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Supplementary Material 

Transformation of the ROI intensity from detector frame to the pole figure 

Equation (3) in the main paper describes the transformation of the diffraction vector from the 

laboratory frame to the sample frame. For calculating the pole-figure angles (the polar angle 𝜓𝜓 with regard to ND and the azimuthal angle 𝜑𝜑, with regard to RD) corresponding to detector 

coordinates (2𝜃𝜃, 𝜂𝜂) and the rotation angle 𝜔𝜔 it is better to rewrite eq. (3) in terms of unit 

vectors along 𝑮𝑮𝑆𝑆 and 𝑮𝑮𝜔𝜔: 𝒆𝒆𝑆𝑆 = 𝐒𝐒−𝟏𝟏𝛀𝛀𝑧𝑧−1𝒆𝒆𝜔𝜔.    (SM-1) 

 where 𝒆𝒆𝑆𝑆 =
𝑮𝑮𝑆𝑆

|𝑮𝑮𝑆𝑆|
 and 𝒆𝒆𝜔𝜔 =

𝑮𝑮𝜔𝜔
|𝑮𝑮𝜔𝜔|

. Considering 𝑺𝑺 = 𝑰𝑰, eq. (SM-1) changes to:  

�sin𝜓𝜓 cos𝜑𝜑
sin𝜓𝜓 sin𝜑𝜑

cos𝜓𝜓 � = cos𝜃𝜃 𝛀𝛀𝑧𝑧−1 �− tan𝜃𝜃− sin 𝜂𝜂
cos𝜂𝜂 �.   (SM-2) 

Since 𝛀𝛀𝑧𝑧−1 rotates around Oz does not change the 3rd component of the vector on the left hand 

side, which leads to the following relation for the polar angle 𝜓𝜓:  

cos𝜓𝜓 = cos𝜃𝜃 cos𝜂𝜂.     (SM-3) 

The equations relating the first two components of the vectors in eq. (SM-2) give the 

azimuthal angle of the pole figure: 

tan𝜑𝜑 =
sin𝜔𝜔 sin𝜃𝜃−cos𝜔𝜔 sin𝜂𝜂 cos𝜃𝜃−cos𝜔𝜔 sin𝜃𝜃−sin𝜔𝜔 sin𝜂𝜂 cos𝜃𝜃   (SM-4) 
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Table S1. The parameters of the diffraction geometry obtained according to the procedure of Borbély 

et al.(2014).  

parameters 
Distance 

[mm] 

Beam centre [pixel] Detector normal components 

u v n1 n2 n3 

initial 730.0 735.0 830.0 1 0 0 

calibrated 734.47(2) 736.50(3) 831.77(5) 0.999972(3) 0.00692(6) 0.00248(6) 

 

 

Table S2. The set of ω angles corresponding to the Bragg condition of 111 type diffraction vectors, 

belonging to two variants of the S3 texture component: (1,2,3)[6,3,−4] and (1,−3,2)[6,4,3] (the 

corresponding Euler angles 𝜑𝜑
1
,𝜙𝜙,𝜑𝜑

2
 are: 301.020°, 36.699°, 26.565° and 152.968°, 57.689°, 161.565°, 

respectively). The Table shows that the set of 𝜔𝜔 angles does not depend on the (h’k’l’)[uvw] choice of 

the texture component. All 24 equivalent definitions lead to the same set (only two are presented).  

 

Diffraction vector 𝜔𝜔 [°] ℎ, 𝑘𝑘, 𝑙𝑙 (1,2,3)[6,3,−4] (1,−3,2)[6,4,3] 

1  1  1 

1  1  1 

-1  1  1 

-1  1  1 

1 -1  1 

1 -1  1 

1  1 -1 

1  1 -1 

-1 -1  1 

-1 -1  1 

-1  1 -1 

-1  1 -1 

1 -1 -1 

1 -1 -1 

-1 -1 -1 

-1 -1 -1 

274.65 

109.49 

322.43 

135.32 

1.52 

187.4 

76.74 

251.15 

71.15 

256.74 

7.4 

181.52 

315.32 

142.43 

289.49 

94.65 

76.74 

251.15 

7.4 

181.52 

274.65 

109.49 

315.32 

142.43 

322.43 

135.32 

289.49 

94.65 

1.52 

187.4 

71.15 

256.74 

Table S2 shows the relation between the selected grain orientation (h’k’l’)[uvw] and the corresponding 

dislocation contrast factors for two variants of the S3 component:  𝑆𝑆′ = (1,2,3)[6,3,−4] and 𝑆𝑆′′ =

(1,−3,2)[6,4,3]. The average contrast factor is usually calculated based on a priori information on the 

relative populations of the crystal slip systems, which can be estimated from crystal plasticity 

calculations (Borbély et al., 2000) or from experimental TEM analysis. To exemplify the link between 

the selected grain orientation (U) and the dislocation contrast factor we show an example based on 

Schmid factors. This approximation may be valid for uniaxial tension and small strains, when one 

expects that the majority of dislocations belong to the slip system with the highest Schmid factor. 

Applying the force along the longitudinal direction [6,3-4] and [6,4,3] respectively, the largest Schmid 

factor of 0.422, corresponds to the slip systems (1-1-1)[110] and (11-1)[101] for the 𝑆𝑆′ and 𝑆𝑆′′ variants, 

respectively. Considering 50% edge and 50% screw type dislocations the mean 𝐶𝐶ℎ̅𝑘𝑘𝑘𝑘, can be calculated 

by averaging the individual contrast factors, which can be numerically calculated according to the 

anisotropic theory of elasticity. The results were obtained with the AnizC software (Borbély et al., 

2003) using the following second order elastic constants C11 = 107 GPa, C12 = 60.8 GPa and C44 = 28.3 
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GPa. The AnizC is freely available at http://metal.elte.hu/anizc/. It is important to note that the spots 

always appear at the same (2𝜃𝜃, 𝜂𝜂,𝜔𝜔) coordinates, however, their notation (200, 020 or 002) should be 

done according to the variant used for the Schmid factor calculation.  

Table S3. The (𝜂𝜂,𝜔𝜔) coordinates and average contrast factors of 200 type diffraction vectors 

corresponding to beam energy of 63 keV.  

(𝜂𝜂,𝜔𝜔) [deg] 𝑆𝑆′ 𝐶𝐶ℎ̅𝑘𝑘𝑘𝑘 𝑆𝑆′′ 𝐶𝐶ℎ̅𝑘𝑘𝑘𝑘 
(30.0, 302.3) 0 0 2 0.0119 2 0 0 0.2835 
(129.8, 285.5) 0 2 0 0.2835 0 2 0 0.0119 

(63.2, 216.6) -2 0 0 0.2835 0 0 2 0.2835 
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Figure S1 Location of the 111/222, 200, 220 and 311 diffraction vectors of the selected texture 

components in the sample frame (PF). The selected poles are mostly lying in regions with high density, 

excepting the Cube and the Goss components. 
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