
HAL Id: emse-01915904
https://hal-emse.ccsd.cnrs.fr/emse-01915904v1

Submitted on 22 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multigraph Modeling and Adaptive Large Neighborhood
Search for the Vehicle Routing Problem with Time

Windows
Hamza Ben Ticha, Nabil Absi, Dominique Feillet, Alain A. Quilliot

To cite this version:
Hamza Ben Ticha, Nabil Absi, Dominique Feillet, Alain A. Quilliot. Multigraph Modeling and Adap-
tive Large Neighborhood Search for the Vehicle Routing Problem with Time Windows. Computers
and Operations Research, 2019, 104, pp.113-126. �10.1016/j.cor.2018.11.001�. �emse-01915904�

https://hal-emse.ccsd.cnrs.fr/emse-01915904v1
https://hal.archives-ouvertes.fr

ACCEPTED MANUSCRIPT

Multigraph Modeling and Adaptive Large Neighborhood Search for the

Vehicle Routing Problem with Time Windows

Hamza Ben Tichaa,∗, Nabil Absia, Dominique Feilleta, Alain Quilliotb

aEcole des Mines de Saint-Etienne and UMR CNRS 6158 LIMOS, CMP Georges Charpak F-13541 Gardanne,

France

bLIMOS, Institut Supérieur d’Informatique de Modélisation et leurs Applications, ISIMA, Campus des Cèzeaux,

Aubière Cedex, France

Abstract

In this paper we propose a multigraph model and a heuristic for the Vehicle Routing Problem
with Time Windows (VRPTW). In the classical VRPTW, travel information is commonly repre-
sented with a customer-based graph, where an arc is an abstraction of the best road-network path
between two nodes. We consider the case when parallel arcs are added to this graph to introduce
different compromises between travel time and cost. It has been shown in the literature that this
multigraph modeling enables substantial gains in the solution quality, while highly complicating the
problem. We develop an Adaptive Large Neighbourhood Search (ALNS) heuristic in which a special
data structure and dynamic programming algorithms are used to efficiently address the multigraph
setting. Computational experiments on several set of instances demonstrate the effectiveness of our
solution method and the impact of alternative paths on the solution quality.

Keywords:

Vehicle Routing Problem with Time Windows, Multigraph, Large Neighborhood Search, Dynamic
programming, Road-network information.

1. Introduction

Distribution is one of the most essential components in logistic systems. It is estimated that
almost half of the logistic costs are due to distribution and, for some industries, this accounts for up
to 70% of total costs [1]. The Vehicle Routing Problem (VRP), introduced by Dantzig and Ramser
about sixty years ago [2], attempts to optimize distribution costs. The study of the VRP has been
highly influential, as attested by the impressive number of publications on this topic [3].

Basically, vehicle routing problems compute a minimum-cost set of vehicle routes that start
and end at a depot. Each customer has to be supplied exactly once and each route has to satisfy
constraints such as vehicle capacity, customer time windows or route duration. In most studies,
geographic information is expressed with a so-called customer-based graph, where nodes represent
points of interest (customers, depot) and arcs symbolize a path between these nodes in the road-
network. In many cases however, this model does not capture all the relevant roadways. Assume
for example that a problem involves both travel times and travel distances. Given two customers,
the min-time path in the road-network between these customers is not necessarily the same as the

∗Corresponding author
Email address: hamza.ben-ticha@emse.fr (Hamza Ben Ticha)

1

ACCEPTED MANUSCRIPT

min-distance path. Yet, only one of these two paths will be kept and represented by an arc in the
customer-based graph. The other one will be lost. Also, many other efficient paths, with different
trade-offs between time and distance, will also be forgotten. Clearly, this implies a loss of flexibility
in route optimization and, possibly, an increase in travel costs. For example, one might sometimes
prefer a fast but more costly connection, when delivery times are restricted, or the opposite during
slack times.

A few papers (Garaix et al. [4], Lai et al. [5], Ben Ticha et al. [6]) have analyzed the nega-
tive effect of the customer-based graph when arcs have several attributes (as time, distance and so
on). Considering different transportation schemes in different geographical contexts, they all show
significant increases in solution costs, compared to models that embed the complete road-network
information. Ben Ticha et al. [7] have gone one step further and have reviewed the literature de-
voted to what they call vehicle routing problems with road-network information, i.e., vehicle routing
problems in which travel information is defined at the level of road segments. They exhibit several
other limits of customer-based graphs. For example, these graphs are not suitable for complex
criteria as carbon emissions, when speed is a decision variable: as the speed can be modified at any
place in the road-network, paths cannot be precomputed [8]. Two alternatives to the customer-
based graph have been proposed in the literature [7]. The first considers the customer-based graph
and adds an arc for every efficient path that exists between two nodes. The graph is then referred
as a multigraph. The second possibility is simply to ignore the customer-based graph and to rely
on a graph that mimics the road-network. The first idea of using a multigraph is relatively recent.
Exact solution schemes were investigated in Garaix et al. [4] and Ben Ticha et al. [6], for exam-
ple. Some rare early papers have considered a road-network graph (e.g., Orloff [9], Fleischmann
[10], Cornuéjols et al. [11]). More recently, Letchford et al. [12] and Ben Ticha et al. [13] have
investigated exact solution methods with branch-and-price algorithms. For both types of graph,
the literature on heuristic methods is extremely limited.

In this paper, we focus on the modeling with a multigraph. Our objective is to develop a
heuristic capable of obtaining adequate-quality solutions quickly. Subsequently, we deal with a
standard routing problem that involves two attributes on arcs: the Vehicle Routing Problem with
Time Windows (VRPTW). The VRPTW finds a minimum-cost set of vehicle routes that satisfy
customer requests within their time windows. Information on travel time and on travel cost is
associated with each arc. Travel time information is necessary to make sure that customers are
served within their time windows. Travel cost determines the quality of solutions. Since we consider
that this data is available on road segments, we call our problem the VRPTW with road-network
information (VRPTWRN).

The remainder of this paper is organized as follows. In Section 2 we review the related literature.
In Section 3, the VRPTWRN is formally introduced. The ALNS algorithm is described in Section
4. Computational experiments and analyses are detailed in Section 5.

2. Literature review

As far as we know, the first papers interested in vehicle routing problems with travel information
supported by a multigraph are of Baldacci et al. [14] and Garaix et al. [4]. Both works were
mainly interested in exact solution algorithms (namely, branch-and-price), but Garaix et al. [4]
also investigated heuristic approaches. In particular, Garaix et al. [4] showed an important effect
of the multigraph model. Even very simple operations as customer removals and insertions become
difficult to evaluate. Indeed, these moves can affect the arc to select between consecutive customers,
anywhere in the vehicle route. Garaix et al. [4] proved that for a given sequence of nodes, computing
an optimal sequence of arcs is NP-hard. They called this problem the Fixed Sequence Arc Selection

2

ACCEPTED MANUSCRIPT

0

[0, 100]

1

[20, 50]

2

[40, 70]

0

[0, 100]
(25,30)

(30,20)

(5,50)

(20,20)

(30,15)

(25,50)

(30,30)

(a) Initial route

0

[0, 100]

1

[20, 50]

X

[30, 60]

2

[40, 70]

0

[0, 100]
(25,30)

(30,20)

(10,20)

(12,10)

(10,20)

(13,10)

(25,50)

(30,30)

(b) Same route after a customer is inserted, without changing the arcs

0

[0, 100]

1

[20, 50]

X

[30, 60]

2

[40, 70]

0

[0, 100]
(25,30)

(30,20)

(10,20)

(12,10)

(10,20)

(13,10)

(25,50)

(30,30)

(c) Same route after the reoptimization of arc selection

Figure 1: Illustration of the insertion of a customer in a route defined on a multigraph

Problem (FSASP). To illustrate the difficulty of arc selection, let us consider the example presented
in Figure 1. Figure 1(a) shows a vehicle route defined by node sequence (0, 1, 2, 0). Time windows
are shown above nodes. Parallel arcs between pair of nodes are provided, with their cost and
travel time in parentheses, given in this order. Arcs that allow minimizing the cost of the route
are represented with a thick line. Assume that we want to evaluate the insertion of customer X

between customers 1 and 2. This can be done by selecting the less costly arcs that allow linking
1 with X and X with 2 without violating any time window. In this case, the obtained route is
provided on Figure 1(b) and has a total cost equals to 80. However, a different sequence of arcs,
shown on Figure 1(c), enables decreasing the route cost down to 75. In view of the difficulty of
arc selection, Garaix et al. [4] solved their problem with a simple descent algorithm. Essentially,
their method is composed of an initialization phase, based on greedy insertion, and an improvement
phase, based on customer relocation. In both phases, the main mechanism is the customer insertion
that requires solving an FSASP at each iteration. Garaix et al. [4] proposed solving these FSASP
by dynamic programming. Experiments showed that this procedure is very time-consuming.

Lai et al. [5] faced the same difficulty and proposed to circumvent the complexity of the FSASP
by computing arc sequences heuristically. Instead of solving the FSASP by dynamic programming,
they applied a fast greedy method inspired from knapsack heuristics. Experiments were limited
to multigraphs with two arcs in parallel. Wang and Lee [15] and Setak et al. [16] also developed
heuristic methods for vehicle routing problems with a multigraph structure. However, in their case,
at each time instant, an arc dominates other parallel arcs, which breaks the complexity of the
FSASP. In addition to these works, one could cite another heuristic method developed by Caramia
and Guerriero [17]. However, their context is long-haul freight distribution and the structure of the
problem is very far from a vehicle routing problem. The multigraph was introduced to model the
presence of multiple transportation modes and logistics operators. The authors proposed a heuristic
composed of two phases: first, a set of efficient candidate paths is computed in the network; then,
demands are assigned to transportation means.

The literature on the VRPTW is much more abundant. This problem has drawn the attention
of many researchers and a large number of solution methods have been proposed in the literature

3

ACCEPTED MANUSCRIPT

(Desaulniers et al. [18]). Baldacci et al. [19] reviewed the literature related to exact solution
algorithms. Kallehauge [20] focused on mathematical formulations and polyhedral analyses. Con-
struction heuristics and local-improvement methods were reviewed in [21] and metaheuristics were
discussed in [22].

In this work, we develop a heuristic following the framework of Adaptive Large Neighborhood
Search (ALNS). ALNS was introduced by Ropke and Pisinger [23] to solve the Pickup and Delivery
Problem with Time Windows. It was itself adapted from the Large Neighborhood Search heuristic
(LNS) proposed by Shaw [24] to solve the VRPTW. ALNS has shown its efficiency for a large
number of vehicle routing problems [3]. The method is based on a destroy and repair mechanism:
subsets of customers are repeatedly removed from a solution and reinserted to form a new solution.
The difficulty in our context is to manage removals and reinsertions efficiently.

3. Problem description and multigraph representation

We define the VRPTWRN using a directed graph GRN = (VRN , ARN). VRN contains the depot
node 0 and nodes that represent road junctions. Among these nodes, a subset of size n represents
customers. Arcs (i, j) ∈ ARN model road segments and are defined with a travel cost and a travel
time. We associate with each customer i a demand di, a time window [ei, li] and a service time ti.
The depot also receives a time window [e0, l0] that indicates the earliest starting and latest ending
time of a vehicle tour. We consider a homogeneous fleet with K vehicles of loading capacity Q. The
objective of the VRPTWRN is to compute a set of paths in GRN , that start from the depot, return
to the depot, satisfy time windows and vehicle capacity, so as to serve all the customers exactly
once with a minimal total travel cost.

In order to tackle the VRPTWRN , we introduce a directed multigraph G = (V,A). V =
{0, 1, . . . , n} is composed of node 0 for the depot and nodes 1 to n for the customers. A is defined as
follows. For each pair (i, j) ∈ V × V , we introduce a set A(i,j) = {(i, j)

p, p = 1, . . . ,mij} of parallel
arcs, where mij is the number of efficient paths in GRN between i and j. A path is efficient if it
is not dominated with regards to travel time and cost; it is only considered if it is compatible with
the time windows, i.e., it allows reaching j on time (before lj) when leaving i at time ei. Given an
arc (i, j)p, we denote its travel cost by c(i,j)p and its travel time by t(i,j)p . The VRPTWRN then
equivalently consists in finding a set of paths in G, that start from the depot, return to the depot,
satisfy customer time windows and vehicle capacity, and serve all the customers exactly once with
a minimal total travel cost. In this paper, we assume that graph G and associated travel time and
travel cost information are given as inputs. An efficient method to compute this data was proposed
by Ben Ticha et al. [25].

4. Solution method

Our solution method follows the framework of ALNS. This framework is described by Algorithm
1. The algorithm is initialized with a solution sinit constructed using an adaptation of the Clarke
and Wright algorithm [26], see Section 4.2. This solution is temporarily considered as the current
solution (scurr) and as the best solution (sbest). Then, at each iteration, a destroy and a repair
operators are selected. These operators are chosen in sets D and R described in Sections 4.3 and
4.4, respectively, with a policy presented in Section 4.5. The destroy and the repair operators are
successively applied to scurr (Line 6), to produce a solution s. A simulated annealing mechanism,
detailed in Section 4.6, decides whether the new solution becomes the current solution or not.
Also, the best known solution is updated if needed (Line 9, cost(.) is the cost of a solution). The

4

ACCEPTED MANUSCRIPT

algorithm stops after a given number of iterations. Because finding a feasible VRPTW solution
is NP-complete, we allow infeasible solutions in the algorithm. In the constructive algorithm that
initializes the method, we do not consider the limit on the fleet size (see Section 4.2). Then, we try
to recover a feasible solution, if needed, by limiting the degree of infeasibility during insertions (see
Section 4.4). The main innovation in the algorithm stands in the management of arc selections in
removal and insertion operations. We detail how we proceed in the next subsection.

Algorithm 1 Adaptive Large Neighborhood Search

1: compute an initial solution sinit
2: scurr ← sinit
3: sbest ← scurr
4: while the stopping criterion is not met do
5: select a destroy operator d ∈ D and a repair operator r ∈ R

6: s← r(d(scurr))
7: if accept(s, scurr) then
8: scurr ← s

9: if cost(scurr) < cost(sbest) then
10: sbest ← scurr
11: end if

12: end if

13: end while

14: return sbest

4.1. Arc selection procedure

When applying destroy and repair operators, one has to repeatedly evaluate the feasibility
and the cost of new sequences of nodes. As already explained, an exact evaluation necessitates to
reoptimize the arc selection, i.e., to solve an NP-hard problem: the FSASP. Garaix et al. [4] express
the solution of the FSASP as a Shortest Path Problem with Resource Constraints. They apply a
standard labeling dynamic programming procedure (see, e.g., Irnich and Desaulniers [27]) that works
as follows. Let us consider a sequence π = (0, i1, . . . , inπ , 0). A label is defined with two attributes:
cost and time. An initial label (0, 0) is assigned to the first copy of the depot. This label is then
extended to the next node in the sequence, using all parallel arcs (0, i1)

p (p = 1, . . . ,m0i1). It results
in m0i1 labels associated with node i1. These labels are then all extended to the next customer i2,
through all parallel arcs (i1, i2)

p, and the process is repeated until the end of the sequence is reached.
When extending a label, the arc travel cost and time are added to the corresponding attribute of the
label. Time windows are checked to eliminate infeasible labels and waiting times are added when
necessary. Dominance rules are applied to eliminate dominated labels (see Algorithm 2 and next
paragraphs for details). In their computational experiments, the authors show the limits of this
method. Computing times are not compatible with a metaheuristic that requires the evaluation of
a large number of sequences, as ALNS. For this reason it is critical for us to manage arc selection
more efficiently. We follow the ideas initiated in Savelsbergh [28] and develop an improved procedure
based on bidirectional search and incremental data.

Label preprocessing

This preprocessing is applied on the vehicle routes of the starting solution sinit of Algorithm
1 (Line 1). Each route can be represented by a sequence π = (0, i1, . . . , inπ , 0). A dynamic pro-
gramming algorithm similar to that of Garaix et al. [4] is applied to each sequence. An equivalent

5

ACCEPTED MANUSCRIPT

algorithm, starting from the last node of the sequence and traversing arcs in backward is also ap-
plied. The label sets generated with these two algorithms are kept. The forward and backward
labeling algorithms are fully described in Algorithms 2 and 3. The copy of the depot (ending the
sequence) is renamed n+ 1 in these algorithms and for the subsequent subsections.

Algorithm 2 Forward labeling algorithm

1: i← 0
2: FL[i]← (0, 0)
3: while i 6= n+ 1 do

4: j ← next(π, i)
5: for all labels (c, t) ∈ FL[i] do
6: for all arcs (i, j)p ∈ A(i,j) do

7: if t+ ti + t(i,j)p ≤ lj then

8: t′ ← max{t+ ti + t(i,j)p , ej}
9: insert with dominance label (c+ c(i,j)p , t

′) in FL[j]
10: end if

11: end for

12: end for

13: i← next(π, i)
14: end while

15: return FL

Algorithm 3 Backward labeling algorithm

1: j ← n+ 1
2: BL[j]← (0, ln+1)
3: while j 6= 0 do

4: i← previous(π, j)
5: for all labels (c, t) ∈ BL[j] do
6: for all arcs (i, j)p ∈ A(i,j) do

7: if t− t(i,j)p − ti ≥ ei then

8: t′ ← min{t− t(i,j)p − ti, li}
9: insert with dominance label (c+ c(i,j)p , t

′) in BL[i]
10: end if

11: end for

12: end for

13: j ← previous(π, j)
14: end while

15: return BL

The outputs of these algorithms are lists of labels FL[i] and BL[i] associated with each node
i in the sequence. Function next(π, i) (resp., previous(π, i)) returns the node that follows (resp.,
precedes) node i in sequence π. The insertion with dominance of a label in a list of labels, is
performed by comparing the new label with every label in the list. If the new label is dominated,
the list is not modified. Otherwise, the label is added to the list and all dominated labels are
removed. In order to optimize certain operations, lists FL[i] and BL[i] are implemented in non-
decreasing order of the travel cost. When vehicle route are modified, this information is updated,
so that it is always available.

6

ACCEPTED MANUSCRIPT

Evaluation of the removal of a node from a sequence

To evaluate the removal of a node u between two nodes a = previous(π, u) and b = next(π, u)
in a sequence π, we apply the following algorithm:

1. Extend every label in FL[a] to b, using every arc in A(a,b) and following the extension scheme
detailed in Algorithm 2. We call LF the resulting label list.

2. Consider every pair ((cF , tF), (cB, tB)) of labels in LF × BL[b]. A pair is feasible if tF ≤ tB.
Compute the cost cF + cB of every feasible pair and return the minimal value.

The value returned by the algorithm is the best possible cost of sequence π with node u removed.

Update of incremental data after a removal

When a node u is removed from a sequence π, we need to update incremental data. First, we
empty all sets FL[i] for nodes i positioned after u in π, and sets BL[i] for nodes i positioned before
u. Then, we apply Algorithms 2 and 3 with a different initialization (Lines 1 and 2): i is initialized
to previous(u, π) in Algorithm 2, j is set to next(u, π) in Algorithm 3. After this initialization, u
is removed from the sequence and the main loop is executed normally for each algorithm.

Evaluation of the insertion of a node at a given position in a sequence

To evaluate the insertion of a node u between two nodes a and b = next(π, a) in a sequence π,
we apply the following algorithm:

1. Extend every label in FL[a] to u, using every arc in A(a,u). We call LF the resulting label list.

2. Extend every label in BL[b] backwardly to u, using every arc in A(u,b). We call LB the
resulting label list.

3. Consider every pair ((cF , tF), (cB, tB)) of labels in LF × LB. A pair is feasible if tF ≤ tB.
Compute the cost cF + cB of every feasible pair and return the minimal value.

The value returned by the algorithm is the best possible cost of sequence π with node u inserted after
a. Note that the feasibility of the insertion with regards to vehicle capacity is evaluated upstream.

Update of incremental data after an insertion

When a node u is inserted between two nodes a and b = next(π, a) in a sequence π, we need
to update incremental data. First, we empty all sets FL[i] for nodes i positioned after a in π, and
sets BL[i] for nodes i positioned before b. We also empty sets FL[u] and BL[u]. Then, we apply
Algorithms 2 and 3 with a different initialization (Lines 1 and 2): i is initialized to a in Algorithm
2, j is set to b in Algorithm 3. After this initialization, u is inserted in the sequence and the main
loop is executed normally for each algorithm.

4.2. Initial solution

To provide an initial solution to our heuristic, we adapt the Clarke and Wright savings algorithm
[26]. This algorithm was developed in the context of the VRP and works as follows. Consider a
solution of the VRP and two routes π1 and π2 whose last and first customers are i and j, respectively.
If the vehicle capacity allows it, a single route can be obtained by merging π1 and π2: after having
reached i at the end of π1, the vehicle goes to j and continues π2. The impact on cost, the so-called
saving savij , can be precomputed and is given by:

savij = c(i,0) + c(0,j) − c(i,j) (1)

7

ACCEPTED MANUSCRIPT

The principle of the Clarke and Wright algorithm is to compute savij for all pairs of customers (i, j),
to sort them in a non-increasing order and to progressively merge routes when possible, according
to this order. A pair (i, j) is eligible for a merging, and a saving savij can be obtained, if three
conditions holds: i is the last customer of a route, j is the first of a second route, the cumulated load
of these two routes does not exceed the vehicle capacity. The algorithm is initialized with a solution
composed of back-and-forth trips between the depot and a customer. We adapt this algorithm to
take care of the time windows and of the parallel arcs between nodes. We implement the following
modifications:

• At the initialization, every customer i is reached with the min-cost arc from the depot (i.e., in
A(0,i)). Then, the min-cost arc in A(i,0) that enables returning to the depot on time is used.

• When computing the list of savings, much more combinations are introduced. A saving s
xyz
ij

is evaluated for all pairs of customers (i, j), and all arcs (i, 0)x ∈ A(i,0), (0, j)
y ∈ A(0,j) and

(i, j)z ∈ A(i,j).

• When evaluating the feasibility of merging two routes for a combination (i, j, x, y, z), some
conditions are added:

– arcs (i, 0)x and (0, j)y have to be selected in the current solution,

– merging the routes that contain i and j with arc (i, j)z has to be compatible with time
windows.

The latter condition is checked with incremental data equivalent to that described in Section
4.1. Note that using this data also allows to reoptimize arc selection.

With the mechanism of savings, the Clarke and Wright algorithm tends to minimize the number of
vehicle routes, but there is no guarantee that the provided solution respects the fleet size. In this
case, attempts to recover feasibility will be carried out in the main loop of the ALNS algorithm (see
Section 4.4).

4.3. Removal heuristics

We propose three removal heuristics, which differ in the way customers are selected. A removal
heuristic takes as inputs a feasible solution s and a number ν of customers to be removed, and
returns a set Π of feasible routes and a set O of ν removed customers.

Adapted Shaw removal heuristic

This heuristic was first proposed by Shaw [24] for the VRPTW and next adapted by Ropke and
Pisinger [23] for the Pickup and Delivery Problem with Time Windows. The principle is to remove
similar costumers. The rationale is to favor diversification when reinserting customers. Indeed, due
to the tight structure of VRPTW solutions, removing very different customers might give no other
choice than reinserting each customer at its original position. Given solution s, we evaluate the
similarity Rij(s) between two customers i and j with the following measure (adapted from Shaw
[24]):

Rij(s) = α1 min
1≤p≤mij

c(i,j)p+α2|ti(s) − tj(s)|+α3|di − dj |+α4(1−
|RCi(s) ∩RCj(s)|

min{|RCi(s)|, |RCj(s)|}
)+Xij(s)

(2)
In this formula, ti(s) and tj(s) are the starting times of the service for customers i and j in solution
s; RCu(s) is the set of positions where u can be inserted in s (u = i, j); Xij(s) = 1 if i and j are

8

ACCEPTED MANUSCRIPT

served by the same vehicle in s, 0 otherwise. Parameters α1 to α4 are weights chosen in [0, 1]. At
a given iteration of the ALNS algorithm, Rij(s) can be computed in constant time except for the
term weighted by α4. This term is particularly time consuming as it requires evaluating all the
possible insertion positions, in all the routes of the current solution, for i and j, with the algorithm
presented in Section 4.1. In Section 5.4, we conduct a sensitivity analysis that justifies using this
term.

The adapted Shaw removal heuristic is detailed in Algorithm 4. It first randomly selects a
customer and stores it in set O. Then, for ν − 1 iterations, it randomly selects a customer u in
O, finds a similar customer i and add i to O. Customer i is selected among the customers still in
the solution (i.e., in set I), according to measure Rui(s) and with some randomness controlled by
a parameter γ1: the higher γ1, the more similar the customer. Once set O is computed, the routes
of the solution are all stored in a set Π and the customers are successively removed. At this step,
the removal procedure of Section 4.1 is used.

Algorithm 4 Adapted Shaw removal heuristic

1: I ← {1, . . . , n}, O ← ∅
2: i← random customer in I
3: I ← I \ {i}, O ← O ∪ {i}
4: while |O| < ν do

5: u← random customer in O
6: y ← random number in [0, 1[
7: r ← ⌊yγ1 × |I|⌋
8: i← rth most similar customer to u in I according to measure Rui(s)
9: I ← I \ {i}, O ← O ∪ {i}

10: end while

11: Π← {π : π ∈ s}
12: remove customers in O from their routes in Π
13: return O and Π

Random removal heuristic

As in [23], this removal heuristic simply selects ν customers randomly and insert them in set O.
The algorithm then constructs Π and returns O and Π as in Algorithm 4 (Lines 11–13).

Worst removal heuristic

This heuristic was introduced by Ropke and Pisinger [23]. Its principle is to remove the most
costly customers from the solution. The heuristic is driven by a measure ∆−

i (Π) that gives the dif-
ference between the cost of a set of routes Π and the cost of the same set with customer i removed.
The evaluation of the removal is carried out with the procedure described in Section 4.1. In partic-
ular, arc selection on the modified route is reoptimized. Equivalently to the adapted Shaw removal
heuristic, a random component is added, controlled with a parameter γ2. The heuristic is detailed
in Algorithm 5. Note that contrary to the adapted Shaw heuristic, customers are progressively
removed and the measure that drives customer selection is updated accordingly.

4.4. Insertion heuristics

We propose four insertion heuristics. These heuristics take as inputs a set Π of feasible routes
and a set O of customers not present in Π. Their output is a solution s (with a number of routes

9

ACCEPTED MANUSCRIPT

Algorithm 5 Worst removal heuristic

1: I ← {1, . . . , n}, O ← ∅
2: Π← {π : π ∈ s}
3: compute ∆−

i (Π) for all customers i ∈ I
4: while |O| < ν do

5: y ← random number in [0, 1[
6: r ← ⌊yγ2 × |I|⌋
7: i← rth most costly customer in I according to measure ∆−

i (Π)
8: I ← I \ {i}, O ← O ∪ {i}
9: remove i from Π and call π∗ the modified route

10: compute ∆−
j (Π) for all customers j ∈ π∗

11: end while

12: return O and Π

potentially larger than the fleet size). Each heuristic iteratively inserts a customer from O in Π,
until O is empty and Π thus becomes a feasible solution. The heuristics differ in the order in which
the customers are selected in O and in the way they are inserted in Π.

If insertions result in a set Π with |Π| > max{K, |scurr|}, the insertion procedure is stopped
and a next iteration of the ALNS is started from the same current solution scurr. This condition
allows to manage infeasible solutions for a number of iterations. However, the degree of infeasibility
(number of routes in excess with regards to K) is not allowed to increase. As soon scurr becomes
feasible, infeasibility is not allowed anymore.

Greedy insertion heuristic

This heuristic follows a best insertion policy. We compute for each customer i ∈ O and for
each route π ∈ Π, the insertion cost ∆+

i (π). This cost is computed with the algorithm presented in
Section 4.1, applied for all insertion positions. ∆+

i (π) is set to the cost of the best insertion. Once
these values are obtained, we compute best insertion costs in Π: ∆+

i (Π) = minπ∈Π∆+
i (π).

A customer i that minimizes ∆+
i (Π) is inserted in Π. The insertion costs are then updated

and the procedure is repeated until all the customers have been inserted. The insertion is carried
out with the procedure detailed in Section 4.1. When updating insertion costs, we only recompute
values ∆+

i (π) for the modified route.

Regret insertion heuristic

This heuristic is similar to the greedy insertion heuristic, except that it introduces a look-ahead
strategy. Given i ∈ O, if we denote by π∗ the route in Π that allows to reach a minimum insertion
cost for i (i.e., ∆+

i (π
∗) = ∆+

i (Π)), a regret R+
i (Π) is defined as follows:

R+
i (Π) = min

π∈Π\{π∗}
∆+

i (π)−∆+
i (Π) (3)

Contrary to the best insertion heuristic, the customer inserted in Π at a given iteration is the one
with a maximum regret R+

i (Π). All other steps of the method are kept the same.

Non-myopic insertion heuristic

This heuristic also extends the greedy insertion heuristic. Given i ∈ O, if we denote by Π′ the
set of routes that would be obtained after the best insertion of i in Π, an impact value I+i (Π) is

10

ACCEPTED MANUSCRIPT

defined as follows:
I+i (Π) = ∆+

i (Π) +
∑

j∈O\{i}

(∆+
j (Π

′)−∆+
j (Π)) (4)

The rationale behind this measure is to take account of the impact that the insertion of i can
have on future insertions. The difference ∆+

j (Π
′)−∆+

j (Π) evaluates this impact for the remaining
customers j ∈ O \ {i}. The customer inserted in Π at a given iteration is the one with a minimum
impact I+i (Π). All other steps of the method are the same as in the greedy insertion heuristic.
Note that to compute ∆+

j (Π
′), we only need to compute ∆+

j (π
′) for the route π′ that would result

from the best insertion of i. However, this heuristic might appear particularly time consuming as it
involves many calls to the evaluation of customer insertions. In Section 5.4, we conduct a sensitivity
analysis showing that it however contributes positively to the solution quality.

Simple insertion heuristic

The aim of this heuristic is to help diversifying the search. At each iteration, the customer i

taken from O is randomly selected. If the number of routes in Π is lower than the fleet size K, a
new route (0, i, 0) is added to Π. Otherwise, a route π is randomly selected in Π and the insertion
of i in π is tried. For that matter, a best insertion policy is applied and the procedure described in
Section 4.1 is used. If the insertion fails, another route is selected, and so on until the insertion is
done.

4.5. Adaptive strategy for the selection of removal and insertion heuristics

In Sections 4.3 and 4.4, we introduced three removal and four insertion heuristics. We now
explain how heuristics are selected at each iteration of the ALNS algorithm. Because it is difficult
to determine a priori which removal and insertion strategies would be more efficient, we follow
the adaptive control strategy introduced by Ropke and Pisinger [23]. The principle is to assign a
weight wi (i = 1, . . . , 6) to each heuristic and to periodically adjust these weights according to the
successes of the heuristic. The selection of removal and insertion heuristics is then made using a
roulette wheel mechanism based on these weights. Weight evolution is managed as follows:

1. All weights are initialized to the same value at the beginning of the search.

2. The concept of segment is introduced to decide of when updating weights. A segment repre-
sents a fixed number of ALNS iterations. An update is performed at the end of each segment.

3. The update is based on a score reached on the segment for the different heuristics. The
score sci of heuristic i (i = 1, . . . , 6) is set to zero at the beginning of the segment. At each
iteration, the scores of the selected removal and insertion heuristics are increased by a value
that depends on the quality of the solution s obtained:

• µ1 if s is a new global best solution;

• µ2 if s is accepted and improves the current solution;

• µ3 if s is accepted but has a total cost worse than the current solution;

• 0 otherwise.

4. Given the scores sci, the weights are updated with the following formula:

wi ← wi × (1− r) + r ×
sci

ηi
(5)

where ηi is the number of times heuristic i has been selected on the segment and r is a reaction

factor in [0, 1] that controls how the score reacts to the effectiveness of the heuristics.

11

ACCEPTED MANUSCRIPT

4.6. Acceptance criteria

To avoid getting trapped early in a local optimum, a simulated annealing mechanism is imple-
mented. It consists of accepting a deteriorating solution s with a probability

exp (−
cost(s)− cost(scurr)

T
) (6)

where scurr is the current solution, cost(.) is the cost of solutions and T is the temperature. Im-
proving solutions are always accepted. The temperature starts at a value Tstart, fixed so that a
solution 5% worse than the initial solution sinit has a probability 50% of being selected. Then, the
temperature is decreased at every iteration by a factor γ3, with 0 < γ3 < 1.

5. Computational experiments

In this section, we describe our experimental computations. We first present, in Section 5.1,
the benchmark instances that we use. In Section 5.2, we then explain how ALNS parameters have
been tuned. In Section 5.3, we evaluate the performance of the ALNS heuristic and the impact of
road-network information on solution quality. In section 5.4, we present some sensitivity analyses
to justify the integration of some components in the method.

Algorithms are implemented in C++. Tests are run on an Intel CORE i5 2.6 GHz computer
with 4GB of memory.

5.1. Benchmark instances

In our experiments, we use four classes of instances provided by Ben Ticha et al. [6].

SOL. A first class consists of 90 instances derived from a subset of Solomon’s VRPTW benchmark
instances [29]: 45 instances with 25 customers and 45 instances with 50 customers. To generate
these instances, Ben Ticha et al. [6] first modify travel times. For that matter, they draw
random numbers correlated with Euclidean distances. Three correlation degrees are used:
no-correlation (NC), weak correlation (WC) and strong correlation (SC). Multigraphs are
then constructed by computing the set of efficient paths between every pair of nodes. Other
parameters are not modified. Note that these instances are not stricly VRPTWRN instances
as the multigraphs are not computed from road networks.

LET. A second class of 30 instances was initially provided by Letchford et al. [12]. These instances
are generated from sparse graphs that simulate urban road networks. Four graphs are used,
with different sizes |VRN | ∈ {25, 50, 75, 100} for the node set. The probability that a node is
also a customer is 66%. Travel costs are given by the Euclidean distance and travel times are
defined in correlation with these costs. Three different levels of correlation are used: NC, WC
and SC. Customer time windows are narrow (NTW) or wide (WTW).

NEWLET. A third class of 45 instances was generated by Ben Ticha et al. [6] using the same
procedure as Letchford et al. [12] but decreasing the density of customers. Three series of
five road-network graphs are constructed: five with 25 customers and 100 nodes, five with
50 customers and 100 nodes, five with 50 customers and 200 nodes. For each graph, three
degrees of correlations are defined for travel times: NC, WC, SC.

12

ACCEPTED MANUSCRIPT

AIX. A fourth class of 12 instances was generated by Ben Ticha et al. [6] using real spatial data
from the region of Aix-en-Provence (south of France). The first graph (Z1) represents the
urban area and has 5,437 nodes. The second graph (Z2) includes the city and its surroundings,
and has 19,500 nodes. Each arc comes with two attributes: length and maximal speed. These
two attributes are used to define travel costs (length) and travel times (length divided by
speed). Six instances are generated from each graph: two instances with 25 customers, two
instances with 50 customers and two instances with 75 customers.

This yields a total of 177 instances. For more details on instance characteristics, readers are referred
to [6].

5.2. Parameter tuning

We perform a first set of experiments to adjust parameters of the ALNS algorithm (see the
list of these parameters and the selected values in Table 1). To this aim, we select a subset of 27
representative instances: SOL instances r101, r105, c103, c104, rc101, rc105 with 50 customers and
NEWLET instances 1, 2 and 3 with 50 customers and 100 nodes; these 9 instances are considered
for the three correlation levels NC, WC and SC. This total of 27 instances represents 15% of the
benchmark instances. Furthermore, two out of the four instance classes are not represented. We
believe that it permits to avoid overlearning from the tuning.

With these instances, we proceed as follows. We first tune the parameters of the adapted Shaw
removal heuristic. We apply the ALNS scheme limited to this removal heuristic and to the greedy
insertion heuristic. We successively focus on one of the parameters and try a number of values for
this parameter. For each value, the tuning instances are solved five times; the value that provides
the best average solution quality is kept.

We apply the same methodology for the worst removal heuristic. Other parameters are fixed
in the same way, one by one, but using the complete ALNS scheme instead of using single removal
and insertion heuristics.

Table 1: Parameter values

Operator Parameter Selected value

Shaw removal Weight associated with cost: α1 4
Weight associated with service time: α2 5
Weight associated with demand: α3 3
Weight associated with insertion positions: α4 10
Randomness degree: γ1 6

Worst removal Randomness degree: γ2 5

Adaptive strategy Initial weights 100
Gain for a new global best solution: µ1 500
Gain for an improving solution: µ2 200
Gain for an accepted non-improving solution: µ3 150
Reaction factor: r 0.1

Acceptance method Cooling rate: γ3 0.99975

5.3. Computational results

In this section, we evaluate the performance of the ALNS algorithm. We compare the solutions
obtained with this algorithm to optimal solutions, when these solutions are available. Optimal
solution values are reported by Ben Ticha et al. [6] and computed using a branch-and-price algo-
rithm. We also compare the ALNS algorithm to two other heuristic schemes: MC and MT. In both
schemes, a customer-based graph is constructed from the multigraph by keeping at most one arc

13

ACCEPTED MANUSCRIPT

between every pair of nodes. In MC, the min-cost arc is kept. In MT, the min-time arc is kept.
Then, in both cases, the resulting VRPTW is solved exactly with a branch-and-price algorithm.
Note that these two schemes are heuristic because the customer-based graphs do not capture all the
available information. Note also that these comparisons also give insights on the interest of defining
travel information at the road-network level instead of using customer-based graphs.

For each instance, the ALNS algorithm is applied 10 times and we report both the best and
average solution costs and solution times. Computing times for the branch-and-price algorithms
are limited to 7,500 seconds. Tables 2, 3, 4, 5 and 6 report the results obtained on instances of class
SOL with 25 nodes, SOL with 50 nodes, LET, NEWLET and AIX, respectively. In these tables,
Column BKS provides the value of best known solutions, i.e., the best among the solutions found
with the branch-and-price algorithm of Ben Ticha et al. [6], the 10 found by ALNS, and the two
found with MC and MT. Values in bold indicate that the solution is known to be optimal. Columns
Gap(%) give the percentage gap between the solution returned by each heuristic method and BKS,
computed as follows:

Gap =
solution cost with the heuristic − best known solution cost

best known solution cost
× 100 (7)

For methods MC and MT, values are in italic when the branch-and-price algorithm (applied on the
customer-based graph) did not finish in 7,500 seconds. Columns CPU(s) indicate the computing
times in seconds, for the different methods. For a better readability, computing times are not
reported for methods MT and MC. Basically, they have the same order of magnitude as those
reported for optimal solutions. These values can be found in [6]. Also CPU times are replaced by
– when the exact branch-and-price algorithm was not able to find the optimal solution in 7,500
seconds.

The first columns of the tables precise the instance characteristics. Column Corr indicates the
correlation degree: NC, WC or SC. Column Instance gives the instance name. For class LET, the
first number is |VRN | and the second number is n; instance names finish with the type of time
windows: NWT or WTW. For NEWLET instances, |VRN | and n are provided in Columns |VRN |
and n, respectively. The number of customers n is also reported in Column n for AIX instances.
Finally, when several instances have the same characteristics, the instance index is given in Column
Inst.

Evaluation of the ALNS heuristic

Tables 2 to 6 demonstrate the effectiveness of the ALNS heuristic. Regarding the best run,
optimal solutions are found for 108 out of the 148 instances for which the optimal solution is
known. The average gap on the remaining instances is 0.4% and the maximal gap is 1.8%. On
average, the ALNS algorithm is a little bit less effective, the average gap for this algorithm is 1.1%.
As expected, the smaller the customer set, the better the results: all instances with 25 customers
are solved optimally. Conversely, the effectiveness of the method is comparable for the four classes
of instances, which tends to demonstrate its robustness.

Comparisons with the MC and MT heuristics are clearly in favor of the ALNS. ALNS best
finds better or equivalent solution for 163 out of 177 instances against MC and for 173 instances
against MT. ALNS avg. finds better or equivalent solution for 124 instances against MC and for 133
instances against MT. Furthermore, the customer-based graph constructed in MC does not admit
any feasible solution for 8 instances.

Computing times are globally better for the ALNS heuristic. The behavior of the branch-and-
price algorithms are very unpredictable. Instances of the same class and with the same character-
istics can be solved in a few seconds or not be solved in two hours. On the contrary, computing

14

ACCEPTED MANUSCRIPT

Table 2: Results for class SOL (instances with 25 customers)

OPT ALNS best ALNS avg. MC MT
Corr Instance BKS CPU(s) Gap(%) CPU(s) Gap(%) Gap(%) Gap(%)
NC r101-025 690.4 0.6 0.0 8.1 0.1 0.0 85.7

r102-025 588.7 1.7 0.0 10.4 0.6 1.0 37.5
r103-025 491.3 12.7 0.0 12.1 1.2 0.0 48.1
r104-025 507.3 31 0.0 15.7 0.2 0.0 33.3
r105-025 642.8 2.3 0.0 9.7 0.2 1.6 55.9
c101-025 279.2 – 0.0 13.7 0.0 0.1 133.4
c102-025 238.6 – 0.0 22.8 0.0 10.6 111.2
c103-025 202.0 2,197 0.0 27.1 0.0 10.8 80.4
c104-025 195.1 – 0.0 43 0.0 0.0 78.8
c105-025 224.0 54.6 0.0 19.2 0.0 3.5 116.6
rc101-025 671.1 0.7 0.0 7.6 0.0 10.3 69.9
rc102-025 558.0 10.9 0.0 11.8 0.0 12.6 53.7
rc103-025 545.9 613.9 0.0 15.4 1.3 2.2 50.8
rc104-025 420.4 2,728 0.0 18.8 0.3 5.1 25.2
rc105-025 575.7 9.8 0.0 8.4 0.4 3.8 38.7

WC r101-025 682.0 0.2 0.0 7.8 0.2 0.0 10.9
r102-025 572.6 1.2 0.0 7.1 0.1 0.0 6.5
r103-025 476.2 2.3 0.0 7.1 0.1 0.0 6.0
r104-025 481.0 4.7 0.0 8.2 0.3 0.0 3.8
r105-025 601.0 0.9 0.0 6.8 0.0 0.0 11.3
c101-025 250.7 206.5 0.0 6.7 0.4 4.8 18.1
c102-025 229.9 – 0.0 11.3 0.0 1.0 14.6
c103-025 199.1 480.4 0.0 14 0.1 0.0 26.4
c104-025 192.8 – 0.0 10 0.0 0.0 6.6
c105-025 216.6 27.3 0.0 7.8 0.0 0.0 30.2
rc101-025 561.1 7.7 0.0 5.7 0.0 8.6 11.6
rc102-025 552.4 983.5 0.0 8.1 0.2 13.6 3.9
rc103-025 461.8 713.3 0.0 8.8 1.6 2.5 3.4
rc104-025 398.4 835 0.0 9.9 0.3 0.2 2.7
rc105-025 555.4 2.8 0.0 6.4 0.0 1.5 8.4

SC r101-025 684.7 0.2 0.0 7.9 0.0 0.0 0.0
r102-025 570.8 0.5 0.0 6.7 0.0 0.0 1.1
r103-025 458.3 0.9 0.0 5.2 0.0 1.8 0.0
r104-025 420.2 4.2 0.0 5.6 0.0 0.0 0.6
r105-025 549.3 0.8 0.0 5.4 0.0 0.0 0.1
c101-025 216.6 6.4 0.0 4.7 0.0 0.0 1.8
c102-025 193.1 5.5 0.0 5.2 0.0 0.0 0.0
c103-025 193.1 96.4 0.0 6.1 0.0 0.0 1.1
c104-025 189.7 1,717.6 0.0 6.4 0.0 0.0 0.0
c105-025 194.1 0.5 0.0 4.1 0.0 0.0 0.0
rc101-025 507.5 13.9 0.0 5.4 0.0 4.9 0.8
rc102-025 443.6 397.7 0.0 5.6 0.0 0.0 0.0
rc103-025 342.2 5.9 0.0 5.8 0.2 0.0 0.1
rc104-025 314.9 13.1 0.0 5.9 0.1 0.0 0.0
rc105-025 457.6 21.7 0.0 5.8 0.2 0.0 0.2

Note : – indicates that the corresponding branch-and-price algorithm could not solve the instance in 7,500 seconds

15

ACCEPTED MANUSCRIPT

Table 3: Results for class SOL (instances with 50 customers)

OPT ALNS best ALNS avg. MC MT
Corr Instance BKS CPU(s) Gap(%) CPU(s) Gap(%) Gap(%) Gap(%)
NC r101 1,317.3 17.6 1.1 29.6 2.3 0.4 72.7

r102 1,148.3 52.8 0.1 36.7 2.0 0.5 45.6
r103 952.7 593.7 1.0 59.4 2.2 2.3 34.1
r104 770.5 6,798.9 1.3 137 2.5 3.2 68.1

r105 1,162.8 26.9 1.8 36.9 2.9 0.6 75.6
c101 599.2 – 0.0 36.9 0.3 9.9 123.2
c102 506.0 – 0.0 74.7 0.5 22.4 120.1
c103 426.2 – 0.0 126.2 2.5 17.2 72.3
c104 394.2 – 0.0 413.9 2.4 13.5 146.6

c105 511.0 – 0.0 67.3 0.2 13.3 140.1
rc101 1,375.8 108 0.2 27.5 0.9 15.0 68.0
rc102 1,164.1 321.6 0.9 40.5 2.2 9.5 50.6
rc103 1,063.1 6,821.9 1.1 56.5 2.8 0.9 37.7
rc104 829.3 – 0.0 89.5 1.6 0.5 75.3

rc105 1,229.0 2,358.4 0.9 37.1 1.6 9.4 49.7
WC r101 1,179.4 1.2 0.3 26.8 1.4 3.3 29.0

r102 1,075.1 6.3 0.6 28.7 1.5 1.6 10.6
r103 948.2 65.4 0.3 32.5 2.6 1.7 11.4
r104 769.3 1,304.3 0.4 47.1 3.0 0.0 6.6
r105 1,062.3 17 0.5 27 1.7 0.4 9.4
c101 535.4 – 0.0 27.3 1.5 5.3 69.6

c102 468.1 – 0.0 51.8 1.0 22.8 53.5

c103 402.0 – 0.0 66.5 4.1 16.9 81.8

c104 372.7 – 0.0 143.2 2.1 20.4 60.3

c105 486.0 – 0.0 42.3 0.8 4.0 23.3
rc101 1,222.2 110.3 0.0 23 0.6 7.8 7.8
rc102 1,172.4 – 0.0 29.1 1.4 5.3 33.2

rc103 996.2 – 0.0 31.4 2.3 3.4 50.5

rc104 892.2 – 0.0 39.7 1.7 25.1 17.2

rc105 1,034.4 68.4 0.0 26.1 0.5 9.6 8.4
SC r101 1,085.7 1 0.1 23.9 1.0 1.2 1.0

r102 929.8 6.8 0.0 23.6 0.6 0.0 0.7
r103 827.1 71.1 0.0 24.7 1.1 0.0 0.1
r104 718.8 – 0.0 28.8 1.8 0.0 13.5

r105 932.7 14.9 0.2 23.5 1.0 0.8 0.2
c101 405.4 106.4 0.0 21.1 0.0 0.0 0.5
c102 366.9 53.8 0.0 25.7 0.0 0.0 2.0
c103 368.8 699.9 0.0 29 0.6 0.0 1.1
c104 365.4 – 0.0 46.6 1.7 28.1 21.2

c105 367.9 12 0.0 18.5 0.0 0.0 0.5
rc101 990.9 2,385.9 0.0 21.4 0.2 0.0 1.0
rc102 916.9 – 0.0 22.5 1.0 38.9 31.9

rc103 871.4 – 0.0 22.4 1.4 26.1 25.9

rc104 714.4 – 0.0 30 0.8 24.8 14.2

rc105 940.9 6,544.4 0.0 20.6 1.1 0.0 0.7
Note : – indicates that the corresponding branch-and-price algorithm could not solve the instance in 7,500 seconds

16

ACCEPTED MANUSCRIPT

Table 4: Results for LET instances

OPT ALNS best ALNS avg. MC MT
Instance Corr BKS CPU(s) Gap(%) CPU(s) Gap(%) Gap(%) Gap(%)
25 16 NTW NC 1,252 0.1 0.0 1.8 0.0 0.0 8.6
25 16 WTW NC 1,252 0.1 0.0 2.1 0.0 0.0 8.6
25 16 NTW WC 1,252 0.1 0.0 1.6 0.0 0.0 1.0
25 16 WTW WC 1,252 0.1 0.0 1.7 0.0 0.0 1.0
25 16 NTW SC 1,252 0.1 0.0 1.5 0.0 0.0 0.0
25 16 WTW SC 1,252 0.1 0.0 1.6 0.0 0.0 0.0
50 33 NTW NC 2,137 0.5 0.0 5.6 0.0 2.2 2.6
50 33 WTW NC 2,072 398 0.0 6.6 0.0 0.0 1.1
50 33 NTW WC 2,293 1.8 0.0 6.3 2.4 0.0 0.1
50 33 WTW WC 2,095 – 0.0 7.6 0.0 0.0 0.1
50 33 NTW WC 2,453 0.6 0.0 7.1 0.0 Infeasible 5.6
50 33 WTW WC 2,169 50.6 0.0 9.2 0.7 Infeasible 4.2
50 33 NTW SC 2,438 19.4 0.0 6 0.0 0.0 0.3
50 33 WTW SC 2,104 533.9 0.0 6.3 0.1 0.0 0.0
75 50 NTW NC 3,346 0.7 0.0 14.8 0.0 Infeasible 9.2
75 50 WTW NC 3,233 152.3 0.0 16.9 3.8 2.6 4.8
75 50 NTW WC 3,277 1.4 0.0 15.7 0.0 0.0 1.2
75 50 WTW WC 2,999 – 0.0 20.2 2.9 0.1 0.2
75 50 NTW WC 3,169 3.2 0.0 18.4 2.2 2.9 13.3
75 50 WTW WC 2,951 353.5 1.7 25 5.1 1.7 10.2
75 50 NTW SC 3,266 1.1 0.0 12.9 0.3 0.0 0.1
75 50 WTW SC 2,949 5,305.9 1.2 14.6 5.2 0.0 0.0
100 66 NTW NC 3,379 64.7 0.0 27.2 2.7 Infeasible 7.8
100 66 WTW NC 3,184 550.1 1.8 30.8 7.7 5.7 9.9
100 66 NTW WC 3,373 6.2 0.0 23.8 2.7 Infeasible 5.8
100 66 WTW WC 3,223 4,391.6 0.0 27.7 6.7 Infeasible 7.0
100 66 NTW WC 3,308 13 0.0 27.2 0.4 Infeasible 8.6
100 66 WTW WC 3,153 593.6 1.0 34 5.6 Infeasible 8.8
100 66 NTW SC 3,319 4.5 0.0 20.9 3.7 0.0 0.9
100 66 WTW SC 3,215 – 0.0 25.9 8.0 16.5 20.1

Note : – indicates that the corresponding branch-and-price algorithm could not solve the instance in 7,500 seconds

times are rather regular for the ALNS. They are relatively high even for small instances, but in-
crease slowly with the size of the instances. For example, SOL instances are solved in 10 seconds
on average when n = 25, and 35 seconds when n = 50.

Impact of road-network information

Garaix et al. [4], Ben Ticha et al. [6] and Lai et al. [5] have presented extensive computational
results that show the improvements achieved when travel information is defined at the road-network
level. Tables 2 to 6 consolidate these findings on a dozen of larger (or more difficult) instances that
could not be solved with the branch-and-price method developed in Ben Ticha et al. [6].

On these instances, the gaps observed for the heuristic methods based on customer-based graphs
oscillate a lot. They vary between 0.0% and 38.9% for MC, between 0.0% and 146.6% for MT. On
average, they are respectively equal to 4.4% for MC and 19.1% for MT.

5.4. Sensitivity analyses

In this section, we present some sensitivity analyses. We carry out these tests to check the
impact of some components of the ALNS algorithm. We also aim at identifying the respective
contributions of the removal and insertion heuristics during the search. We limit these tests to
instances of class SOL and of class NEWLET with |VRN | = 100.

17

ACCEPTED MANUSCRIPT

Table 5: Results for NEWLET instances

OPT ALNS best ALNS avg. MC MT
|VRN | n Corr Inst BKS CPU(s) Gap(%) CPU(s) Gap(%) Gap(%) Gap(%)
100 25 NC 1 1,828.7 6.3 0.0 7.4 0.0 6.8 3.6

2 2,109.6 1.4 0.0 7.5 0.4 0.0 11.9
3 2,200.9 5.7 0.0 9.1 0.0 2.4 15.6
4 2,139.5 2.8 0.0 6.8 0.0 0.4 6.0
5 1,869.2 2.5 0.0 10.5 0.0 1.2 11.8

WC 1 1,742.8 2 0.0 5.5 0.0 0.0 3.4
2 1,510.2 71.5 0.0 8 0.0 1.7 5.9
3 2,056.3 3.1 0.0 6.1 0.7 2.6 0.4
4 1,749.7 0.8 0.0 5.1 0.0 0.0 2.7
5 2,173.0 10.4 0.0 6.6 0.3 3.2 3.3

SC 1 2,075.4 21.1 0.0 4.5 0.0 0.0 0.4
2 2,108.0 1.3 0.0 4.7 1.0 0.0 0.2
3 1,770.8 9.7 0.0 6.2 1.3 0.0 2.1
4 2,029.1 0.6 0.0 4.8 0.0 0.0 0.0
5 2,108.2 0.6 0.0 5.5 0.0 0.0 0.7

50 NC 1 2,563.3 242 0.7 23.3 1.6 2.0 9.6
2 3,320.5 2,296.5 0.0 31.2 0.6 4.9 2.5
3 2,729.1 1,045.6 0.1 28.3 1.1 4.2 3.3
4 2,616.4 399.9 0.0 29.2 0.5 4.2 7.5
5 2,948.6 82.2 0.0 26.4 2.3 2.8 7.1

WC 1 2,626.8 104.8 0.0 22 0.8 0.0 5.7
2 2,890.1 245.5 0.0 19.8 0.5 3.2 3.2
3 2,516.7 79.1 0.2 19.3 0.5 3.2 1.9
4 2,398.3 42.2 0.0 19.1 0.0 0.0 4.9
5 2,427.2 291.3 0.0 19.9 0.5 0.0 2.0

SC 1 3,177.5 1,120.1 1.0 16.6 1.7 0.3 0.0
2 3,116.5 424.2 0.4 15.6 1.4 0.0 0.1
3 3,174.3 21.4 0.1 15.7 1.9 4.1 0.1
4 2,977.5 44.9 0.0 16.8 0.4 0.0 0.5
5 3,352.2 5.4 0.0 15.5 0.8 0.0 0.4

200 50 NC 1 4,125.8 1,659.3 0.3 56.8 1.6 8.3 6.6
2 4,000.5 191.3 0.0 48.3 0.6 5.0 12.8
3 4,277.9 1,045.1 0.3 39.2 2.5 4.2 8.0
4 4,068.4 6,775.5 0.5 60.7 3.6 5.9 6.7
5 4,674.7 – 0.0 52.2 1.3 4.0 9.4

WC 1 4,358.5 4,378.7 0.8 40.8 3.0 3.6 6.6
2 3,894.4 181.7 0.0 32 1.3 3.6 6.3
3 4,050.5 651.6 0.6 38.1 3.1 4.2 5.4
4 3,683.4 695.4 0.0 44.2 2.7 4.1 6.9
5 4,327.3 453.4 0.0 42.3 2.6 9.7 9.0

SC 1 4,539.9 – 0.0 28.5 0.5 3.8 0.7
2 4,416.8 3,892.8 0.2 26.4 4.4 0.0 1.0
3 4,282.3 203.3 0.1 23.2 2.3 0.0 0.3
4 3,719.8 81.8 0.0 22.3 2.3 0.0 0.6
5 3,765.7 67.5 0.0 20 1.7 0.0 0.2

Note : – indicates that the corresponding branch-and-price algorithm could not solve the instance in 7,500 seconds

Table 6: Results for AIX instances

OPT ALNS best ALNS avg. MC MT
n Instance BKS CPU(s) Gap(%) CPU(s) Gap(%) Gap(%) Gap(%)

Z1 25 1 44,931 1.7 0.0 8.4 0.0 3.6 8.4
2 44,574 0.8 0.0 7.7 0.0 8.6 6.7

50 1 79,925 13.4 0.2 31 0.6 2.4 5.5
2 84,722 18.8 0.1 30.4 1.0 1.6 4.6

75 1 110,718 131.4 0.8 65.9 1.8 0.5 5.4
2 101,700 73.4 1.7 67.1 2.5 0.7 6.3

Z2 25 1 123,592 1.2 0.0 5.8 0.0 7.1 11.1
2 192,625 1.1 0.0 7.4 0.0 1.7 9.6

50 1 271,836 22.7 0.0 28.8 1.0 0.1 10.5
2 362,426 13.3 0.3 30 0.9 2.3 9.0

75 1 390,642 174.1 1.4 57.9 2.2 11.7 4.3
2 374,845 102.6 1.4 54.2 2.8 0.9 4.6

Note : – indicates that the algorithm has not terminated within 7,500 seconds

18

ACCEPTED MANUSCRIPT

Evaluation of insertion positions in the adapted Shaw removal heuristic

The adapted Shaw removal heuristic is based on values Rij(s) that measure the similarity
between customers i and j in a solution s. Rij(s) is composed of four terms (see Equation 2). In
Section 4.3, we underlined the negative impact that the last term (evaluation of insertion positions)
might have on computing times.

To evaluate this impact, we apply the ALNS algorithm with the following modifications:

• The portfolio of removal heuristics is limited to the adapted Shaw removal heuristic;

• The portfolio of insertion heuristics is limited to the greedy insertion heuristic;

• The similarity measure includes (α4 > 0) or not (α4 = 0) the term evaluating insertion
positions. When α4 > 0, it is defined as detailed in Table 1.

Each instance is solved five times with the two methods. Tables 7 and 8 report aggregated results
for SOL and NEWLET instances, respectively. Column Gap(%) provides the percentage gaps with
best known solution values. Column CPU(s) gives CPU times in seconds. These two values are
reported for the best run (best gap out of five and best CPU time out of five) and on average.

Table 7: Sensitivity analysis on the similarity measure for SOL instances

Best run Average (5 runs)
α4 = 0 α4 6= 0 α4 = 0 α4 6= 0

n Corr Gap(%) CPU(s) Gap(%) CPU(s) Gap(%) CPU(s) Gap(%) CPU(s)
25 NC 0.6 10.6 0.5 10.6 1.3 11.1 0.9 11.1

WC 0.3 4.9 0.2 4.9 0.9 5.1 0.6 5.1
SC 0.2 2.9 0.1 2.9 0.8 3.0 0.5 3.0

50 NC 6.1 49.9 4.5 50.2 8.2 51.7 6.6 52.4
WC 3.5 19.7 3.2 19.8 4.8 21.4 4.1 21.9
SC 1.7 9.3 1.2 9.3 2.6 9.6 2.2 9.7

Table 8: Sensitivity analysis on the similarity measure for NEWLET instances

Best run Average (5 runs)
α4 = 0 α4 6= 0 α4 = 0 α4 6= 0

n Corr Gap(%) CPU(s) Gap(%) CPU(s) Gap(%) CPU(s) Gap(%) CPU(s)
25 NC 0.5 5.4 0.3 5.3 0.5 5.5 0.3 5.5

WC 0.0 4.0 0.0 4.0 1.0 4.3 0.8 4.3
SC 0.6 3.1 0.6 3.1 0.8 3.2 0.7 3.3

50 NC 4.7 16.9 4.1 16.8 5.2 17.7 4.2 17.4
WC 2.0 11.2 1.4 11.2 4.4 11.8 3.4 12.0
SC 6.3 9.2 4.6 9.5 7.1 9.9 6.3 10.1

From Tables 7 and 8, we can observe that considering insertion positions (α4 > 0) in the
similarity measure improves significantly the quality of solutions for a very limited additional amount
of computing times. Incidentally, it illustrates the efficiency of the evaluation methods described in
Section 4.1.

Non-myopic insertion heuristic

The non-myopic insertion heuristic computes values I+i (Π) to evaluate the insertion of a customer
i in a list of routes Π. The computation of I+i (Π) necessitates executing many times the evaluation
method described in Section 4.1 (see Equation 4). To evaluate the impact of this insertion heuristic,
we run the ALNS algorithm with or without the heuristic. Each instance is solved five times with
the two methods. Tables 9 and 10 provide aggregated results for SOL and NEWLET instances,
respectively. Column headings are the same as in Tables 7 and 8.

19

ACCEPTED MANUSCRIPT

Table 9: Sensitivity analysis on the non-myopic insertion heuristic for SOL instances

Best run Average (5 runs)
With non-myopic Without non-myopic With non-myopic Without non-myopic

n Corr Gap(%) CPU(s) Gap(%) CPU(s) Gap(%) CPU(s) Gap(%) CPU(s)
25 NC 0.0 12.1 0.2 8.7 0.1 16.3 0.6 8.9

WC 0.0 7.4 0.1 4.6 0.0 8.4 0.3 4.7
SC 0.0 4.7 0.0 3.1 0.0 5.7 0.1 3.2

50 NC 0.9 66.6 2.7 34.9 2.2 84.6 3.8 35.8
WC 0.3 25.6 1.7 17.1 1.6 42.8 2.6 17.5
SC 0.0 12.9 0.5 8.9 0.6 25.5 1.2 9.4

Table 10: Sensitivity analysis on the non-myopic insertion heuristic for NEWLET instances

Best run Average (5 runs)
With non-myopic Without non-myopic With non-myopic Without non-myopic

n Corr Gap(%) CPU(s) Gap(%) CPU(s) Gap(%) CPU(s) Gap(%) CPU(s)
25 NC 0.0 6.7 0.0 5.0 0.0 7.4 0.0 5.1

WC 0.0 4.6 0.0 3.9 0.2 4.9 0.2 3.9
SC 0.0 3.6 0.0 3.2 0.2 4.2 0.5 3.3

50 NC 0.1 22.6 5.0 15.1 1.0 24.2 5.0 15.4
WC 0.1 14.2 2.6 11.2 0.4 15.6 4.2 11.5
SC 0.3 11.1 3.8 9.7 1.2 13.2 5.3 10.0

Tables 9 and 10 show the important impact of the non-myopic insertion heuristic on solution
quality. Without this heuristic, solution costs can sometimes be increased by more than 5%. This
heuristic has however also an impact on computing times, which are sometimes more than doubled.

Contribution of the different removal and insertion heuristics

In Tables 11 and 12, we report the contribution of each insertion-removal combination in the
ALNS. Each column corresponds to a combination, with the name of the removal heuristic on the
first row and the name of the insertion heuristic on the second. For each combination, four criteria
are analyzed: the number of accepted solutions that improved the best solution (row Best), the
number of accepted solutions that improved the current solution (row Improving), the number of
accepted solutions that did not improve the current solution (row Non-Improving) and the total
computing time used by each combination along the search (row Computing time). These criteria
are expressed in percentage (each row reaches 100%).

20

ACCEPTED MANUSCRIPT

T
a
b
le

1
1
:
C
o
n
tr
ib
u
ti
o
n
o
f
re
m
ov
a
l-
in
se
rt
io
n
co
m
b
in
a
ti
o
n
s
fo
r
S
O
L
in
st
a
n
ce
s

R
a
n
d
o
m

W
o
rs
t

S
h
a
w

n
In
d
ic
a
to
r

G
re
ed

y
R
eg

re
t

N
o
n
-m

y
o
p
ic

S
im

p
le

G
re
ed

y
R
eg

re
t

N
o
n
-m

y
o
p
ic

S
im

p
le

G
re
ed

y
R
eg

re
t

N
o
n
-m

y
o
p
ic

S
im

p
le

2
5

B
es
t

5
.1

%
1
0
.7

%
8
.1

%
0
.0

%
1
0
.3

%
2
2
.6

%
1
5
.5

%
0
.0

%
4
.8

%
1
3
.7

%
9
.2

%
0
.0

%
Im

p
ro
v
in
g

7
.2

%
1
1
.8

%
1
0
.4

%
0
.0

%
1
0
.1

%
1
5
.3

%
1
3
.0

%
0
.0

%
7
.8

%
1
2
.9

%
1
1
.5

%
0
.0

%
N
o
n
-I
m
p
ro
v
in
g

1
0
.6

%
8
.8

%
9
.5

%
0
.1

%
1
4
.0

%
1
3
.1

%
1
3
.4

%
0
.2

%
1
1
.2

%
9
.0

%
9
.9

%
0
.1

%
C
o
m
p
u
ti
n
g
ti
m
e

5
.5

%
6
.4

%
1
6
.8

%
2
.1

%
6
.2

%
7
.1

%
1
9
.0

%
2
.3

%
6
.5

%
7
.3

%
1
8
.3

%
2
.5

%
5
0

B
es
t

6
.1

%
8
.7

%
8
.0

%
0
.0

%
1
1
.9

%
2
1
.2

%
1
6
.1

%
0
.0

%
7
.3

%
1
1
.5

%
9
.2

%
0
.0

%
Im

p
ro
v
in
g

8
.0

%
1
0
.7

%
9
.6

%
0
.0

%
1
1
.4

%
1
5
.2

%
1
3
.3

%
0
.0

%
8
.9

%
1
2
.1

%
1
0
.8

%
0
.0

%
N
o
n
-I
m
p
ro
v
in
g

1
0
.4

%
8
.6

%
8
.8

%
0
.1

%
1
5
.2

%
1
3
.5

%
1
3
.4

%
0
.2

%
1
1
.1

%
9
.0

%
9
.6

%
0
.1

%
C
o
m
p
u
ti
n
g
ti
m
e

6
.4

%
7
.0

%
1
4
.3

%
2
.9

%
7
.3

%
8
.2

%
1
6
.6

%
3
.3

%
7
.3

%
8
.0

%
1
5
.5

%
3
.1

%

T
a
b
le

1
2
:
C
o
n
tr
ib
u
ti
o
n
o
f
re
m
ov
a
l-
in
se
rt
io
n
co
m
b
in
a
ti
o
n
s
fo
r
N
E
W

L
E
T

in
st
a
n
ce
s

R
a
n
d
o
m

W
o
rs
t

S
h
a
w

n
In
d
ic
a
to
r

G
re
ed

y
R
eg

re
t

N
o
n
-m

y
o
p
ic

S
im

p
le

G
re
ed

y
R
eg

re
t

N
o
n
-m

y
o
p
ic

S
im

p
le

G
re
ed

y
R
eg

re
t

N
o
n
-m

y
o
p
ic

S
im

p
le

2
5

B
es
t

4
.8

%
8
.4

%
4
.7

%
0
.0

%
1
3
.3

%
2
2
.0

%
1
8
.3

%
0
.0

%
9
.0

%
6
.3

%
6
.5

%
0
.0

%
Im

p
ro
v
in
g

8
.4

%
9
.4

%
1
0
.0

%
0
.0

%
1
1
.6

%
1
5
.3

%
1
5
.0

%
0
.0

%
9
.7

%
9
.6

%
1
1
.0

%
0
.0

%
N
o
n
-I
m
p
ro
v
in
g

1
0
.1

%
9
.9

%
8
.8

%
0
.1

%
1
4
.6

%
1
4
.6

%
1
3
.9

%
0
.1

%
9
.1

%
9
.9

%
8
.8

%
0
.0

%
C
o
m
p
u
ti
n
g
ti
m
e

6
.5

%
7
.1

%
1
3
.6

%
3
.2

%
7
.5

%
8
.3

%
1
6
.5

%
3
.8

%
7
.3

%
7
.8

%
1
4
.9

%
3
.5

%
5
0

B
es
t

7
.2

%
5
.3

%
9
.6

%
0
.0

%
1
3
.5

%
1
6
.8

%
2
4
.1

%
0
.0

%
6
.7

%
3
.1

%
1
3
.7

%
0
.0

%
Im

p
ro
v
in
g

8
.1

%
6
.8

%
1
1
.6

%
0
.0

%
1
3
.1

%
1
5
.0

%
1
8
.1

%
0
.0

%
8
.5

%
5
.9

%
1
2
.9

%
0
.0

%
N
o
n
-I
m
p
ro
v
in
g

9
.0

%
9
.7

%
8
.7

%
0
.1

%
1
4
.2

%
1
4
.7

%
1
4
.7

%
0
.1

%
9
.4

%
1
1
.0

%
8
.3

%
0
.1

%
C
o
m
p
u
ti
n
g
ti
m
e

5
.4

%
5
.5

%
1
6
.8

%
2
.5

%
6
.5

%
6
.9

%
1
9
.4

%
2
.9

%
6
.4

%
6
.7

%
1
7
.9

%
3
.0

%

21

ACCEPTED MANUSCRIPT

The main observation that can be made with these tables is that almost all heuristics contribute
to the improvement of solutions. Except for the simple insertion heuristic, the two tables report
significant percentages for all the heuristics on all indicators. Fortunately, the time consumed by
the simple insertion heuristic is very limited. Probably, the learning mechanism is able to identify
quickly that this heuristic is not effective and gives a small probability to its selection. Among the
removal heuristics, the worst removal method is specially effective. It consistently permits to find
around 50% and around 40% of the best and improving solutions, respectively. This improvements
are furthermore obtained with a computational effort that only slightly exceeds the ones of the two
other removal heuristics. Regarding insertion heuristics (simple insertion excluded), the ranking is
not as clear. The regret heuristic tends to be the most effective, except for NEWLET instances
of size 50, where it is the worst. The non-myopic heuristic is globally better than the random
heuristic, but its computing times are higher than those of the two other heuristics. Globally, the
main conclusion is still that the three heuristics are important.

6. Conclusion

Due to their numerous applications, and strong correlation to the bottom line, vehicle routing
problems are critical to industry and have drawn the attention of many researchers. In many
real-life circumstances, different criteria have to be considered when defining transportation plans:
operational costs, traveling times or energy consumption, for example. Therefore, it is imperative to
capture travel information at the road-network level. Modeling travel information with customer-
based graphs may indeed furnish infeasible routes or overestimate cost. Efficient heuristic solution
approaches that solve vehicle routing problems with this degree of information are however missing
in the literature. Hence, we propose an ALNS algorithm, with the objective of filling this gap. We
considered the VRPTWRN and introduced a multigraph, that captures all efficient paths between
pairs of points of interest (depot, customers). The presence of parallel arcs introduces computational
challenges, especially when exploring the neighborhood of a given solution: elementary operations
like customer removal or insertion induce the solution of an NP-hard problem. To handle this
difficulty, we proposed an incremental data structure and developed a procedure based on dynamic
programming. We conducted an extensive experimental study on several set of instances with
different characteristics. Numerical results showed the ability of the heuristic to find near-optimal
solutions in a reasonable amount of time. In addition, results confirm the gains provided by road-
network travel information compared to traditional solution approaches based on customer-based
graphs. An alternative to the multigraph is to tackle directly vehicle routing problems with road-
network graphs. A future study could be to investigate heuristic solution schemes on these graphs.

Acknowledgements

We warmly thank the reviewers for their suggestions that have helped improve the quality of this
paper. The first author was supported by the Labex IMobS3, by the European Fund for Regional
Development (FEDER Auvergne region) and by the Auvergne Region.

References

References

[1] B. De Backer, V. Furnon, P. Prosser, P. Kilby, P. Shaw, Local search in constraint programming:
Application to the vehicle routing problem, in: Proc. CP-97 Workshop Indust. Constraint-
Directed Scheduling, Schloss Hagenberg Austria, 1997, pp. 1–15.

22

ACCEPTED MANUSCRIPT

[2] G. B. Dantzig, J. H. Ramser, The truck dispatching problem, Management Science 6 (1) (1959)
80–91.

[3] P. Toth, D. Vigo (Eds.), Vehicle Routing: Problems, Methods, and Applications, 2nd Edition,
Vol. 18 of MOS-SIAM series on optimization, SIAM, Philadelphia, 2014.

[4] T. Garaix, C. Artigues, D. Feillet, D. Josselin, Vehicle routing problems with alternative
paths: An application to on-demand transportation, European Journal of Operational Re-
search 204 (1) (2010) 62–75.

[5] D. S. Lai, O. C. Demirag, J. M. Leung, A tabu search heuristic for the heterogeneous vehicle
routing problem on a multigraph, Transportation Research Part E: Logistics and Transporta-
tion Review 86 (2016) 32–52.

[6] H. Ben Ticha, N. Absi, D. Feillet, A. Quilliot, Empirical analysis for the vrptw with a multi-
graph representation for the road network, Computers & Operations Research 88 (2017) 103–
116.

[7] H. Ben Ticha, N. Absi, D. Feillet, A. Quilliot, Vehicle routing problems with road-network
information: State of the art, Networks 72 (3) (2018) 393–406. doi:10.1002/net.21808.

[8] J. Qian, R. Eglese, Fuel emissions optimization in vehicle routing problems with time-varying
speeds, European Journal of Operational Research 248 (3) (2016) 840–848.

[9] C. Orloff, A fundamental problem in vehicle routing, Networks 4 (1) (1974) 35–64.

[10] B. Fleischmann, A cutting plane procedure for the travelling salesman problem on road net-
works, European Journal of Operational Research 21 (3) (1985) 307–317.

[11] G. Cornuéjols, J. Fonlupt, D. Naddef, The traveling salesman problem on a graph and some
related integer polyhedra, Mathematical programming 33 (1) (1985) 1–27.

[12] A. N. Letchford, S. D. Nasiri, A. Oukil, Pricing routines for vehicle routing with time windows
on road networks, Computers & Operations Research 51 (2014) 331–337.

[13] H. Ben Ticha, N. Absi, D. Feillet, A. Quilliot, T. Van Woensel, A branch-and-price al-
gorithm for the vehicle routing problem with time windows on a road network, Networks-
doi:10.1002/net.21852.

[14] R. Baldacci, L. D. Bodin, A. Mingozzi, The multiple disposal facilities and multiple inven-
tory locations rollon–rolloff vehicle routing problem, Computers & Operations Research 33 (9)
(2006) 2667–2702.

[15] H. Wang, Y. Lee, Two-stage particle swarm optimization algorithm for the time dependent
alternative vehicle routing problem, Journal of Applied & Computational Mathematics 3 (4)
(2014) 1–9. doi:10.4172/2168-9679.1000170.

[16] M. Setak, Z. Shakeri, A. Patoghi, A time dependent pollution routing problem in multi-graph,
International Journal of Engineering-Transactions B: Applications 30 (2) (2017) 234–242.

[17] M. Caramia, F. Guerriero, A heuristic approach to long-haul freight transportation with mul-
tiple objective functions, Omega 37 (3) (2009) 600–614.

[18] G. Desaulniers, O. B. G. Madsen, S. Ropke, The vehicle routing problem with time windows, in:
P. Toth, D. Vigo (Eds.), Vehicle Routing: Problems, Methods, and Applications, 2nd Edition,
Vol. 18 of MOS-SIAM series on optimization, SIAM, Philadelphia, 2014, Ch. 5, pp. 119–159.

23

ACCEPTED MANUSCRIPT

[19] R. Baldacci, A. Mingozzi, R. Roberti, Recent exact algorithms for solving the vehicle rout-
ing problem under capacity and time window constraints, European Journal of Operational
Research 218 (1) (2012) 1–6.

[20] B. Kallehauge, Formulations and exact algorithms for the vehicle routing problem with time
windows, Computers & Operations Research 35 (7) (2008) 2307–2330.

[21] O. Bräysy, M. Gendreau, Vehicle routing problem with time windows, part I: Route construc-
tion and local search algorithms, Transportation Science 39 (1) (2005) 104–118.

[22] O. Bräysy, M. Gendreau, Vehicle routing problem with time windows, part II: Metaheuristics,
Transportation Science 39 (1) (2005) 119–139.

[23] S. Ropke, D. Pisinger, An adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows, Transportation Science 40 (4) (2006) 455–472.

[24] P. Shaw, Using constraint programming and local search methods to solve vehicle routing
problems, in: International conference on principles and practice of constraint programming,
Springer, 1998, pp. 417–431.

[25] H. Ben Ticha, N. Absi, D. Feillet, A. Quilliot, A solution method for the multi-destination
bi-objectives shortest path problem, Tech. Rep. EMSE CMP-SFL 2017/5, Ecole des Mines de
Saint Etienne, CMP, Gardanne, France (2017).

[26] G. Clarke, J. W. Wright, Scheduling of vehicles from a central depot to a number of delivery
points, Operations Research 12 (4) (1964) 568–581.

[27] S. Irnich, G. Desaulniers, Shortest path problems with resource constraints, in: G. Desaulniers,
J. Desrosiers, M. M. Solomon (Eds.), Column Generation, Springer, New York, 2005, pp. 33–65.

[28] M. W. P. Savelsbergh, Local search in routing problems with time windows, Annals of Opera-
tions Research 4 (1) (1985) 285–305.

[29] M. M. Solomon, Algorithms for the vehicle routing and scheduling problems with time window
constraints, Operations Research 35 (2) (1987) 254–265.

24

