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ABSTRACT
By abstracting devices to Web resources, the Web of Things (WoT)
fosters innovation and rapid prototyping in the Internet of Things
(IoT): it enables developers to use standard Web technologies for
creating mashups of Web services that perceive and act on the
physical world (a.k.a. physical mashups). In recent years, however,
it has become apparent that current programming paradigms for
Web development have important shortcomings when it comes
to engineering IoT systems: static Web mashups cannot adapt to
dynamic IoT environments, and manually mashing-up the IoT does
not scale. To address these limitations, WoT researchers started to
look for means to engineer WoT systems that are more autonomous
in pursuit of their design objectives. The engineering of autonomous
systems has already been explored to a large extent in the scienti�c
literature on arti�cial intelligence. In this position paper, we distill
that large body of research into a coherent set of abstractions for
engineering autonomous WoT systems.
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1 INTRODUCTION
The Web of Things (WoT) [11] has signi�cantly lowered the entry-
barrier for developers and users of Internet of Things (IoT) systems.
Two paradigms that were very successful early-on in showcasing
the bene�ts of Web-enabled devices were inspired by data�ow pro-
gramming and rule-based systems. In the former approach, develop-
ers use a visual programming language and a WoT mashup editor
to create directed graphs of devices and digital services1[1, 10].
In the latter approach, developers and/or end-users de�ne event-
condition-action rules, where an event triggers the execution of
one or more actions.2,3 Both approaches ease the development of
reactive WoT systems. On the upside, these systems are very re-
sponsive to sensory input, but their main drawback is that action
is tightly coupled to perception, and thus these systems cannot

1http://nodered.org, accessed: 02.10.2017.
2http://www.ifttt.com, accessed: 02.10.2017.
3http://www.zapier.com, accessed: 02.10.2017.
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adapt their behavior to changes in the environment or to new user
requirements at runtime.

To avoid the static chaining of actions used in reactive WoT sys-
tems, more recent approaches turned to automated planning [12]:
given a design goal or a user-speci�ed goal, it is left to the WoT
system to �gure out how to achieve that goal using a reasoner
and semantic descriptions of services discovered at runtime. Such
proactive WoT systems are more adaptable (the chain of actions is
created at runtime), but they are also less responsive: automated
planning is computationally costly, and environmental changes are
taken into account only before the planning phase (the inferred
plan can become invalid during execution).

Note that many of the underlying research questions the WoT
community is now confronted with, such as how to balance reac-
tive and proactive behavior in autonomous systems, how to enable
proactive behavior in resource-constrained systems, or how to engineer
large-scale autonomous systems, have been explored to a large extent
in the scienti�c literature on arti�cial intelligence and, in particular,
autonomous agents and multi-agent systems (AAMAS) [17].

Our claim is that AAMAS research already provides models and
technologies that can be applied to design and develop complex
autonomous systems for the WoT. In fact, in previous publications,
we have already demonstrated the successful transfer of multi-agent
technology to the development of WoT systems [5], and we have
already looked at some of the challenges of bringing autonomous
agents to WoT environments [7].

In this position paper, we de�ne a conceptual alignment between
AAMAS and WoT research, and propose a coherent set of abstrac-
tions for engineering autonomous WoT systems.

2 AGENTS FOR THEWOT
Agent-oriented programming was �rst articulated as a paradigm
in [16], but it is a sub�eld of arti�cial intelligence whose origins can
be traced back to George� and Lansky’s work on reactive planning
at the Stanford Research Institute in the mid 1980’s [9]. Existing
models and languages for programming autonomous agents and
multi-agent systems are thus the result of over 30 years of cumula-
tive ongoing research.

In this section, we distill that research into three main design
choices that we believe can ease the engineering of autonomous
WoT systems. We discuss and motivate each choice in what follows.

2.1 Cognitive Agents
The �rst proposed design choice is to decouple perception from
action through deliberation: the WoT system is endowed with the

http://nodered.org
http://www.ifttt.com
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Figure 1: Systems of cognitive agents for the WoT.

ability to re�ect on its own internal state and the state of its environ-
ment in order to decide on a course of action. Deliberation allows
the system to pursue goals much like classical planners, but also
enables it to react to important events or (if necessary) to switch
its focus altogether and adopt new goals. We refer to autonomous
deliberative systems as cognitive agents.

In what follows, we re�ne the abstract concept of a cognitive
agent down to the implementation level. We present the Belief-
Desire-Intention (BDI) architecture [14], which is the mainstream
architecture for cognitive agents in the AAMAS community, and
discuss programming languages for BDI agents.

2.1.1 Representing the internal state. To ease the engineering
of autonomous WoT systems, it is necessary to provide developers
with a level of abstraction that facilitates designing, programming,
but also inspecting and debugging autonomous behavior. The BDI
architecture [14] provides a formal “human-oriented” level of ab-
straction for representing the internal state of an agent in terms of
mental attitudes:

• beliefs: information the agent holds about the world; be-
liefs are not necessarily true, they may be out of date or
inaccurate;

• desires: states of a�airs the agent wishes to bring to the
world (i.e., the agent’s goals);

• intentions: the states of a�airs the agent has decided to work
towards (i.e., goals the agent is committed to achieve).

Developers can then program agents to deliberate about their
own beliefs, desires, and intentions, and modify their mental atti-
tudes as needed. For instance, an agent can decide to suspend the
execution of an intention in order to react to an important event,
or it can even drop an intention if it becomes unachievable. The
agent remains reactive in pursuit of its goals, and can even pursue
new goals if the situation warrants.

2.1.2 Deliberation and means-end reasoning. BDI agents delib-
erate on their internal state and the state of their environment
through reasoning cycles. A simpli�ed view of a BDI agent’s typi-
cal reasoning cycle is depicted in Figure 1. The BDI architecture
consists of data structures for handling the agent’s beliefs, desires,
and intentions, and a queue for handling external and internal
events [14]. Examples of external events include sensory input, or
messages received from other agents. Examples of internal events
include beliefs generated by the agent itself (i.e., mental notes), or
sub-goals generated in pursuit of a given goal. In every cycle, an
interpreter processes one or more events, and updates the agent’s
beliefs, desires, and intentions. Three important (and customizable)
pieces of the BDI architecture are the functions used to update the
agent’s beliefs and desires, and to select its intentions. For further
details on the inner workings of BDI agents, we refer interested
readers to [3, 14].

The BDI architecture is an abstract model that focuses on de-
liberation without constraining how agents achieve their goals. In
most implementations, however, agents achieve their goals using
libraries of plans de�ned by developers (cf. Figure 1).4 Similar to
the other key data structures in the BDI architecture, agents can
update their libraries of plans at runtime (e.g., by exchanging plans
with one another). This is thus an e�ective, formal, and modular
approach to engineer adaptable agents whose behavior can evolve
at runtime. Nevertheless, this implementation choice implies a lim-
itation: unless the agent is able to synthesize its own plans (e.g.,
through automated planning), its behavior is bounded by the set of
pre-programmed plans made available at runtime. This pragmatic
approach stems from the original motivation behind reactive plan-
ning [9, 14]: to enable goal-directed behavior in resource-bounded
agents and under real-time constraints. This motivation remains
highly relevant for developers of WoT systems.

2.1.3 Programming languages for BDI agents. The typical pro-
gram of a BDI agent is composed of the agent’s initial beliefs, goals,
and plans. Multiple languages and frameworks are available for
programming BDI agents. One of the most prominent agent pro-
gramming languages is AgentSpeak(L) [13], and its more recent
extended version known as Jason [3].

In what follows, we illustrate agent programming in Jason for
a healthcare application.5 Our objective is to implement a WoT
application that reminds an elderly patient to take her medication
at certain hours. The patient signals she took her medication by
pressing a button on a remote control, and the application sends
visual reminders through a lamp.

We implemented the above application using a Philips Hue light
bulb and an Arduino-based circuit with an infrared receiver. An
extract from the agent program is shown in Listing 1. The hours
for pill administration are provided in the agent’s initial set of
beliefs, but they could also be provided by end-users at runtime. The
agent has a single initial !start goal, which performs all required
initializations and kicks o� patient monitoring by creating the
!monitor sub-goal (cf. Listing 1). The agent achieves its goals by
executing plans written in Jason, where a plan has the form:

4In a sense, we can conceive of plans as beliefs about means to achieve goals [14].
5We will not explore the features of the Jason language in detail, but we refer interested
readers to [3] for further information.
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triggering_event : application_context <- plan_body .

Listing 1: Jason agent that monitors a patient’s medication.
/ ∗ I n i t i a l b e l i e f s ∗ /
p i l l s _ t i m e ( 1 1 , 0 0 ) .
p i l l s _ t i m e ( 2 3 , 0 0 ) .
/ / ( . . . )

/ ∗ I n i t i a l g o a l s ∗ /
/ / I n i t i a l i z e s the agen t and c r e a t e s the " ! moni tor " sub−g o a l
! s t a r t .

/ ∗ P l a n s ∗ /
/ / ( . . . )
+ ! moni tor : . t ime ( Hour , Min , _ ) & p i l l s _ t i m e ( Hour , Min )

& ( not t o o k _ p i l l s ( _ , Hour , Min ) )
& ( not t a k e _ p i l l s _ n o t i f i c a t i o n ( _ , Hour , Min ) ) <−

/ / Send v i s u a l reminder v i a P h i l i p s Hue a r t i f a c t
turnL ightOn ( 0 . 4 0 9 , 0 . 5 1 8 ) [ a r t i f a c t _ n a m e ( " bu lb " ) ] ;
/ / C r e a t e a menta l note f o r t h i s n o t i f i c a t i o n
j i a . c u r r e n t T i m e M i l l i s ( I d ) ;
+ t a k e _ p i l l s _ n o t i f i c a t i o n ( Id , Hour , Min ) ;
/ / Resume m o n i t o r i n g
! moni tor .

+ ! moni tor : t r u e <−
/ / Suspend i n t e n t i o n f o r 60 seconds
. wa i t ( 6 0 0 0 0 ) ;
/ / Resume m o n i t o r i n g
! moni tor .

For instance, as shown in Listing 1, if it is time to take the medi-
cation, the agent does not believe the patient had already taken her
medication, and no visual reminder has yet been sent, the agent
noti�es the patient it is time to take her medication by turning
on a lamp. A new !monitor sub-goal is then created to continue
monitoring the patient.

2.2 Agents in WoT Environments
The second proposed design choice is to separate concerns of au-
tonomous deliberative behavior from concerns of supporting and
enacting that behavior. That is to say, we distinguish between a
cognitive agent and the environment in which it is situated, and
consider both as �rst-class abstractions in WoT systems. This sep-
aration of concerns simpli�es agent development, and increases
the reusability of system components and the evolvability of the
overall system. This design choice draws from a line of research on
engineering agent environments [15].

2.2.1 Agents and artifacts. We model an agent’s environment
as a dynamic set of artifacts, where an artifact is a computational
object that exposes:

• observable properties: state variables that can be perceived
by the agent;

• observable events: non-persistent, �re-and-forget signals
that carry information and can be perceived by the agent;

• operations: environment actions provided to the agent; op-
erations can change the values of observable properties or
they can trigger events.

Artifacts therefore provide agents with a generic, uniform inter-
face de�ned in terms of properties, events, and operations. The set
of all interactions an agent can have with its environment is deter-
mined by the artifacts available at runtime. Agents use artifacts in
pursuit of their goals, and they can create or destroy artifacts at
runtime.

The artifact abstraction, as presented above, was introduced
by Agents & Artifacts (A&A) [15], a well-known meta-model for
multi-agent systems inspired by activity theory. We refer interested
readers to [15] for further details on the A&A meta-model.

In our previous example in Listing 1, the agent interacts with a
Philips Hue light bulb via an artifact implemented using CArtAgO,
a framework for A&A [15]. The agent logic is thus insulated from
low-level details of accessing the Philips Hue HTTP API, and thus
the agent program is simpli�ed. Moreover, the artifact can be shared
with other agents situated in the same environment, or the artifact
class can be reused in other applications.

The practicality of modeling devices as artifacts is obvious, but
agents can also bene�t from purely digital artifacts. For instance,
we can further simplify the agent program in Listing 1 by creating
a clock artifact that emits a signal every minute. The agent can then
simply react to new clock signals, which yields the more concise
implementation shown in Listing 2. The clock artifact can also be
reused in other applications.

Listing 2: Monitoring agent using a clock artifact.
/ ∗ P l a n s ∗ /
/ / ( . . . )
+ c l o c k _ t i m e ( Hour , Min ) : p i l l s _ t i m e ( Hour , Min )

& ( not t o o k _ p i l l s ( _ , Hour , Min ) )
& ( not t a k e _ p i l l s _ n o t i f i c a t i o n ( _ , Hour , Min ) ) <−

/ / Send v i s u a l reminder v i a P h i l i p s Hue a r t i f a c t
turnL ightOn ( 0 . 4 0 9 , 0 . 5 1 8 ) [ a r t i f a c t _ n a m e ( " bu lb " ) ] ;
/ / C r e a t e a menta l note f o r t h i s n o t i f i c a t i o n
j i a . c u r r e n t T i m e M i l l i s ( I d ) ;
+ t a k e _ p i l l s _ n o t i f i c a t i o n ( Id , Hour , Min ) .

2.2.2 Artifacts for the WoT. The light bulb artifact in our applica-
tion is already Web-enabled, but it is tightly coupled to the Philips
Hue HTTP API. However, it is worth to note the similarity between
the artifact model de�ned by A&A and the WoT Thing Description
(TD) currently being standardized in the W3C WoT WG6. Both
models de�ne three types of interaction patterns, namely properties,
events, and operations (or actions), with the WoT TD model being
slightly more generic: a TD can expose writable properties, whereas
artifact properties are read-only. Applying the WoT TD to decouple
artifacts from devices is thus straightforward. Furthermore, agent
environments could then bene�t from any discovery mechanisms
for WoT TDs (see Section 2.3.1).

Note that the WoT TD could also be applied as a wrapper for an
agent-based system. That could be the case, for instance, when a
BDI interpreter is embedded on a WoT device.

2.3 Agent Discovery and Interaction
The third proposed design choice is to model non-trivial autonomous
WoT systems as decentralized systems composed of multiple cog-
nitive agents (rather than monolithic systems). This design choice
decentralizes control, which can increase system robustness, and
enhances modularity, which increases the reusability and main-
tainability of agents and the evolvability of the overall system.
Decentralization and modularity also enable the development of
open systems in which agents discover and interact with one an-
other at runtime. We discuss discovery and interaction in open
autonomous WoT systems in what follows.
6https://w3c.github.io/wot-thing-description/, accessed: 02.10.2017.

https://w3c.github.io/wot-thing-description/


WoT’17, October 2017, Linz, Austria A. Ciortea et al.

2.3.1 Discovery. In open WoT systems, a practical resource dis-
covery mechanism is the use of directories that allow devices to
register and advertise descriptions of resources.7 Similar directory-
based mechanisms have been proposed in the AAMAS community
for the discovery of agents (and services in their environment)8, and
can be easily implemented on top of directories of Web resources
(cf. Figure 1).

Going further, we recently proposed to use HATEOAS [8] to en-
gineer hypermedia-driven agent environments [6], which could be
layered on top of WoT environments in order to enhance discov-
erability (e.g., see [7]). Discovery mechanisms based on crawling,
similar to the ones used by Web search engines, could then help
populate and maintain directories of agents and artifacts for open
WoT systems.

2.3.2 Interaction. In open systems, little assumptions can be
made about the design and implementation of components. It natu-
rally follows that the engineering of such systems must focus to a
large extent on component interactions. For instance, to support
an open Web, REST focuses on the semantics of component inter-
actions by de�ning a uniform interface between components [8].

There are two main schools of thought for de�ning the meaning
of interactions in open multi-agent systems. Early research on agent
communication and interaction was strongly in�uenced by speech
act theory, which treats language as action: the meaning of a speech
act, such as communicating a piece of information or delegating a
goal, is de�ned in terms of its intended e�ect on the hearers’ mental
attitudes (i.e., their beliefs, desires, intentions). Cognitive agents
running on various WoT devices, for instance, can then interact with
one another by exchanging messages expressed in a formal, high-
level communication language with well-de�ned semantics (see [5]
for an example WoT application). Sequences of such messages (a.k.a.
agent interaction protocols) can be standardized in order to support
loosely coupled interactions among agents in open WoT systems.9

Agent communication languages based on mental attitudes are
simple and intuitive for developers. Their main drawback, however,
is that interactions are subjective and can be ambiguous (to interpret
messages, agents make assumptions about the mental attitudes of
others). This approach is thus best suited for systems in which it
can be safely assumed that agents are sincere and cooperative. In
open systems, however, this is usually not the case. An alternative
approach is to de�ne the meaning of agent interactions in terms
of commitments agents make to one another. Commitments are
unambiguous and objective (they are de�ned externally to the
agents). This approach imposes less constraints on the design and
implementation of agents, and facilitates the monitoring and testing
for compliance of agent behavior. For further information on this
line of research, we refer interested readers to [4].

3 THE ROAD AHEAD
As the WoT community turns towards autonomous systems, we
believe the alignment between AAMAS and WoT research becomes

7https://tools.ietf.org/html/draft-ietf-core-resource-directory-11, accessed: 02.10.2017.
8http://www.�pa.org/specs/�pa00001/SC00001L.html, accessed: 02.10.2017.
9Note that in the early 2000s, the Foundation for Intelligent Physical Agents (FIPA)
released a set of standards for communication and interaction in multi-agent systems
(http://www.�pa.org/repository/standardspecs.html, accessed: 02.10.2017).

more and more relevant. In this position paper, we presented a
coherent set of abstractions that ease the design, programming,
inspection, and debugging of autonomous systems for the WoT.
The proposed abstractions draw from many years of research on
AAMAS and are grounded in formal, mainstream models. More-
over, the tooling required to use these abstractions for prototyping
autonomous WoT systems is already available [2, 5]. While there is
still a big gap between research and development on the one hand
and large-scale deployment and usage on the other, the biggest hur-
dle we see to bringing autonomous systems to the WoT is mostly
an engineering task: to provide WoT developers with mature, Web-
compliant, and industry-grade multi-agent technology.

From a research perspective, the conceptual alignment presented
in this paper enables the transfer to autonomous WoT systems of a
large body of work on advanced research topics in AAMAS, such as
agent coordination, regulating autonomous behavior, reinforcement
learning, or distributed decision making. We refer interested readers
to [17] for a textbook introduction to these topics and others.
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