
HAL Id: emse-01840007
https://hal-emse.ccsd.cnrs.fr/emse-01840007

Submitted on 16 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimizing the number of workers in a paced
mixed-model assembly line

Xavier Delorme, Alexandre Dolgui, Sergey Kovalev, Mikhail Kovalyov

To cite this version:
Xavier Delorme, Alexandre Dolgui, Sergey Kovalev, Mikhail Kovalyov. Minimizing the number of
workers in a paced mixed-model assembly line. European Journal of Operational Research, 2019, 272
(1), pp.188 - 194. �10.1016/j.ejor.2018.05.072�. �emse-01840007�

https://hal-emse.ccsd.cnrs.fr/emse-01840007
https://hal.archives-ouvertes.fr


Minimizing the Number of Workers in a Paced Mixed-Model

Assembly Line

Xavier Delormea, Alexandre Dolguib,1, Sergey Kovalevc, Mikhail Y. Kovalyovd

aEcole des Mines de Saint-Etienne, FAYOL-EMSE, CNRS UMR 6158 LIMOS, 158, cours

Fauriel, 42023 Saint Etienne Cedex 2, France, E-mail: delorme@emse.fr

b IMT Atlantique, LS2N - UMR CNRS 6004, La Chantrerie, 4, rue Alfred Kastler - B.P.

20722, F-44307 Nantes Cedex 3, France, E-mail: alexandre.dolgui@imt-atlantique.fr

cINSEEC Business School, 25 rue de l’Université, 69007 Lyon, France, E-mail:
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Abstract

We study a problem of minimizing the maximum number of identical workers over all cycles of

a paced assembly line comprised of m stations and executing n parts of k types. There are lower

and upper bounds on the workforce requirements and the cycle time constraints. We show that

this problem is equivalent to the same problem without the cycle time constraints and with

fixed workforce requirements. We prove that the problem is NP-hard in the strong sense if

m = 3 and if m = 4 and the workforce requirements are station independent, and present an

Integer Linear Programming model, an enumeration algorithm and a dynamic programming

algorithm. Polynomial in k and polynomial in n algorithms for special cases with two part types

or two stations are also given. The relation to the Bottleneck Traveling Salesman Problem and

its generalizations are discussed.
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1 Introduction

We study the following workforce planning problem. There is a paced assembly line with m

stations at which parts of distinct types of a set P = {1, . . . , k} are manufactured. Each part

visits the stations in the same order 1, . . . ,m and fully occupies any station in the time period

between its arrival and departure. With a time step C called the cycle time, a part at station

i departs from this station and immediately arrives at station i + 1, i = 1, . . . ,m − 1, a new

part arrives at station 1 and the part at station m leaves the line. Activities taking place

between two successive part moves are called the production cycle. If part j is processed at

station i in a production cycle, then the duration of all the operations on this part at this

station in this cycle is a non-increasing function pij(xij) of the number xij of identical (fully

skilled) workers assigned to station i and part j in this cycle. In the same cycle, workers

assigned to different stations perform their operations in parallel. It is assumed that they do

not move from one station to another in the same cycle. However, they can move instantly to

another station after the cycle has finished. To be feasible with respect to the cycle time, the

relation pij(xij) ≤ C must be satisfied for each station and each part in each production cycle.

Besides, technological constraints define the lower and upper bounds on the values xij in each

cycle: 0 ≤ aij ≤ xij ≤ bij , i = 1, . . . ,m, j ∈ P . We assume, without loss of generality, that

pij(bij) ≤ C for all i and j.

A requirement of the global supply chain is that the production should keep a given propor-

tion of the manufactured parts. To address this issue, the notion of a Minimal Part Set (MPS)

is used, which was introduced into the operational research literature by Hitz [23]. Let the part

proportion be given by the numbers t1, . . . , tk, where tj is the percentage of type j parts to

be manufactured, and let GCD denote the greatest common divisor of the numbers t1, . . . , tk.

Denote oj = tj/GCD, j ∈ P , and n =
∑k

j=1 oj. MPS is the multiset that consists of oj copies

of each type j part, j ∈ P . Note that, for a given part proportion t1, . . . , tk, the numbers

o1, . . . , ok and n are unique. In this paper, we represent MPS as the sequence (o1, . . . , ok). Ac-

cording to the theory of computational complexity, this representation satisfies the conditions

of a reasonable encoding scheme (Garey and Johnson [18], p.10), while a representation that

contains all n part copies does not satisfy these conditions.

An MPS sequence is a part sequence π = (j1, . . . , jn), jr ∈ P , r = 1, . . . , n, in which each
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type j part occurs exactly oj times, j ∈ P . According to the MPS sequence π, the parts visit

the line cyclically in the order j1, . . . , jn, j1, . . . , jn, . . .; see Fig. 1 for an illustration.

Parts

Stations

. . . ✲✖✕
✗✔
j1 ✲✖✕

✗✔
jn ✲ . . . ✲✖✕

✗✔
jm+1

✲✖✕
✗✔
jm ✲✖✕

✗✔
jm−1

✲ . . . ✲✖✕
✗✔
j1 ✲✖✕

✗✔
jn ✲ . . .

1 2 m. . .

Figure 1: Parts moving according to an MPS sequence π = (j1, . . . , jn)

In each production cycle, each station is assigned a part and this arrangement can be

represented by a sequence σ = (j′1, . . . , j
′
m), where j′h ∈ P is the part assigned to station

m + 1 − h, h = 1, . . . ,m. We call such an arrangement a P-cycle. For the example in Fig. 1,

the current P-cycle is (j1, . . . , jm) and the previous P-cycle is (jn, j1, . . . , jm−1).

Given the MPS sequence π = (j1, . . . , jn), let us consider a directed graph G(π) with the set

of vertices {j1, . . . , jn} and the set of arcs {(j1, j2), (j2, j3), . . . , (jn−1, jn), (jn, j1)}. Thus, G(π)

is the graph called the (directed) cycle. We say that a P-cycle σ is π-feasible if and only if it is a

walk in the graph G(π), with no vertex and arc repetition if m ≤ n. For example, if m = n+1,

then σ = (j1, . . . , jn, j1) is π-feasible and, if m = 3, then σ = (j6, j7, j8) is π-feasible. Let Φ(π)

denote the set of all distinct π-feasible P-cycles. We have |Φ(π)| = n. Furthermore, let x
(σ)
i

denote the number of workers assigned to station i in the P-cycle σ, i = 1, . . . ,m. The total

number of workers used in this P-cycle is equal to
∑m

i=1 x
(σ)
i . Denote by x the structure with

the entries x
(σ)
i , i = 1, . . . ,m, σ ∈ Φ(π). The total number of workers used in the long run of

the MPS sequence π = (j1, . . . , jn) is equal to T (π, x) = maxσ∈Φ(π){
∑m

i=1 x
(σ)
i }. The problem

is to determine an MPS sequence π and the number of workers assigned to each station in

each distinct P-cycle, determined by the structure x, such that the maximum total number

of workers over all P-cycles, T (π, x), is minimized. We denote this problem as MinMaxSum.

Note that an MPS sequence can be described in many different ways, and there exist special

cases of the MinMaxSum problem for which an optimal MPS sequence is described in O(k)

time, see Section 7.

MinMaxSum problem is a subproblem of the industrial problem studied within European

project “amePLM” (Battäıa et al. [5], Dolgui et al. [17]). In the industrial case, two or three

automotive engines (two or three part types) are produced in the proportion of 75% and 25%

3



in the case of two engines and 75% and 20% and 5% in the case of three engines on an assembly

line comprising of 11 stations. Therefore, m = 11, k = 2 or k = 3 and (o1, o2) = (3, 1) or

(o1, o2, o3) = (15, 4, 1). The processing time functions are station independent and inversely

proportional to the number of workers: pij(x) = pj/x, i = 1, . . . ,m, j ∈ P . Each station can be

assigned one, two, three or four workers, that is, aij = 1 and bij = 4 for all i and j. The cycle

time is determined as the ratio of the total production time available in the planning horizon

to the planned production volume in this horizon.

In the next section, a review of the relevant literature is given. In Section 3, we demonstrate

that the MinMaxSum problem is equivalent to the same problem without the cycle time

constraints pij(xij) ≤ C and with aij = bij = wij for appropriately determined fixed workforce

requirements wij, i = 1, . . . ,m, j ∈ P , for which we keep the same notation MinMaxSum. We

suggest an O
(

min
{

mnkn−1, n!m
(o1−1)!o2!···ok!

})

time enumeration algorithm to solve this problem,

which can be efficient if n is small. In Section 4, we provide a proof of the strong NP-hardness of

the MinMaxSum problem in the case when m = 4 and the workforce requirements are station

independent: wij = wj, i = 1, . . . ,m, j ∈ P . Obviously, if the workforce requirements are part

type independent: wij = wi, i = 1, . . . ,m, j ∈ P , then all MPS sequences π have the same

total workforce requirements T (π) =
∑m

i=1 wi. An O(nk+1k2m+2−k) time dynamic programming

algorithm for the MinMaxSum problem with n ≥ m is presented in Section 5. Section 6

contains an Integer Linear Programming (ILP) formulation of this problem. Polynomial in k

and polynomial in n algorithms for three special cases with two part types or two stations are

given in Section 7. The paper ends with a summary of the results and suggestions for future

research.

2 Literature review

The MinMaxSum problem has much in common with the problem studied by Lee and Vairak-

tarakis [29] and it is a special case of the problem studied by Winch et al. [45]. However,

[29] and [45] do not consider concise representation of the MPS assuming that all parts are

of different types (k = n) and the workforce requirements are fixed (aij = bij, i = 1, . . . ,m,

j ∈ P ). Furthermore, [29] assumes that the MPS sequence is not repeated cyclically: the line

is free before the first part of an MPS sequence arrives at station 1 and the production stops

when the last part of this sequence departs from station m.
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We denote the problem in [29] as Fix. Lee and Vairaktarakis proved that this problem is

solvable in O(n log n) time if m = 2 and it is NP-hard in the strong sense if m = 3. They

suggested an ILP formulation, lower bounds and heuristics for the general case of FIX. Note

that an O(n log n) algorithm would be pseudo-polynomial with respect to the MinMaxSum

problem. Vairaktarakis and Winch [40] extended the results of Lee and Vairaktarakis [29] to

the case of partially skilled workers and the criterion of minimizing the costs of their cross-

training. They motivated their studies by the production of firetrucks. Vairaktarakis et al. [41]

extended the results of [29] to consider a different protocol of part processing, according to

which each part requires a number of linearly ordered operations and each operation requires

a specific station in a production cycle. The objective is to minimize a linear combination of

the workforce cost and costs associated with the number of production cycles, which is one of

the decision variables.

The workers in Winch et al. [45] are not identical: each worker possesses certain skills,

stations are partitioned into skill groups and a worker can be assigned to a station only if he

possesses the skill that determines the skill group of this station. The MinMaxSum problem is

a special case of the problem in [45], in which each worker possesses all skills. Winch et al. [45]

proved that the MinMaxSum problem is NP-hard in the strong sense for m = 3 and they

stated that the O(n log n) algorithm in [29] can be adapted to solve the MinMaxSum problem

with m = 2 in O(n log n) time. They also designed lower bounds, heuristic algorithms and an

optimal branch-and-bound procedure for the general problem.

Academic studies of the workforce planning problems for production lines were initiated

by Akagi et al. [1] and Wilson [44]. Recent surveys of the results in this field are given by

Battäıa and Dolgui [6], Battäıa et al. [5], De Bruecker et al. [16] and Dolgui et al. [17]. Further

information can be found in Vairaktarakis et al. [42], Polat et al. [32], Dalle Mura and Dini [14],

Yilmas and Yilmas [47], Zacharia and Nearchou [48] and Ritt et al. [34].

A close research area is cyclic scheduling and perfect periodic scheduling. In a cyclic schedul-

ing problem, there is a set of jobs to be processed on a set of machines and each job must be

repeated infinitely many times. A schedule must be found that repeats itself with a time step

called the cycle time, satisfies a number of constraints and minimizes the cycle time. Levner

et al. [30] provided a survey of the computational complexity results for cyclic scheduling

problems. The papers of Bartholdi et al. [4], Dauscha et al. [15], Chretienne [13], Lutz and
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Davis [31], Hanen and Munier [22], Kouvelis and Karabati [27], Hall et al. [21], Timkovsky

[36], Hochbaum and Levin [24], Brucker and Kampmeyer [8], Kimbrel and Sviridenko [26],

Sawik [35], Che et al. [11] and Bobrova and Servakh [7] contain additional results. A perfect

periodic scheduling problem is similar, but there is a frequency request for each job and the

objective is to find a schedule that minimizes deviations from the frequencies in each cycle.

Perfect periodic scheduling problems have been studied by Bar-Noy et al. [3], among others.

TheMinMaxSum problem, when formulated in graph theoretical terminology, can be called

a MinMaxSum Traveling Salesman Problem (MinMaxSum TSP). In this problem, a

Hamiltonian cycle in a complete directed graph has to be found such that the maximum sum

of weights of m consecutive vertices is minimized. The class of MinMaxSum TSPs intersects

with the Bottleneck TSP (Gilmore and Gomory [19], Burkard and Sandholzer [10], van

der Veen [43], Burkard et al. [9], Vairaktarakis [37, 38], Kabadi and Punnen [25], LaRusic and

Punnen [28]) and the TSP under Categorization (Punnen [33]), and it is also relevant to

the k-Neighbor TSP (Woods et al. [46]) and the Maximum Scatter TSP (Arkin et al. [2],

Chiang [12]).

3 Fixed workforce requirements and an enumeration al-

gorithm

Consider an MPS sequence π. Observe that not all parts can be present in a P-cycle σ ∈ Φ(π),

but, for any part, there is a P-cycle σ ∈ Φ(π) in which this part is present at any station.

This observation implies two statements: 1) the cycle time constraint and the lower and upper

bounds on the number of workers are satisfied if and only if for each pair (i, j), i = 1, . . . ,m,

j ∈ P , there is a number of workers x such that pij(x) ≤ C and aij ≤ x ≤ bij, and 2) the

MinMaxSum problem is equivalent to the problem, in which, for each pair (i, j), the number

of workers is fixed to be equal to wij := min{x | pij(x) ≤ C, aij ≤ x ≤ bij}, i = 1, . . . ,m, j ∈ P .

Recall that pij(bij) ≤ C is assumed for all i and j. If the functions pij(x) are invertible, then

wij = max{aij, ⌈p
−1
ij (C)⌉}, where p−1

ij (y) is the inverse function of pij(x). If the functions pij(x)

are not invertible, then wij can be found in O(log2(bij−aij)) time by a bisection search over the

range [aij, bij ]. Thus, in O(mk log2 maxi,j{bij − aij}) time, the MinMaxSum problem reduces

to the equivalent problem without the cycle time constraints and with the fixed workforce

requirements wij, i = 1, . . . ,m, j = 1, . . . , k.
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From now on, we assume that the MinMaxSum problem is to determine an MPS sequence

π such that

T (π) = max
{

F (σ) =
m
∑

i=1

wm+1−i,j′
i
| σ = (j′1, . . . , j

′
m) ∈ Φ(π)

}

is minimized. Let π∗ denote an optimal solution of this problem.

We now describe an enumeration algorithm for the MinMaxSum problem. Assume, with-

out loss of generality, that o1 = mini=1,...,k{oi}. Denote by Π the set of all MPS sequences,

in which a copy of part 1 is in the first place. Note that we can limit our search of π∗ to

these sequences because of the cyclic processing of parts. Let us evaluate the cardinality of

this set. The number of sequences of length n − 1 with copies of part 1 in o1 − 1 places is

equal to Co1−1
n−1 = (n−1)!

(o1−1)!(n−o1)!
. For each sequence with all o1 copies of part 1 placed, there are

Co2
n−o1

= (n−o1)!
o2!(n−o1−o2)!

sequences with copies of part 2 in o2 places. By continuing this line of

reasoning,

|Π| = Co1−1
n−1 · Co2

n−o1
· · ·Cok

ok
=

(n− 1)!

(o1 − 1)!o2! · · · ok!
.

On the other hand, since each component of a π ∈ Π can take one of the values 1, . . . , k,

|Π| ≤ kn−1.

The MinMaxSum problem reduces to calculating T (π∗) = min{T (π) | π ∈ Π}. Since

|Φ(π)| = n, each value T (π) can be calculated in O(mn) time. Hence, the MinMaxSum prob-

lem can be solved in O(mn|Π|) = O
(

min
{

mnkn−1, n!m
(o1−1)!o2!···ok!

})

time by calculating T (π) for

all MPS sequences π ∈ Π. For example, if k = 2 then it can be solved in O
(

min
{

2n, no1−1
}

mn
)

time.

4 NP-hardness

Winch et al. [45] prove that the MinMaxSum problem is NP-hard in the strong sense if m = 3.

The next theorem considers the case of station-independent workforce requirements, as they

are in the industrial case that motivates our studies.

Theorem 1 The MinMaxSum problem is NP-hard in the strong sense if m = 4 and wij = wj

for i = 1, . . . ,m and j ∈ P .

Proof: We will use a reduction from the NP-complete in the strong sense 3-Partition problem

(Garey and Johnson [18]).
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3-Partition: Given 3q + 1 positive integer numbers e1, . . . , e3q and E satisfying E/4 <

ej < E/2, j = 1, . . . , 3q, and
∑3q

j=1 ej = qE, is there a partition of the set {1, . . . , 3q} into

subsets X1, . . . , Xq such that
∑

j∈Xt
ej = E for t = 1, . . . , q?

Given an instance of the 3-Partition problem, we construct the following instance of the

MinMaxSum problem. There are m = 4 stations and k = 3q + 2 parts, among which there

are 3q partition parts denoted 1, . . . , 3q and two enforcer parts denoted the E-part and the

0-part. The numerical parameters of the parts are: oj = 1 and wj = ej for the partition parts

j = 1, . . . , 3q, oE = q and wE = E for the E-part, and o0 = 6q and w0 = 0 for the 0-part. We

now show that there is an MPS sequence π ∈ Π for this instance with a value T (π) ≤ E if and

only if the original instance of the 3-Partition problem has a solution.

Part “only if”. Let there be an MPS sequence π ∈ Π with a value T (π) ≤ E. Observe

that in π each E-part must be immediately preceded by three 0-parts and immediately followed

by three 0-parts, because otherwise there is a P-cycle in which an E-part and a partition

part are simultaneously on the line and the total workforce requirement of this P-cycle is

greater than E. Denote by X1, . . . , Xq the sets of partition parts between two consecutive sub-

sequences (0, 0, 0, E, 0, 0, 0) in π, where 0 denotes a 0-part and E denotes an E-part. Observe

that each set Xt consists of exactly three partition parts, because otherwise, by the Dirichlet

principle, there is a set Xt that includes four partition parts and these contribute more than

E to T (π) when processed in the same P-cycle. In order to satisfy T (π) ≤ E, we must have
∑

j∈Xt
wj =

∑

j∈Xt
ej ≤ E, i = 1, . . . , q. Since

∑q

i=1

∑

j∈Xt
ej = E, we obtain

∑

j∈Xt
ej = E,

i = 1, . . . , q, as required for the proof of the part “only if”.

Part “if”. Let X1, . . . , Xq be a solution of the 3-Partition problem. Define the MPS

sequence π = ([X1], 0, 0, 0, E, 0, 0, 0, [X2], . . . , 0, 0, 0, E, 0, 0, 0, [Xq], 0, 0, 0, E, 0, 0, 0), where [Xt]

is an arbitrary sequence of the partition parts of the set Xt, t = 1, . . . , q. Obviously, T (π) = E,

as required for the proof of the part “if”.

Theorem 1 can be directly applied to prove that the Fix problem in Lee and Vairak-

tarakis [29] is NP-hard in the strong sense if m = 4 and the workforce requirements are

station-independent. The computational complexity of the case with m = 3 and the station-

independent workforce requirements is an open question for both the MinMaxSum and Fix

problems.
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5 Dynamic programming algorithm for the case n ≥ m

In this section, we assume that n ≥ m. The MinMaxSum problem can be formulated as

the following constrained bottleneck path problem. There is a vertex weighted acyclic directed

graph G = (V,A), in which the vertices are denoted as v = (v1, . . . , vm) and correspond to the

same P-cycles (v1, . . . , vm), vi ∈ P , i = 1, . . . ,m. There are n copies of each vertex. All the

vertex copies are grouped into n same layers

Lr =
{

v = (v1, . . . , vm) | vi ∈ P, i = 1, . . . ,m
}

, r = 1, . . . , n.

We have |Lr| ≤ km, r = 1, . . . , n. The arcs of the set A are defined as follows. There is

an arc (v, u) going from a vertex v ∈ Lr to a vertex u ∈ Lr+1 if and only if (v2, v3, . . . , vm) =

(u1, . . . , um−1), 1 ≤ r ≤ n − 1. The existence of the latter arc means that the P-cycle u can

immediately follow the P-cycle v when the same MPS sequence rotates along the stations.

A vector (o1(v), . . . , ok(v)) of o-weights is associated with each vertex v, whose components

are equal to zero but the component oh(v) = 1 if vm = h, that is, if a copy of part type h is at

the station 1 in the P-cycle v = (v1, . . . , vm). A w-weight w(v) =
∑m

i=1 wi,vm+1−i
is associated

with each vertex v, which is the number of workers required for the P-cycle v = (v1, . . . , vm).

The MinMaxSum problem reduces to the following constrained bottleneck problem, de-

noted as CBP, of finding a path σ = (v(1), . . . , v(n)), v(r) ∈ Lr, in the graph G such that

(i) v(1) = (v
(1)
1 , . . . , v

(1)
m ), v(n) = (v

(n)
1 , v

(1)
1 , . . . , v

(1)
m−1),

(ii)
∑

v∈σ oh(v) = oh, h = 1, . . . , k, and

(iii) the maximum w-weight, maxv∈σ w(v), is minimized.

Consider an arbitrary MPS sequence (j1, . . . , jn). The requirement (i) states that if the first

P-cycle of this sequence is (j1, . . . , jm), then the last (n-th) P-cycle of this sequence must be

(jn, j1, j2, . . . , jm−1). The requirement (ii) limits the search to the MPS sequences in which the

number of occurrences of part type h is equal to oh, h ∈ P . The requirement (iii) addresses the

criterion of minimizing the number of workers over all P-cycles.

The problem can be solved by the following dynamic programming algorithm, denoted as

DP-CBP. For each pair of vertices v(1) and v(n) that satisfy (i), apply a standard dynamic pro-

gramming technique that associates the value of a recursive function Fr(v
(1), x1, . . . , xk, u

(r)) =
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maxv∈σ w(v) with each (partial) path σ = (v(1), u(2), u(3), . . . , u(r)) from the vertex v(1) to a

vertex u(r) ∈ Lr, r = 2, 3, . . . , n. The arguments of this function, called the state variables or

state, are defined such that xh =
∑

v∈σ oh(v) is the number of occurrences of the part type

h in σ, h = 1, . . . , k, and u(r) is the last vertex of the path. The function Fr represents the

number of workers required for the first r number of P-cycles. It is clear that a partial path

with the minimal value of Fr(v
(1), x1, . . . , xk, u

(r)) dominates all the other partial paths in the

same state (v(1), x1, . . . , xk, u
(r)) in the sense that if a path in this state can be extended to a

path including all n number of P-cycles and corresponding to an optimal MPS sequence, then

the dominant path can do the same.

The initialization is F1(v
(1), a1, . . . , ak, v

(1)) = w(v(1)), where ah is the number of occurrences

of the part type h, h = 1, . . . , k, in the P-cycle v(1), and Fr(v
(1), x1, . . . , xk, u) = ∞ for r =

2, 3, . . . , n and all other states (v(1), x1, . . . , xk, u). The recursion for xh ∈ {0, 1, . . . , oh} and

u(r) ∈ Lr, r = 2, 3, . . . , n, is

Fr(v
(1), x1, . . . , xk, u

(r)) =

min
u(r−1): u(r−1)∈Lr−1,(u(r−1),u(r))∈A

max
{

Fr−1(v
(1), x1 − o1(u

(r)), . . . , xk − ok(u
(r)), u(r−1)), w(u(r))

}

.

For a given v(1) and v(n), the minimum number of workers is equal to Fn(v
(1), o1, . . . , ok, v

(n))

and the corresponding MPS sequence can be found by backtracking. An optimal solution of

the MinMaxSum problem has the minimum value Fn(v
(1), o1, . . . , ok, v

(n)) over all the ordered

pairs (v(1), v(n)) satisfying (i).

The running time of the algorithm DP-CBP can be evaluated as O(nT1T2T3), where T1

is the number of ordered pairs (v(1), v(n)) satisfying (i), T2 is the number of distinct tuples

(x1, . . . , xk, u
(r)), xh ∈ {0, 1, . . . , k}, u(r) ∈ Lr, and T3 is the number of vertices u(r−1) such

that u(r−1) ∈ Lr−1 and (u(r−1), u(r)) ∈ A for a given u(r) ∈ Lr. We have T1 ≤ km+1, T2 ≤

(
∏k

h=1 oh)max1≤r≤n{|Lr|} ≤ (n/k)kkm = nkkm−k and T3 ≤ k. Therefore, the running time of

the algorithm DP-CBP is O(nk+1k2m+2−k). If m and k are fixed, then the algorithm DP-CBP

is pseudo-polynomial, which contributes to the computational complexity classification of the

MinMaxSum problem.
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6 ILP formulation

It is convenient to use the modulo operation mod (g, n) such that mod (g, n) = b if g =

⌊a/n⌋n + b and g, n and b are positive integer numbers. Since the divisor is always n in this

paper, we simplify the modulo operation notation to 〈g〉, 〈g〉 = mod (g, n). TheMinMaxSum

problem can be formulated as the following integer linear programming problem denoted as

ILP. Denote the set of non-negative integer numbers by Z0. Introduce the non-negative integer

variable T (total workforce requirement) and 0-1 variables yjp such that yjp = 1 if and only if

a copy of part type p is in position j of an MPS sequence.

ILP problem:

minT,
subject to

k
∑

p=1

(w1py〈j〉p + w2py〈j+1〉p + · · ·+ wmpy〈j+m−1〉p) ≤ T, j = 1, . . . , n, (1)

k
∑

p=1

yjp = 1, j = 1, . . . , n, (2)

n
∑

j=1

yjp = op, p = 1, . . . , k, (3)

T ∈ Z0, yjp ∈ Z0, j = 1, . . . , n, p = 1, . . . , k.

The left-hand side of the constraints (1) represents the total workforce requirement for each of

the n distinct P-cycles of an MPS sequence. The relation in (1) for j = 1 addresses the case

when station 1 is occupied by the first part copy of an MPS sequence, for j = 2 it addresses

the case when station 1 is occupied by the second part copy of this sequence, and so on.

Constraints (2) guarantee that each position of an MPS sequence is occupied by exactly one

part copy. Constraints (3) require that the number of positions occupied by the copies of part

type p is equal to op for each p. The ILP problem has nk+1 variables and 2n+ k constraints.

Both dimensions are pseudo-polynomial because of n =
∑k

j=1 oj . It is unknown if there exists

an ILP formulation with the independent of n number of variables and constraints. The ILP

problem is similar to that given by Lee and Vairaktarakis [29], but not the same.
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7 Polynomially and pseudo-polynomially solvable cases

In sub-section 7.1, we suggest an O(1) time algorithm for the case of two part types and station

independent workforce requirements, i.e. k = 2 and wi1 = w1, wi2 = w2, i = 1, . . . ,m. In

sub-section 7.2, we consider the case of m = 2. We show that this case reduces to a specific

Bottleneck Traveling Salesman Problem (BTSP), for which O(n2) and O(n log n)

time algorithms are known. Three sub-cases accept faster algorithms. If the workforce require-

ments are agreeable such that w11 ≥ · · · ≥ w1k and w21 ≥ · · · ≥ w2k, then the corresponding

BTSP, and hence MinMaxSum problem, can be solved in O(n) time. If the workforce re-

quirements are reversely agreeable such that w11 ≤ · · · ≤ w1k and w21 ≥ · · · ≥ w2k, then the

corresponding BTSP, and hence, MinMaxSum can be solved in O(k) time. If the workforce

requirements are station-independent such that w1j = w2j = wj, j = 1, . . . , k, then we present

an O(k log k) time algorithm. We start with a proof of the following useful lemma.

Lemma 1 If the workforce requirements are station-independent, then the MinMaxSum prob-

lem with m > n reduces to the same problem with mod (m,n) stations.

Proof: Let m = rn + δ, where r and δ are non-negative integer numbers and δ ≤ n − 1.

Thus, δ = mod (m,n). We will show that this general case reduces to the case with r = 0.

Assume that r ≥ 1. Consider an arbitrary MPS sequence (j1, . . . , jn) and an arbitrary P-

cycle, in which part copies jδ, . . . , j1 occupy stations 1, . . . , δ, respectively, and r same sets

of the n part copies jn, jn−1, . . . , j1 occupy rn stations m − δ,m − δ + 1, . . . ,m, respectively.

Denote the multiset of the part copies assigned to the stations m − δ,m − δ + 1, . . . ,m as

M . In the next P-cycle, the part copy j1 leaves the last station m and the same part copy j1

arrives at the station m − δ. The multiset M does not change. It is clear that it is the same

in each of the n distinct P-cycles. Since the workforce requirements are station-independent,

the contribution of the multiset M to the objective function is equal to FM = r
∑k

j=1wjoj.

The remaining contribution is determined by the P-cycles for the first δ stations. Denote the

minimum workforce requirement for the problem with δ stations as Fδ. Since the stations are

identical, the minimum workforce requirement for the original problem with rn+ δ stations is

equal to FM + Fδ.

In one of the industrial cases, m = 11, k = 2 and n = o1 + o2 = 4. Due to Lemma 1, this

case reduces to the same case with m = 3.
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7.1 Two part types

In this sub-section, we study the case in which k = 2, wi1 = w1, wi2 = w2, i = 1, . . . ,m, and

n ≥ m. It is the model for one of the industrial cases. If w1 = w2, then any MPS sequence is

optimal. Assume, without loss of generality, that w1 > w2. To facilitate further discussion, we

now present an integer linear programming formulation for this case, which is an adaptation of

the ILP problem in Section 6. It is denoted as ILP(k = 2, wij = wj, n ≥ m).

Introduce 0-1 variables zj such that zj = 1 (zj = 0) if a copy of part type 1 (part type 2)

is in position j of an MPS sequence. Denote z = (z1, . . . , zn). Re-call that 〈g〉 = mod (g, n).

With the variables zj, the constraint in (1) for a given j transforms to

(w1z〈j〉 +w2(1− z〈j〉)) + (w1z〈j+1〉 +w2(1− z〈j+1〉)) + · · ·+ (w1z〈j+m−1〉 +w2(1− z〈j+m−1〉)) ≤ T,

which is equivalent to

Aj(z) := z〈j〉 + z〈j+1〉 + · · ·+ z〈j+m−1〉 ≤
T −mw2

w1 − w2

. (4)

ILP(k = 2, wij = wj, n ≥ m) problem:

min T,
subject to

Aj(z) ≤
T −mw2

w1 − w2

, j = 1, . . . , n, (5)

n
∑

j=1

zj = o1, (6)

T ∈ Z0, zj ∈ {0, 1}, j = 1, . . . , n.

It can easily be seen that the ILP(k = 2, wij = wj, n ≥ m) problem is equivalent to

minimizing G(z) = maxj=1,...,n{Aj(z)}, subject to (6) and the 0-1 constraints. Denote the

optimal objective function value of this problem as G∗. Let us represent constraints (5) in the

matrix form as Az ≤ v. An example of the matrix A for m = 3 and n = 9 is given below.

A =

z1 z2 z3 z4 z5 z6 z7 z8 z9
1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 1 1 1 0 0
0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 1 1
1 0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0 1

13



Given a 0-1 vector z, we call index j selected if zj = 1.

Theorem 2 The vector z∗, in which the selected indices are
⌈

i·n
o1

⌉

, i = 1, . . . , o1, is an optimal

solution of the ILP(k = 2, wij = wj, n ≥ m) problem.

Proof: Consider z∗. Let us evaluate the largest selected index among 1, . . . , j+m−1, which we

denote as xmax:
xmax·n

o1
≤

⌈

xmax·n
o1

⌉

≤ j+m−1, from where it follows that xmax ≤
⌊

(j+m−1)·o1
n

⌋

:=

UB. Similarly, let us evaluate the smallest selected index among j, j+1, . . . , n, which we denote

as xmin: j ≤
⌈

xmin·n
o1

⌉

< xmin·n
o1

+ 1, from where it follows that xmin ≥
⌊

(j−1)·o1
n

⌋

+ 1 := LB. We

deduce that in z∗, the maximum number of the selected indices among the m indices including

and following index j does not exceed UB−LB+1 =
⌊ (j−1)·o1

n
+ m·o1

n

⌋

−
⌊ (j−1)·o1

n

⌋

for any j. It

can be easily shown that
⌊

a+ b
⌋

≤
⌊

a
⌋

+
⌈

b
⌉

for any non-negative numbers a and b. Therefore,

G(z∗) ≤ UB − LB + 1 ≤
⌈

m·o1
n

⌉

.

To prove the theorem, it is sufficient to show that G∗ ≥
⌈

m·o1
n

⌉

. Assume that G∗ ≤
⌈

m·o1
n

⌉

−

1 < m·o1
n

, which means that there exists z such that Az < v0 and
∑n

j=1 zj = o1, where v0 is

the transposed vector (m·o1
n

, . . . , m·o1
n

). By summing the n relations Aj(z) < m·o1
n

, we obtain

m
∑n

j=1 zj < mo1, and since
∑n

j=1 zj = o1, we obtain mo1 < mo1, which is a contradiction.

It follows from the above proof that G(z∗) =
⌈

m·o1
n

⌉

. Therefore, taking into account (4),

the minimum number of workers is equal to
⌈

m·o1
n

⌉

(w1 − w2) + mw2. We deduce that the

ILP(k = 2, wij = wj, n ≥ m) problem is solvable in O(1) time. The MinMaxSum problem

with k = 2 and wi1 = w1, wi2 = w2, i = 1, . . . ,m, can be solved in O(1) time as well. If

m = rn+ δ, r ≥ 0, 0 ≤ δ ≤ n− 1, then the optimal solution value is equal to

r
(

w1o1 + w2(n− o1)
)

+
⌈δ · o1

n

⌉

(w1 − w2) + δw2 = r(w1 − w2)o1 +mw2 + (w1 − w2)
⌈δ · o1

n

⌉

.

7.2 Two stations

In this sub-section, we assume that m = 2. The Bottleneck Traveling Salesman Prob-

lem (BTSP) can be formulated as follows. There is a complete directed graph with n vertices

and arc costs cvu. The problem is to find a Hamiltonian cycle such that the maximum arc cost

in this cycle is minimized. Let the part copies be numbered 1, . . . , n. It is clear that the Min-

MaxSum problem with m = 2 is equivalent to the BTSP with the arc costs cvu = w0
2v + w0

1u,

where w0
iv = wij, i = 1, 2, if the part copy v is of type j. We denote this problem as the

BTSP-W.
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Gilmore et al. [20] provided an O(n2) algorithm for the BTSP with costs such that cvu ≥

cv+1,u for all v and u. Re-number the part copies such that the workforce requirements at the

second station satisfy w0
2v ≥ w0

2,v+1, v = 1, . . . , n− 1. Then cvu = w0
2v + w0

1u ≥ w0
2,v+1 + w0

1u =

cv+1,u for all v and u. We deduce that the BTSP-W problem is solvable in O(n2) time by the

algorithm in [20]. Furthermore, Vairaktarakis [37] developed an O(n log n) time algorithm for

BTSP-W. The question of whether it can be solved in time polynomial in k is open.

We say that the workforce requirements are agreeable if they satisfy w11 ≥ · · · ≥ w1k and

w21 ≥ · · · ≥ w2k, and that they are reversely agreeable if they satisfy w11 ≤ · · · ≤ w1k and

w21 ≥ · · · ≥ w2k. We denote the BTSP-W with agreeable and reversely agreeable workforce

requirements as the BTSP-WA and the BTSP-WRA, respectively.

van der Veen [43] developed an O(n) time algorithm for the BTSP with costs satisfying

cvu ≥ cv+1,u and cvu ≥ cv,u+1 for all v and u. For the BTSP-WA, we have cvu = w0
2v + w0

1u ≥

w0
2,v+1 + w0

1u = cv+1,u and cvu = w0
2v + w0

1u ≥ w0
2v + w0

1,u+1 = cv,u+1 for all v and u. Hence,

the BTSP-WA can be solved in O(n) time. The question of whether it can be solved in time

polynomial in k is open.

Gilmore et al. [20] showed that (1, . . . , n) is an optimal solution of the BTSP if cvu ≥ cv+1,u

and cvu ≤ cv,u+1 for all v and u. For the BTSP-WRA, we have cvu = w0
2v+w0

1u ≥ w0
2,v+1+w0

1u =

cv+1,u and cvu = w0
2v + w0

1u ≤ w0
2v + w0

1,u+1 = cv,u+1 for all v and u. Hence, (1, . . . , n) is an

optimal solution of the BTSP-WRA. Observe that the sequence (1, . . . , n) can be represented

using O(k) memory units because parts of the same type appear consecutively in it. Therefore,

the BTSP-WRA can be solved in O(k) time.

Finally, consider the case of m = 2 and station-independent workforce requirements such

that w1j = w2j = wj, j = 1, . . . , k. Note that this is a sub-case of the BTSP-WA, and

therefore, it is solvable in O(n) time. Let w0
v = wj if the part copy v is of type j. Number the

part copies in the Least Workforce Requirement (LWR) order such that w0
1 ≤ · · · ≤ w0

n. We

call the sequence of part copies π = (1, n, 2, n − 1, 3, n − 2, 4, . . . , ⌊n/2⌋, ⌊n/2⌋ + 1) including

all n copies the Up-and-Down sequence. In this sequence, the part copy n − r + 2 is inserted

between the part copies r − 1 and r for r = 2, 3, . . . , ⌊n/2⌋.

Theorem 3 The Up-and-Down sequence is optimal for the MinMaxSum problem if m = 2

and w1j = w2j = wj, j = 1, . . . , k.

Proof: Let W ∗ denote the optimal objective value for the MinMaxSum problem. We now
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show that W ∗ ≥ w0
n−r+1 + w0

r+1 for r = 1, . . . , ⌊n/2⌋, which is sufficient for the proof.

Since the part copy n with the largest workforce requirement appears on the line in two

cycles with another part copy, W ∗ ≥ w0
n+w0

2 must be satisfied. Assume that W ∗ < w0
n−1+w0

3.

It follows that, in the optimal sequence, the part copy n− 1 appears on the line with the part

copy 1 in one cycle and with the part copy 2 in the other cycle. Then the part copy n appears

in the same cycle with the part copy i ≥ 3, and we obtain W ∗ ≥ w0
n + w0

3 ≥ w0
n−1 + w0

3, a

contradiction. Assume that W ∗ < w0
n−2+w0

4. It follows that, in the optimal sequence, the part

copy n − 2 appears on the line with a part copy from the set {1, 2, 3} in one cycle and with

another part copy from this set in the other cycle. Then the part copy n or the part copy n− 1

appears in the same cycle with the part copy i ≥ 4, and we obtainW ∗ ≥ w0
n−1+w0

4 ≥ w0
n−2+w0

4,

a contradiction. Continuing in the same fashion, W ∗ ≥ w0
n−r+1 + w0

r+1 for r = 1, . . . , ⌊n/2⌋, as

required.

Observe that the Up-and-Down sequence can be represented using O(k) memory units

because copies of the same part appear consecutively in the LWR order. This concise repre-

sentation of the Up-and-Down sequence can be constructed in O(k log k) time by sorting the

parts into the non-decreasing order of their workforce requirements and employing this order

in the description of the Up-and-Down sequence of part copies. Thus, both the MinMaxSum

problem with m = 2 and wij = wj for i = 1, 2 and j = 1, . . . , k, and the BTSP-W with costs

cvu = w0
v + w0

u for all v and u can be solved in O(k log k) time.

Combining Lemma 1 and the latter result, we obtain the following corollary.

Corollary 1 If m = rn + 2 and wij = wj, i = 1, . . . ,m, j = 1, . . . , k, then the MinMaxSum

problem can be solved in O(k log k) time.

8 Conclusions and suggestions for future research

The algorithmic and computational complexity results for the MinMaxSum problem are sum-

marized in Table 1.

For future research, it would be interesting to establish computational complexity of the

following important special cases:

• fixed number of part types, for example, k = 2 or k = 3, and variable m and n,

• m = 3 and wij = wj for all i and j,
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Table 1: Computational complexity and algorithms for the MinMaxSum problem.

Additional characteristics Complexity Reference

General O
(

min
{

mnkn−1, n!m
(o1−1)!o2!···ok!

})

Section 3

n ≥ m O(nk+1k2m+2−k) Section 5
m = 3 Strongly NP-hard [45]

m = 4, wij = wj Strongly NP-hard Theorem 1
wij = wi Any solution is optimal Section 1

k = 2, wi1 = w1, wi2 = w2 O(1) Section 7.1
m = 2 O(n log n) [37]

m = 2, agreeable wij O(n) Section 7.2 and [43]
m = 2, reversely agreeable wij O(k) Section 7.2 and [20]

m = 2, wij = wj O(k log k) Theorem 3
m = rn+ 2, wij = wj O(k log k) Corollary 1

• m = 2 with respect to the ordinary NP-hardness or the existence of an algorithm poly-

nomial in k,

• m = 2 and agreeable or proportional (w2j = aw1j for a > 0) workforce requirements with

respect to the ordinary NP-hardness or the existence of an algorithm polynomial in k.

To resolve open questions, links with the BTSP and MinMaxSum TSPs could be further

investigated. The development of exact and approximate solution methods for the generalMin-

MaxSum problem and computer experiments with them are both interesting and practically

relevant topics.
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