
HAL Id: emse-01644359
https://hal-emse.ccsd.cnrs.fr/emse-01644359

Submitted on 22 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SWoTSuite: A Toolkit for Prototyping End-to-End
Semantic Web of Things Applications

Pankesh Patel, Amelie Gyrard, Soumya Kanti Datta, Muhammad Intizar

To cite this version:
Pankesh Patel, Amelie Gyrard, Soumya Kanti Datta, Muhammad Intizar. SWoTSuite: A Toolkit for
Prototyping End-to-End Semantic Web of Things Applications. 26th International World Wide Web
Conference (WWW 2017)„ Apr 2017, Perth, Australia. �10.1145/3041021.3054736�. �emse-01644359�

https://hal-emse.ccsd.cnrs.fr/emse-01644359
https://hal.archives-ouvertes.fr

SWoTSuite: A Toolkit for Prototyping End-to-End Semantic
Web of Things Applications

Pankesh Patel*, Amelie Gyrard**, Soumya Kanti Datta‡ and Muhammad Intizar Ali†
*ABB Corporate Research, India; **University of Lyon, France; ‡EURECOM, France;

†Insight Center for Data Analytics, Ireland
*pankesh.patel@in.abb.com, **amelie.gyrard@emse.fr, ‡dattas@eurecom.fr,

†ali.intizar@insight-centre.org

ABSTRACT
In this demonstration, we present our Semantic W eb of
Things (SWoT) prototyping toolkit called SWoTSuite. It
is a set of tools supporting an easy and fast prototyping of
end-to-end SWoT applications. SWoTSuite facilitates - (i)
automation of application development life-cycle, (ii) reduc-
ing the amount of time and effort required for developing
WoT applications and (iii) an easy integration of semantic
web technologies within WoT applications.

Keywords
Semantic Web of Things; Internet of Things; Semantic Web;
Web of Things; Software Engineering; Cyber-Physical Sys-
tems; Toolkit.

1. INTRODUCTION
The Internet of Things (IoT) technologies have a great

potential of bringing a very positive impact on many as-
pects of our day-to-day lives. Nowadays we can see IoT
application in various areas such as agriculture and smart
farming, health and fitness, smart home, smart cars and
smart-x applications in smart cities. Currently, the devel-
opment activities for various IoT applications are at their
initial stages, and we can see availability of a few IoT appli-
cations development support tool-kits. However, with the
growing popularity of IoT, we can easily foresee that in near
future there will be a massive deployment of IoT devices
in various domains, bringing tremendous challenges and op-
portunities for scientific and economic activities.

However, a true potential of IoT/WoT applications is yet
to be realized and currently we see a major gap for appli-
cations connecting physical and cyber worlds. It requires a
tremendous amount of manual efforts to integrate hetero-
geneous information, develop cross-domain IoT applications
and design semantic Web of Things applications. Major
challenges for fast development of IoT applications are as
identified -

c©2017 International World Wide Web Conference Committee (IW3C2),
published under Creative Commons CC BY 4.0 License.
WWW 2017, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4914-7/17/04.
http://dx.doi.org/10.1145/3041021.3054736

.

Heterogeneity. IoT applications operate over an infras-
tructure consisting of heterogeneous devices (such as various
types of sensors, user interfaces, network protocols etc.), het-
erogeneous interaction modes (e.g. event-driven, subscrip-
tion based notifications or periodic) and heterogeneous plat-
forms (e.g. Android, Java SE over computers, and micro-
controller without any operating system).

Application development life-cycle phases. Develop-
ers face issues that are attributed to different life-cycles, in-
cluding design, implementation, and deployment. At the
design phase, the application logic has to be analyzed and
separated into a set of distributed tasks for the underlying
network consisting of heterogeneous entities. Then, these
tasks have to be implemented for a specific platform of a
device. At the deployment phase, the application logic has
to be deployed over a network of devices.

Interoperability among heterogeneous IoT devices.
IoT devices are often not interoperable, follow different net-
work protocols, and store and exchange data using propri-
etary data formats. Additionally, mostly IoT devices only
support raw sensor values lacking meta-data description, re-
quiring specialized technology and domain knowledge before
designing an IoT application.

Vertical silos of IoT applications. Currently, most of the
available IoT solutions are designed keeping a single domain
problem in view, resulting into vertical application develop-
ment for targeted applications and lacking inter-operability,
re-usability and resource sharing among IoT applications [2].

To address the above challenges, we developed SWoTSuite
by combining few existing tools [1, 4], which is a complete
toolkit for developing end-to-end SWoT application. More
specifically, the objectives of this work is as follows:

• Providing automation at different phases of ap-
plication development life-cycle. Our toolkit pro-
vides a set of high-level modeling languages to specify
each development concern and abstracts the hetero-
geneity related complexity. It integrates code genera-
tion, task-mapping, and linking techniques. Code gen-
eration supports the application development phase
by producing a programming framework that allows
stakeholders to focus on the application logic, while our
mapping and linking techniques together support the
deployment phase by producing device-specific code to
result in a distributed system collaboratively hosted by
individual devices.

• Reducing the time spent for developing WoT
applications. In order to create inter-operable and

cross-domain SWoT applications, developers have to
perform various tasks such as designing an application,
semantically annotating data and interpreting data.
To perform these tasks, developers have to learn se-
mantic web technologies and tools, which is a time
consuming process and can take substantial amount
of time. Reducing this gap as much as possible can
be done by empowering a framework that assist de-
velopers in designing inter-operable applications with
minimal knowledge of semantic web technologies.

• Reducing the learning curve required by WoT
developers to integrate semantic web technolo-
gies. Fast prototyping of semantic-based WoT appli-
cations by hiding the use of semantic web technologies
as much as possible is required to avoid the develop-
ers burden on designing ontologies, semantic annota-
tors and reasoning mechanisms to enrich their data.
An extensive work with Web frameworks (e.g., Dru-
pal, Wordpress) has been done to design pre-defined
templates to automatically generate web sites to avoid
users dealing with Web technologies. Based on this
idea, pre-defined templates to design SWoT applica-
tions can be created.

2. SWOTSUITE ARCHITECTURE
We envision a system that enables good decision making

and actions. Figure 1 shows an architecture, inspired by our
semantics-based IoT architecture [3] and IoTSuite [1]. The
architecture is largely divided into three layers:

Physical layer: accessing things. It enables a device
such that it can communicate information to the outside
world. An IoT deployment may use gateways due to propri-
etary protocols. The gateways employ semantic Web tech-
nologies to explicitly describe sensor data to ensure interop-
erability among data.

Virtualization layer: deducing new knowledge. This
layer takes data available in standard formats produced by
the physical layer, infers high-level knowledge using reason-
ing engines, and exploits the web of knowledge available on-
line. The suggestions as an output of this layer are provided
to services and clients running in the application layer. This
layer consists of the following components to deduce new
knowledge from IoT data provided by the Physical layer:

–Semantic annotator. It takes data from IoT devices and
converts sensors metadata in a unified description to provide
further reasoning in order to overcome heterogeneity issues.
The sensor metadata is semantically annotated according to
the M3 taxonomy [3] that is an extension of W3C Semantic
Sensor Network (SSN) ontology.

–Persistent storage. It stores the M3 ontologies & datasets,
M3 rules, pre-written M3 compatible SPARQL queries, and
unified sensor data received from the annotator. SWoTSuite
uses a triple store to keep M3 ontologies, M3 datasets, and
sensor data. M3 rules and SPARQL queries are stored as
files.

–Knowledge manager. It reuses, combines, and updates
domain-specific knowledge in the persistent storage. We
have been building datasets to reuse domain-specific knowl-
edge (called as Linked Open Vocabularies for the Internet
of Things (LOV4IoT)), which provides domain ontologies,

datasets, and rules that could be reused to design cross-
domain SWoT applications.

–Reasoning engine. It infers new knowledge using a Jena
inference engine and M3 rules that are extracted from LOV4IoT
and redesigned to be compliant with the M3 taxonomy.

–Query engine. The query engine is implemented using
ARQ, a SPARQL processor for Jena. It loads the M3 ontolo-
gies & datasets, new knowledge derived using the reasoning
engine, and executes SPARQL queries to provide sugges-
tions.

Application layer: creating new applications. It builds
meaningful IoT application on top of suggestions provided
by the virtualization layer. The interaction of this layer with
Virtualization layer is optional. More specifically, the appli-
cation layer could be directly fuelled by the physical layer
depends on application requirements.

IoTSuite. IoTSuite[1, 5] creates necessary infrastructure
that enables SWoT applications. It takes high-level spec-
ifications as input, parses them and generates code that
can be deployed on IoT sensors (e.g., temperature sensor,
transportation devices) at the physical layer and IoT actu-
ators (e.g., heater) and user interface devices (e.g., smart
phone, dashboard) at the application layer. IoTSuite takes
the following high-level specifications: (1) Domain includes
specification of resources, which includes tags, sensors, ac-
tuators, and storage and third party web services. (2) Ar-
chitecture consists of specification of computational services
and interaction among them. (3) User interaction specifies
data exchange between an application and use. (4) Deploy-
ment specification describes a device and its properties in a
target deployment.

3. DEMONSTRATION
In this section, we present an application scenario and dis-

cuss steps involved in developing applications using SWoT-
Suite.

3.1 Application Scenario
Consider a real world scenario, where Alice a smart home

owner, has a complete home automation system installed in
her house. The home automation system is capable of per-
forming various daily tasks automatically such as controlling
heating system, lights, and burglar alarm system. The home
automation system is designed, developed and deployed us-
ing IoTSuite. Alice also owns a smart car, which is well
equipped with modern sensing technologies and a smart car
supporting software (developed using IoTSuite) is also avail-
able for communication among various sensors within car as
well as with external sources of information. Both the home
automation and smart car applications are performing their
required tasks within the specified domain of each applica-
tion.

Now, consider a scenario, where both applications could
leverage from data and information collected from each of
these two applications as well external information sources.
These combined rich sources of information can extend the
functionality of existing applications by benefiting from the
knowledge derived by another application in a complete dif-
ferent domain. For example, a smart home automation sys-
tem at Alice home operates using a pre-planned schedule for
home heating system after considering daily routine patterns
of Alice arrival and departure times form home to work. On

IoT Gateway

Weather Forecasting
Devices

Smart Home
Devices

Healthcare
Devices

temp 102°F temperature 39°Cfog lamp

Transportation
Devices

t 39°C

CoAP
MQTTXMPP

IoT Gateway

Deducing New
Knowledge

(Virtualization)

Semantic Annotator

Semantic
 IoT data

Ontologies
DataSets

TripleStore

Rules SPARQL
Queries

LOV4IoT
dataset

Rule-based
Reasoning Engine

Query
Engine

SPARQL Queries

Semantic IoT Data +
Inferred KnowledgeOntologies

Knowledge
Manager

Web Services

Persistence Storage

Accessing Things
(Physical)

IoT Data IoT Data

IoTSuite
Compiler

Domain
Specification

Deployment
Specification

User Interface
Specification

Architecture
Specification

Generate
Deployment ready

packages for Sensing
devices and IoT Gateways

Semantic-based and cross-domain
IoT/WoT Application Services

Transport:
Weather &

Safety
devices

Weather
& Smart
Home

Tourism:
Weather &
Activities

Naturopathy:
Healthcare &
Weather &

Food

Internet & Web

Clients
MQTT

REST

Generate
Deployment ready

packages for Actuators
And User Interfaces

Suggestions

Application
Layer

Figure 1: SWoTSuite architecture

a busy Monday evening on her way back to home from work,
Alice is stuck into a severe traffic jam and her car automa-
tion system reports an expected delay of more than an hour
than her usual arrival time at home. SWoTSuite builds ap-
plications could potentially process the information from car
automation system to deploy actuation over the home au-
tomation system for delaying the triggering of automated
heating system and thus conserving the energy consump-
tion.

SWoTSuite can play a vital role by supporting a combi-
nation of IoTSuite and M3 Framework, where (i) IoTSuite
interacts with the physical layer and combines information
collected from different smart applications, (ii) M3 Frame-
work can process combined information, reason over it to
extract additional knowledge, and provide useful suggestions
for making knowledge-able better decisions, and (iii) IoT-
Suite application layer can take into account the extracted
information from M3, to initiate the actuation process over
the physical layer of SWoTSuite.

3.2 Application Development using SWoTSuite
Our SWoTSuite demo consists of the following steps:

Step 1: Generating deployment ready packages for
devices. This step of our demo is – how developers specify
high-level specifications, compile them, and generate pack-
ages that can be deployed on devices at the physical layer

and application layer. SWoTSuite provides an eclipse plu-
gin1 with an editor support to write these specifications.
Figure 2 shows various editor features such as syntax col-
oring, error checking, auto completions, re-factoring, code-
folding, and outline view.

Step 2: Annotating sensor data. This step of our
demonstration is to show annotation process. It takes sensor
data from the physical layer and transforms it into a unified
description such as RDF/XML. Listing 1 illustrates a code
snippet of temperature measurement in senML format from
a temperature sensor. It shows sensed temperature value
along with meta information such as unit of measurement,
sensor name, and other information.

Step 3: Generating an appropriate template. This
step of our demo is – generating appropriate template files
that are required to build a SWoT application. This step
extracts information such as sensor name and its domain
from the annotated RDF/XML data and generates template
files. The template consists of ontologies, datasets, rules,
and SPARQL queries that are required to build a SWoT
application.

Step 4: Executing reasoning engine. This step is to
demonstrate the reasoning process of SWoTSuite. It deduces
new knowledge from annotated IoT data using Linked Open

1https://github.com/pankeshlinux/IoTSuite

https://github.com/pankeshlinux/IoTSuite

Figure 2: Editor support for writing High-level specification

Figure 3: Suggestions from SWoTSuite

Rules available in the persistent storage. Listing 2 shows a
rule example from the home-automation domain. A rule is
“if room temperature is less than 25◦C, then low tem-

perature in the room”. This rule deduces a condition based
on the value from temperature sensor. Moreover, developers
are guided through Java code in Eclipse IDE to load rules.
Figure 4 illustrates a small code snippet to load the rules
into Jena reasoning engine.

1 <senml bn=”urn:thermometer:uuid:87e4fae−a8a6−79a−9
abe−011c5043481d”><en=”temperature” t=”
1392815153153” u=”Cel” v=”67”/>

2 <e n=”temperature” t=”1411376379709” u=”Cel” v=”21”/
>

3 <e n=”temperature” t=”1411376392603” u=”Cel” v=”0”/>
4 </senml>

Listing 1: SenML/XML home temperature sensor data

1

2 [LowTemperature:
3 (?measurement rdf:type m3:

RoomTemperature)

4 (?measurement m3:hasValue ?v)
5 lessThan(?v,25)
6 −>
7 (?measurement m3:isRelatedTo home−

dataset:LowTemperature)
8]

Listing 2: Jena rule to deduce high level information

Step 5: Executing the query engine. This step is to
show - how SWoTSuite generates suggestions. The query
engine loads the M3 ontologies & datasets, annotated data
generated at Step 2 and suggestions derived at Step 4 and
SPARQL queries. Listing 3 illustrates the code snippet
of a SPARQL query for the scenario in Section 3.1. This
query derives recommendations over M3 ontologies, domain-
specific home automation and car datasets.

1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema
#>

2 PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−
syntax−ns#>

3 PREFIX m3: <http://sensormeasurement.appspot.com/
m3#>

Dedicated Java Programming

Framework to build SWoT

applications

Methods to load rules into

Reasoning Engine

Figure 4: Java programming framework for Eclipse IDE

4 PREFIX dc: <http://purl.org/dc/elements/1.1/>
5 PREFIX home−dataset: <http://sensormeasurement.

appspot.com/dataset/home−dataset/>
6

7 SELECT DISTINCT ?name ?value ?unit ?inferType ?
deduce ?suggest ?suggest comment WHERE{

8 ?measurement m3:hasName ?name.
9 ?measurement m3:hasValue ?value.

10 ?measurement m3:hasDateTimeValue ?time.
11 ?measurement m3:hasUnit ?unit.
12

13 # inferTypeUri = m3:RoomTemperature
14 ?measurement rdf:type ?inferTypeUri.
15 ?inferTypeUri rdfs:label ?inferType.
16

17 ?inferTypeUri m3:isRelatedTo ?deduceUri.
18 #deduceUri = home−dataset:LowTemperature
19 ?deduceUri rdfs:label ?deduce.
20

21 ?deduceUri m3:hasRecommendation ?suggestUri .
22 ?suggestUri rdfs:label ?suggest.
23 ?suggestUri dc:description ?suggest comment.
24 }

Listing 3: Query to retrieve temperature data with enriched value

Step 6: Showing results. This step of the demonstration
is to show final suggestions to a client application. The sug-
gestions could be an actionable information such as sending
alerts to a mobile application and/or controlling actuators.
For our scenario described in Section 3.1, the actionable in-
formation is triggering an actuator at home with a notifica-
tion to user, shown in Figure 3.

4. ACKNOWLEDGMENTS
This work is partially funded by a bilateral research con-

vention with ENGIE Research & Development, the ANR 14-

CE24-0029 OpenSensingCity project2 and institutional col-
laboration supported by the Horizon 2020 Programme Euro-
pean project “Federated Interoperable Semantic IoT/cloud
Testbeds and Applications” (FIESTA-IoT) from the Euro-
pean Union with the Grant Agreement No. CNECT-ICT-
643943, Science Foundation Ireland (SFI) under grant No.
SFI/12/RC/228, EU FP7 CityPulse Project under grant
No.6030953 and French ANR project DataTweet4.

5. REFERENCES
[1] S. Chauhan, P. Patel, A. Sureka, F. C. Delicato, and

S. Chaudhary. IoTSuite: A Framework to Design,
Implement, and Deploy IoT Applications:
Demonstration Abstract. In Proceedings of the 15th
International Conference on Information Processing in
Sensor Networks, pages 37:1–37:2, NJ, USA, 2016.

[2] S. K. Datta and C. Bonnet. Easing iot application
development through datatweet framework. In 2016
IEEE 3rd World Forum on Internet of Things
(WF-IoT), pages 430–435, Dec 2016.

[3] A. Gyrard. Designing Cross-Domain Semantic Web of
Things Applications. PhD thesis, Telecom ParisTech,
Eurecom, April 2015.

[4] P. Patel, A. Gyrard, D. Thakker, A. Sheth, and
M. Serrano. SWoTSuite: A Toolkit for Prototyping
Cross-domain Semantic Web of Things Applications. In
Proceedings of the 15th International Semantic Web
Conference(ISWC), 2016.

[5] P. Patel, A. Kattepur, D. Cassou, and G. Bouloukakis.
Evaluating the Ease of Application Development for
the Internet of Things. Technical report, Feb. 2013.

2http://opensensingcity.emse.fr
3http://www.ict-citypulse.eu
4http://www.agence-nationale-recherche.fr/?Projet=ANR-
13-INFR-0008

http://opensensingcity.emse.fr

	Introduction
	SWoTSuite Architecture
	Demonstration
	Application Scenario
	Application Development using SWoTSuite

	Acknowledgments
	References

