC/2289.

REFERENCES

[1] K. Aberer, M. Hauswirth, and A. Salehi, “A
middleware for fast and flexible sensor network
deployment,” in Proc. of VLDB2006. VLDB
Endowment, 2006, pp. 1199–1202.

[2] M. I. Ali, N. Ono, M. Kaysar, K. Griffin, and
A. Mileo, “A semantic processing framework
for iot-enabled communication systems,” in
Proceedings of 14th International Semantic Web
Conference, Bethlehem, PA, USA, October 11-15,
2015, pp. 241–258.

[3] M. I. Ali, N. Ono, M. Kaysar, Z. U. Shamszaman,
T.-L. Pham, F. Gao, K. Griffin, and A. Mileo,
“Real-time data analytics and event detection
for iot-enabled communication systems,” Web
Semantics: Science, Services and Agents on the
World Wide Web, vol. 42, pp. 19–37, 2017.

[4] P. Andriani, L. Briguglio, L. Lombardo,
M. Nigrelli, D. Pellegrino, J. S. Torres, and
A. Voulkidis, “Fiware generic enablers as building
blocks of a marketplace for energy,” in eChallenges
e-2015 Conference, Nov 2015, pp. 1–10.

87

http://sofia2.com

Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

[5] E. Balland, C. Consel, B. N;Kaoua, and
H. Sauzéon, “A case for human-driven software
development,” in Proceedings of the 2013
International Conference on Software Engineering,
2013.

[6] L. Barreto, A. Celesti, M. Villari, M. Fazio, and
A. Puliafito, “Identity management in iot clouds:
A fiware case of study,” in 2015 IEEE Conference
on Communications and Network Security (CNS),
Sep. 2015, pp. 680–684.

[7] J.-P. Calbimonte, S. Sarni, J. Eberle, and
K. Aberer, “Xgsn: An open-source semantic
sensing middleware for the web of things,” in The
7th International SSN Workshop, 2014.

[8] D. Cassou, J. Bruneau, C. Consel, and E. Balland,
“Toward a tool-based development methodology
for pervasive computing applications,” IEEE
Transactions on Software Engineering, vol. 38,
no. 6, pp. 1445–1463, 2012.

[9] S. Chauhan, P. Patel, F. C. Delicato, and
S. Chaudhary, “A development framework
for programming cyber-physical systems,” in
Proceedings of the 2Nd International Workshop on
Software Engineering for Smart Cyber-Physical
Systems, ser. SEsCPS ’16, New York, NY, USA,
2016, pp. 47–53.

[10] S. Chauhan, P. Patel, A. Sureka, F. C. Delicato,
and S. Chaudhary, “IoTSuite: A Framework to
Design, Implement, and Deploy IoT Applications:
Demonstration Abstract,” in Proceedings of the
15th International Conference on Information
Processing in Sensor Networks, NJ, USA, 2016,
pp. 37:1–37:2.

[11] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang,
“A vision of iot: Applications, challenges,
and opportunities with china perspective,” IEEE
Internet of Things Journal, vol. 1, no. 4, pp. 349–
359, Aug 2014.

[12] S. K. Datta and C. Bonnet, “Smart m2m gateway
based architecture for m2m device and endpoint
management,” in 2014 IEEE International
Conference on Internet of Things (iThings), and
IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom), Sep. 2014, pp. 61–68.

[13] S. K. Datta, R. P. F. D. Costa, and C. Bonnet,
“Resource discovery in internet of things: Current
trends and future standardization aspects,” in
Proceedings of 2nd World Forum on Internet of
Things (WF-IoT), Dec 2015, pp. 542–547.

[14] S. K. Datta, A. Gyrard, C. Bonnet, and
K. Boudaoud, “onem2m architecture based

user centric iot application development,” in
Proceedings of 3rd International Conference on
Future Internet of Things and Cloud, Aug 2015,
pp. 100–107.

[15] J. A. Fisteus, N. F. Garcı́a, L. S. Fernández, and
D. Fuentes-Lorenzo, “Ztreamy: A middleware for
publishing semantic streams on the web,” Web
Semantics: Science, Services and Agents on the
World Wide Web, vol. 25, pp. 16–23, 2014.

[16] F. Gao, M. I. Ali, E. Curry, and A. Mileo, “Qos-
aware stream federation and optimization based
on service composition,” International Journal on
Semantic Web and Information Systems (IJSWIS),
vol. 12, no. 4, pp. 43–67, 2016.

[17] F. Gao, M. I. Ali, and A. Mileo, “Semantic
discovery and integration of urban data streams,” in
Proceedings of the Fifth International Conference
on Semantics for Smarter Cities-Volume 1280,
2014, pp. 15–30.

[18] F. Gao, E. Curry, M. I. Ali, S. Bhiri, and A. Mileo,
“Qos-aware complex event service composition
and optimization using genetic algorithms,” in
Proceedings of International Conference on
Service-Oriented Computing, 2014, pp. 386–393.

[19] J. F. Gomez-Pimpollo and R. Otaolea, “Smart
objects for intelligent applications - adk,” in
Proceedings of 2010 IEEE Symposium on Visual
Languages and Human-Centric Computing, Sep.
2010, pp. 267–268.

[20] A. Gyrard, “Designing cross-domain semantic
Web of things applications,” Theses, Télécom
ParisTech, Apr. 2015. [Online]. Available: https:
//pastel.archives-ouvertes.fr/tel-01217561

[21] A. Gyrard, P. Patel, S. Datta, and M. Ali, “Semantic
web meets internet of things (iot) and web of things
(wot),” in The 15th International Conference on
Semantic Web (ISWC), Oct. 2016.

[22] A. Gyrard, M. Serrano, J. B. Jares, S. K. Datta,
and M. I. Ali, “Sensor-based linked open rules (s-
lor): An automated rule discovery approach for
iot applications and its use in smart cities,” in The
26th International Conference on World Wide Web
Companion, 2017.

[23] N. Kefalakis, J. E. Bengtsson, and A. Giuliano,
“D2.3 openiot detailed architecture and proof-
of-concept specifications,” OpenIoT, Tech. Rep.,
2013.

[24] V. Kulkarni and S. Reddy, “Separation of Concerns
in Model-Driven Development,” IEEE Software,
vol. 20, no. 5, pp. 64–69, 2003.

88

https://pastel.archives-ouvertes.fr/tel-01217561
https://pastel.archives-ouvertes.fr/tel-01217561

M. I. Ali, P. Patel, S. K. Datta, A. Gyrard.: Multi-Layer Cross Domain Reasoning over Distributed Autonomous IoT Applications

[25] D. Miorandi, S. Sicari, F. D. Pellegrini, and
I. Chlamtac, “Internet of things: Vision,
applications and research challenges,” Ad Hoc
Networks, vol. 10, no. 7, pp. 1497 – 1516, 2012.

[26] F. Paganelli, S. Turchi, and D. Giuli, “A web of
things framework for restful applications and its
experimentation in a smart city,” IEEE Systems
Journal, vol. 10, no. 4, pp. 1412–1423, Dec 2016.

[27] P. Patel, A. Gyrard, S. K. Datta, and M. I.
Ali, “Swotsuite: A toolkit for prototyping end-
to-end semantic web of things applications,” in
Proceedings of the 26th International Conference
on World Wide Web Companion, Perth, Australia,
April 3-7, 2017, pp. 263–267.

[28] D. Puiu, P. M. Barnaghi, R. Toenjes, D. Kuemper,
M. I. Ali, A. Mileo, J. X. Parreira, M. Fischer,
S. Kolozali, N. FarajiDavar, F. Gao, T. Iggena,
T. Pham, C. Nechifor, D. Puschmann, and
J. Fernandes, “Citypulse: Large scale data analytics
framework for smart cities,” IEEE Access, vol. 4,
pp. 1086–1108, 2016.

[29] A. Sheth, “Internet of things to smart iot through
semantic, cognitive, and perceptual computing,”

IEEE Intelligent Systems, vol. 31, no. 2, pp. 108–
112, Mar 2016.

[30] S. Sotiriadis, L. Vakanas, E. Petrakis,
P. Zampognaro, and N. Bessis, “Automatic
migration and deployment of cloud services for
healthcare application development in fiware,”
in Proceedings of 30th International Conference
on Advanced Information Networking and
Applications Workshops (WAINA), March 2016,
pp. 416–419.

[31] D. Soukaras, P. Patel, H. Song, and S. Chaudhary,
“IoTSuite: A ToolSuite for Prototyping Internet
of Things Applications,” in Proceedings of The
4th International Workshop on Computing and
Networking for Internet of Things (ComNet-IoT),
2015, p. 6.

[32] R. Tönjes, P. Barnaghi, M. Ali, A. Mileo,
M. Hauswirth, F. Ganz, S. Ganea, B. Kjærgaard,
D. Kuemper, S. Nechifor et al., “Real time
iot stream processing and large-scale data
analytics for smart city applications,” in poster
session, European Conference on Networks and
Communications, 2014.

89

Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

AUTHOR BIOGRAPHIES

Dr. Muhammad Intizar Ali is
an Adjunct Lecturer, Research
Fellow and Research Unit
Leader of Reasoning, Querying,
and IoT Data Analytics Unit
at Insight Centre for Data
Analytics, National University
of Ireland, Galway. His research

interests include Semantic Web, Data Integration,
Internet of Things (IoT), Linked Data, Federated Query
Processing, Stream Query Processing and Optimal
Query Processing over large scale distributed data
sources. He is actively involved in various EU funded
and industry-funded projects aimed at providing IoT
enabled adaptive intelligence for smart city applications
and smart enterprise communication systems. He
is serving as a PC member of various journals,
international conferences and workshops. He is also
actively participating in W3C efforts for standardization
in RDF Stream Processing Community Group. Dr.
Ali obtained his Ph.D. (with distinction) from Vienna
University of Technology, Austria in 2011.

Pankesh Patel is a Research
Scientist at ABB Corporate
Research-India. He focuses in
building software development
methodologies and tools to
easily develop applications in
the cross-section of Software
Engineering, Cyber-Physical
Systems, and Internet of Things.

He obtained his Ph.D. from the University of Paris
VI (UPMC) and INRIA (The French Institute for
Research in Computer Science and Automation) Paris,
France.

Soumya Kanti Datta is
a research engineer in
EURECOM, France since
2012 and is working on French
national and EU H2020 research
projects. His research focuses
on innovation, standardization
and development of next-
generation technologies in

Internet of Things, Smart Cities and Cyber Security.
He has published more than 60 research papers and
articles in top ACM and IEEE Conferences, Magazines
and Journals. Soumya has also served several IEEE
Conferences and Workshops in many capacities. He
is also actively involved in oneM2M, W3C Web
of Things Working Group and contributing to their
standard development activities. He obtained an M.Sc in
Communications and Computer Security from Telecom
ParisTech (EURECOM), France.

Amelie Gyrard is a post-doc
researcher at Ecole des Mines
de Saint-Etienne, France,
working within the Connected
Intelligence - Knowledge
Representation and Reasoning
team. Her research interests
are on Software engineering
for Semantic Web of Things
and Internet of Things (IoT),
semantic web best practices and

methodologies, ontology engineering, reasoning and
interoperability of IoT data. She holds a Ph.D. from
Eurecom since April 2015 where she designed and
implemented the Machine-to-Machine Measurement
(M3) framework. She also disseminated her work in
standardizations such as ETSI M2M, oneM2M, and
W3C Web of Things.

90

	Introduction
	Motivating Scenario
	Existing Frameworks
	IoTSuite
	M3 Framework
	ACEIS Middleware

	Multi-Layer Cross Domain Reasoning over Distributed Autonomous IoT Applications
	System Architecture
	System Components for Data Processing & Reasoning Layers
	Device Plane
	Communication Plane
	Data Access Plane
	Singular Sensor Reasoning & Event Detection
	Application Level Reasoning & Event Detection
	Cross Domain Reasoning & Event Detection
	Actuation Module
	Sensor Discovery & Complex Event Processing

	System Information Flow
	Reasoning and Application Development Support for Singular Sensor Based Applications
	Reasoning and Application Development Support for Multi Sensor Based Applications
	Reasoning and Application Development Support for Cross-Domain Applications
	Cross-Domain Reasoning in Mobile Applications

	Related Work
	Semantics based IoT Middlewares, Frameworks and Toolkits
	Delineation from similar IoT Frameworks
	Progress Beyond State-of-the-art

	Conclusion & Future Work

