F. Akagi, H. Osaki, and S. Kikuchi, A method for assembly line balancing with more than one worker in each station, International Journal of Production Research, vol.23, issue.5, pp.755-770, 1983.
DOI : 10.1299/jsme1958.23.1670

E. M. Arkin, Y. Chiang, J. S. Mitchell, S. S. Skiena, and T. Yang, On the Maximum Scatter Traveling Salesperson Problem, SIAM Journal on Computing, vol.29, issue.2, pp.515-544, 1999.
DOI : 10.1137/S0097539797320281

A. Bar-noy, V. Dreizin, and B. Patt-shamir, Efficient algorithms for periodic scheduling, Computer Networks, vol.45, issue.2, pp.155-173, 2004.
DOI : 10.1016/j.comnet.2003.12.017

I. Bartholdi, J. J. Orlin, J. B. Ratliff, and H. D. , Cyclic Scheduling via Integer Programs with Circular Ones, Operations Research, vol.28, issue.5, pp.1074-1085, 1980.
DOI : 10.1287/opre.28.5.1074

O. Batta¨?abatta¨?a, X. Delorme, A. Dolgui, J. Hagemann, A. Horlemann et al., Workforce minimization for a mixed-model assembly line in the automotive industry, International Journal of Production Economics, vol.170, pp.489-500, 2015.
DOI : 10.1016/j.ijpe.2015.05.038

O. Batta¨?abatta¨?a and A. Dolgui, A taxonomy of line balancing problems and their solutionapproaches, International Journal of Production Economics, vol.142, issue.2, pp.259-277, 2013.
DOI : 10.1016/j.ijpe.2012.10.020

E. A. Bobrova and V. V. Servakh, Construction of cyclic schedules in presence of parallel machines, Journal of Applied and Industrial Mathematics, vol.17, issue.4, pp.17-25, 2017.
DOI : 10.1287/moor.17.4.842

P. Brucker and T. Kampmeyer, A general model for cyclic machine scheduling problems, Discrete Applied Mathematics, vol.156, issue.13, pp.2561-2572, 2008.
DOI : 10.1016/j.dam.2008.03.029

URL : https://doi.org/10.1016/j.dam.2008.03.029

R. E. Burkard, V. G. Deineko, R. Van-dal, J. A. Van-der-veen, and G. A. Woeginger, Well-Solvable Special Cases of the Traveling Salesman Problem: A Survey, SIAM Review, vol.40, issue.3, pp.40-496, 1998.
DOI : 10.1137/S0036144596297514

URL : https://pure.tue.nl/ws/files/2373438/Metis148543.pdf

R. E. Burkard and W. Sandholzer, Efficiently solvable special cases of bottleneck travelling salesman problems, Discrete Applied Mathematics, vol.32, issue.1, pp.61-76, 1991.
DOI : 10.1016/0166-218X(91)90024-Q

URL : https://doi.org/10.1016/0166-218x(91)90024-q

A. Che, V. Kats, and E. Levner, An efficient bicriteria algorithm for stable robotic flow shop scheduling, European Journal of Operational Research, vol.260, issue.3, pp.964-971, 2017.
DOI : 10.1016/j.ejor.2017.01.033

Y. Chiang, New approximation results for the maximum scatter TSP, Algorithmica, pp.41-45, 2005.
DOI : 10.1007/s00453-004-1124-z

URL : http://cis.poly.edu/chiang/TSP-Algorithmica-Final.pdf

P. Chretienne, The basic cyclic scheduling problem with deadlines, Discrete Applied Mathematics, vol.30, issue.2-3, pp.109-123, 1991.
DOI : 10.1016/0166-218X(91)90037-W

URL : https://doi.org/10.1016/0166-218x(91)90037-w

D. Mura, M. Dini, and G. , Worker Skills and Equipment Optimization in Assembly Line Balancing by a Genetic Approach, Procedia CIRP, vol.44, pp.102-107, 2016.
DOI : 10.1016/j.procir.2016.02.033

URL : https://doi.org/10.1016/j.procir.2016.02.033

W. Dauscha, H. D. Modrow, and A. Neumann, On cyclic sequence types for constructing cyclic schedules, Zeitschrift f??r Operations Research, vol.2, issue.4, pp.1-30, 1985.
DOI : 10.1007/978-3-322-84013-4

D. Bruecker, P. Van-den-bergh, J. Beliën, J. Demeulemeester, and E. , Workforce planning incorporating skills: State of the art, European Journal of Operational Research, vol.243, issue.1, pp.1-16, 2015.
DOI : 10.1016/j.ejor.2014.10.038

A. Dolgui, S. Kovalev, M. Y. Kovalyov, S. Malyutin, and A. Soukhal, Optimal workforce assignment to operations of a paced assembly line, European Journal of Operational Research, vol.264, issue.1, pp.200-211, 2018.
DOI : 10.1016/j.ejor.2017.06.017

URL : https://hal.archives-ouvertes.fr/hal-01688688

M. R. Garey and D. S. Johnson, Computers and intractability: A guide to the theory of NP-completeness, 1979.

P. C. Gilmore and R. E. Gomory, Sequencing a One State-Variable Machine: A Solvable Case of the Traveling Salesman Problem, Operations Research, vol.12, issue.5, pp.655-679, 1964.
DOI : 10.1287/opre.12.5.655

P. C. Gilmore, E. L. Lawler, and D. B. Shmoys, Well-solved special cases, pp.87-143, 1985.

N. G. Hall, T. E. Lee, and M. E. Posner, The complexity of cyclic shop scheduling problems, Journal of Scheduling, vol.1, issue.4, pp.307-327, 2002.
DOI : 10.1287/moor.1.2.117

C. Hanen and A. Munier, Cyclic scheduling on parallel processors: on overview, Theory and Its Applications, pp.194-226, 1995.

K. L. Hitz, Scheduling of flow shops II, Laboratory for Information and Decision Systems, 1980.

D. S. Hochbaum and A. Levin, Cyclical scheduling and multi-shift scheduling: Complexity and approximation algorithms, Discrete Optimization, pp.327-340, 2006.
DOI : 10.1016/j.disopt.2006.02.002

URL : https://doi.org/10.1016/j.disopt.2006.02.002

S. N. Kabadi and A. P. Punnen, The Bottleneck TSP The Traveling Salesman Problem and Its Variations, Combinatorial Optimization, vol.12, 2007.

T. Kimbrel and M. Sviridenko, High-multiplicity cyclic job shop scheduling, Operations Research Letters, vol.36, issue.5, pp.574-578, 2008.
DOI : 10.1016/j.orl.2008.06.005

URL : http://www2.warwick.ac.uk/fac/sci/dcs/people/maxim_sviridenko/cyclic3.pdf

P. Kouvelis and S. Karabati, Cyclic scheduling in synchronous production lines, IIE Transactions, vol.2, issue.8, pp.31-709, 1999.
DOI : 10.1080/00207549408957076

J. Larusic and A. P. Punnen, The asymmetric bottleneck traveling salesman problem: Algorithms, complexity and empirical analysis, Computers & Operations Research, vol.43, pp.20-35, 2014.
DOI : 10.1016/j.cor.2013.08.005

C. Lee and G. L. Vairaktarakis, Workforce Planning in Mixed Model Assembly Systems, Operations Research, vol.45, issue.4, pp.553-567, 1997.
DOI : 10.1287/opre.45.4.553

E. Levner, V. Kats, D. Alcaide, and T. C. Cheng, Complexity of cyclic scheduling problems: A state-of-the-art survey, Computers & Industrial Engineering, vol.59, issue.2, pp.352-361, 2010.
DOI : 10.1016/j.cie.2010.03.013

C. M. Lutz and K. R. Davis, Development of operator assignment schedules: A DSS approach, Omega, vol.22, issue.1, pp.57-67, 1994.
DOI : 10.1016/0305-0483(94)90007-8

O. Polat, C. B. Kalayci, ¨. O. Mutlu, and S. M. Gupta, A two-phase variable neighbourhood search algorithm for assembly line worker assignment and balancing problem type-II: an industrial case study, International Journal of Production Research, vol.11, issue.1, pp.722-741, 2016.
DOI : 10.1016/j.cie.2011.12.017

A. P. Punnen, Traveling salesman problem under categorization, Operations Research Letters, vol.12, issue.2, pp.89-95, 1992.
DOI : 10.1016/0167-6377(92)90069-F

M. Ritt, A. M. Costa, and C. Miralles, The assembly line worker assignment and balancing problem with stochastic worker availability, International Journal of Production Research, vol.16, issue.1, pp.907-922, 2016.
DOI : 10.1080/00207548608919711

T. Sawik, A mixed integer program for cyclic scheduling of flexible flow lines, Bulletin of the Polish Academy of Sciences Technical Sciences, pp.121-128, 2014.

V. G. Timkovsky, Cycle shop scheduling Handbook of scheduling: algorithms, models, and performance analysis, pp.127-148, 2004.

G. L. Vairaktarakis, Simple algorithms for Gilmore-Gomory's traveling salesman and related problems, Journal of Scheduling, vol.6, issue.6, pp.499-520, 2003.
DOI : 10.1023/A:1026200209386

G. L. Vairaktarakis, On Gilmore???Gomory's open question for the bottleneck TSP, Operations Research Letters, vol.31, issue.6, pp.31-483, 2003.
DOI : 10.1016/S0167-6377(03)00050-6

G. L. Vairaktarakis and X. Cai, Complexity of workforce scheduling in transfer lines, Journal of Global Optimization, vol.27, issue.2/3, pp.273-291, 2003.
DOI : 10.1023/A:1024818502622

G. L. Vairaktarakis and J. K. Winch, Worker cross-training in paced assembly lines, Manufacturing & Services Operations Management, pp.112-131, 1999.
DOI : 10.1287/msom.1.2.112

G. L. Vairaktarakis, X. Cai, and C. Lee, Workforce planning in synchronous production systems, European Journal of Operational Research, vol.136, issue.3, pp.551-572, 2002.
DOI : 10.1016/S0377-2217(01)00056-X

G. L. Vairaktarakis, J. G. Szmerekovsky, and J. Xu, Level workforce planning for multistage transfer lines, Naval Research Logistics (NRL), vol.45, issue.7, pp.577-590, 2016.
DOI : 10.1080/00207540600635144

J. A. Van-der-veen, An O(n) algorithm to solve the Bottleneck Traveling Salesman Problem restricted to ordered product matrices, Discrete Applied Mathematics, vol.47, issue.1, pp.57-75, 1993.
DOI : 10.1016/0166-218X(93)90152-E

J. M. Wilson, Formulation of a problem involving assembly lines with multiple manning of work stations, International Journal of Production Research, vol.24, issue.1, pp.59-63, 1986.
DOI : 10.1080/00207548408942450

J. K. Winch, X. Cai, and G. L. Vairaktarakis, Cyclic job scheduling in paced assembly lines with cross-trained workers, International Journal of Production Research, vol.31, issue.4, pp.803-828, 2007.
DOI : 10.1016/S0377-2217(01)00056-X

B. Woods, A. Punnen, and T. Stephen, Linear time algorithm for the 3-neighbour traveling salesman problem on Halin graphs and extensions, 2015.

H. Yilmaz and M. Yilmaz, A multi-manned assembly line balancing problem with classified teams: a new approach, Assembly Automation, pp.51-59, 2016.
DOI : 10.1108/aa-04-2015-035

P. T. Zacharia and A. C. Nearchou, A population-based algorithm for the bi-objective assembly line worker assignment and balancing problem, Engineering Applications of Artificial Intelligence, vol.49, issue.C, pp.49-50, 2016.
DOI : 10.1016/j.engappai.2015.11.007