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Abstract

Transient flows through porous media can be controlled by local capillary
forces. In an attempt to ease the representation of these complex multi-
scale flows, this article presents a new numerical approach to account for
these local forces, viewed as a global pressure discontinuity acting in bi-fluid
flows through smeared-out porous media. A finite element discretization of
the Darcy’s equations is considered and a pressure enriched space is locally
introduced at the fluid interface in order to capture the pressure discontinuity.
Then, a Variational Multiscale Stabilization (VMS) method is selected to
take into account the subgrid effects on the finite element solution and hence
ensure the consistency of the finite element formulation. The fluid front is
represented by a level set function, convected with the fluid velocity thanks to
a finite element scheme stabilized with a Streamline-Upwind/Petrov-Galerkin
(SUPG) method. Both convergence and implementation are first validated
with the Method of Manufactured Solution (MMS) and the model shows a
good convergence. Second, a comparison with experimental measurements
in the case of capillary wicking of water into carbon reinforcements shows a
very good correlation between experimental and numerical results.
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1 INTRODUCTION

method, discontinuous pressure, capillary wicking

1. Introduction1

Capillary effects define the ability of a liquid to maintain contact with2

a solid. They are localized and play a key role in the description of liquid3

flows in porous media. Their best visualization is the spontaneous wicking4

mechanisms, where the liquid flows without the assistance of any external5

force. Such phenomena are related in one hand to the surface tension between6

the liquid and the surrounding media such as air, and on the other hand, to7

the liquid-solid and air-solid surface energies.8

During flows in a porous medium, micro- and macro-voids may develop9

following the competition between viscous and capillary effects. This work10

focuses on the capillary effects occurring in porous media such as fibrous re-11

inforcements during infusion process, especially Liquid Resin Infusion (LRI)12

process. Indeed, capillary effects are traditionally neglected in the flow simu-13

lation during high pressure composite manufacturing processes. Meanwhile,14

experimental studies have shown that the capillary stress resulting from the15

interaction of carbon reinforcements and liquid, such as water or epoxy resin,16

can reach a value of 0.3 − 0.4 bar in quasi-UD fabrics [62, 63], at the fibre17

scale [76] or in carbon woven fabrics [5]. This value represents approxima-18

tively one third of the 1 bar driving force available in the LRI process, which19

is too significant to be neglected and even permits to manufacture compos-20

ite parts that could not be without its contribution. Consequently, the aim21

of this paper is to introduce these local capillary effects, in order to assess22

their influence on the filling stage scenarios at the scale of composite parts23

[46, 70].24

Indeed, following the multi-scale nature of high performance composites,25

the study can be conducted at three different scales as shown in many stud-26

ies [15, 22, 36, 60]: at the fiber or microscopic scale (∼ 10−6m), at the27

tow or mesoscopic scale (∼ 10−3m) and at the process or macroscopic scale28

(∼ 10−1m). At microscopic scale, numerical modeling of the capillary rise29

is well-documented [11, 13, 52, 71]. Capillary effects are accounted for into30

Navier-Stokes or Stokes equations by the mean of the surface tensions be-31

tween the three phases (solid-liquid-air) [4, 20, 24]. At mesoscopic scale,32

capillary effects are taken into account through the micro-diffusion within33

fiber tows. Generally, unsaturated flow models are adopted to describe this34
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1 INTRODUCTION

problem. A sink term which depends on the capillary number is incorporated35

in the governing equations to model the capillary effects [65, 67, 72], but36

standing only for isotropic representations. In many research areas such as37

ground water infiltration or oil recovery, the capillary pressure is related to38

the saturation according to different analytical parameterizations such as the39

ones proposed by Van Genuchten, Stauffer, Kalaydjian, Hassanizadeh, Gray40

and Bareblatt [38, 47, 50].41

This approach has been extended to composite manufacturing fields in42

order to simulate the filling stage and to assess void formation [17, 54, 59].43

Capillary effects are usually represented through the introduction a single44

capillary pressure, although capillary effects do come from local mechanisms45

related to both orthotropic micro(meso)-structure architecture and surface46

tensions. Dedicated studies concentrate on these local phenomena [24] which47

are, for the moment, out of reach in tractable models at the structure scale.48

An alternative way of introducing these 3D effects at an upper scale is to49

consider their effect as a capillary stress tensor (3D representation) acting50

on the fluid-gas interface in a slug-flow approach, i.e. no saturation zone is51

considered at this scale. Accounting properly for the 3D pressure disconti-52

nuity in a numerical approach will allow to complete full models of infusion53

processes at the structure scale [15] including coupling with the wet/dry pre-54

form mechanical response, as well as to model dual-scale flows at the tow55

scale [75] provided an equivalent homogeneous medium can be used to rep-56

resent populations of fibres. Notwithstanding any local effects related either57

to velocity or pressure fields which are of utmost interest to represent lo-58

cal physical changes, such as for shear-rate dependant fluids, void creations59

issues, or fluid pressure acting in wet preforms for coupling issues [22, 15].60

In this work, an innovative macroscopic approach is adopted. The cap-61

illary action is described by a capillary stress tensor acting on the liquid-air62

interface. The subsequent jump of the pressure field at the flow front is taken63

into account numerically in the weak formulation of Darcy’s equations. Those64

equations, established in a velocity-pressure mixed form, are solved using a65

Finite Element Method (FEM). Both velocity and pressure are approximated66

by continuous and linear fields. According to the Brezzi - Babuška theory,67

such an approximation is not stable. This issue is overcome by stabilizing the68

Finite Element (FE) formulation thanks to the Variational MultiScale (VMS)69

framework introduced by Hughes [39, 40] and extensively used and studied70

by Badia & Codina to stabilize Stokes’, Darcy’s and Maxwell’s equations in71

a unified setting [7, 8, 9, 10]. However, a special attention is mandatory to72
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accurately capture the pressure discontinuity across the flow front, which is73

described here with a level-set method [57, 58, 69].74

The literature provides several techniques to capture this local phenomenon.75

For instance, the Extended-Finite Element Method (X-FEM) [21, 32, 45] con-76

sists in enriching the pressure approximation space by discontinuous func-77

tions. This enrichment, which is not localized in the mesh elements, pro-78

vides additional degrees of freedom, resulting in some computational issues79

when the discontinuity is moving (the mesh, and consequently the global80

”stiffness” matrix, need to be updated). A discontinuous Galerkin formu-81

lation [1, 12, 48, 56] can be another way of dealing with singular forces at82

the interface. As the continuity between elements is weakly imposed, it al-83

lows the solution to be discontinuous: each element has its own degrees of84

freedom and is connected to its neighboring by numerical fluxes. However,85

in our simulations, the interface does not necessarily correspond to edges of86

elements, but can cut these elements. In this work, the jump of pressure87

field is captured using the technique developed by Ausas et al. [6], which88

consists in a local enrichment of the pressure space by discontinuous func-89

tions. Unlike the X-FEM approach, the corresponding additional degrees of90

freedom are local to an interface element, and can therefore be eliminated at91

the elementary level before the final assembly.92

The rest of this article is divided into four parts. Section 2 focuses on93

the mathematical description of the fluid flow problem, and the finite ele-94

ment strategy implemented. Section 3 describes the level-set method used95

to capture the fluid front, i.e. the interface across which pressure is discon-96

tinuous. An error analysis is given in Section 4 to assess the accuracy of the97

numerical developments. Finally, Section 5 compares simulation and exper-98

imental results for water capillary wicking in carbon reinforcements. Also,99

a 3D simulation of the resin flow through an orthotropic stiffener is carried100

out.101

2. Fluid flow problem102

2.1. Physical and mathematical description103

Let Ω be a region of Rd (with d = 2, 3 the spatial dimension) bounded104

by ∂Ω (see Fig. 1). Ω represents a porous medium, the fibrous preform in105

our context, considered as an equivalent homogeneous orthotropic medium106

characterized by a porosity φ and a saturated permeability K independent107

on the fluid. The permeability is a measure indicating the capacity of the108
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2.1 Physical and mathematical description 2 FLUID FLOW PROBLEM

material to allow fluids to pass through it. In a realistic description, the fi-109

brous reinforcement is anisotropic and K is a symmetric tensor. The domain110

Ω is filled with two immiscible, Newtonian and incompressible fluids: a liquid111

of viscosity µl, occupying the subdomain Ωl and a surrounding medium (for112

instance, the air) of viscosity µa ≪ µl, occupying Ωa. Hence: Ω = Ωl ∪ Ωa.113

The interface is denoted Γl/a: Γl/a = ∂Ωl ∩ ∂Ωa.114

The domain boundary ∂Ω is divided into two types of boundary: ∂ΩD115

and ∂ΩN such that ∂Ω = ∂ΩD∪∂ΩN and ∂ΩD∩∂ΩN = ∅, where respectively116

Dirichlet and Neumann boundary conditions are prescribed.117

Figure 1: 2D-description of the domain Ω.

Darcy’s equations [28] express the flow velocity v at the scale of the118

homogeneous equivalent medium, i.e. the superficial fluid velocity, with119

respect to the pressure gradient ∇ p and two parameters: the fluid viscosity120

and the permeability (Eq. 1). The mass conservation is introduced through121

the divergence of the velocity v (Eq. 2). Hence, the governing equations are122

µK−1v +∇ p = f , µ =

{

µl in Ωl

µa in Ωa
(1)

∇ ·v = h (2)

with f the external forces and h a source/sink term, equal to zero when123

the fluids are assumed to be incompressible. Assuming, for a while, that the124

axes of the orthonormal coordinate system {x, y, z} coincide with the normals125

to the three symmetry planes of the orthotropic material, the permeability126
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tensor writes in this eigen-system:127

K = KLOC =





Kx 0 0
0 Ky 0
0 0 Kz



 (3)

with K{x,y,z} the values of the permeability in the x−, y− and z−directions,128

the index LOC refers to the local or material coordinate system.129

The capillary effects are described at the macroscopic scale by a capil-130

lary stress tensor, σcap, having the same eigen-directions as the permeability131

tensor, since they correspond to the symmetries of the orthotropic porous132

medium. Hence,133

σcap = σLOC
cap =





σxcap 0 0
0 σycap 0
0 0 σzcap



 (4)

with σ
{x,y,z}
cap the components of the equivalent capillary stress at the interface134

Γl/a in the x−, y− and z−directions. In general situations, described in135

section 5.3, the eigen-directions of the previous tensors vary from point to136

point, and consequently, do not match with the axes of the global coordinate137

system. In this case, tensor K is expressed in the global system by: K =138

QKLOCQ
T , where Q is the orthogonal tensor expressing the passage from139

the local to the global bases. Similarly, σcap = QσLOC
cap QT .140

Capillary effects give rise to a jump of pressure across Γl/a. This jump,141

denoted [p], is expressed as142

[p] = n · σcap · n on Γl/a (5)

where n is the normal vector to the interface.143

Finally, system (Eq. 1), (Eq. 2), completed by (Eq. 5), is closed by144

prescribing a normal velocity v0 on ∂ΩD and a pressure p0 on ∂ΩN :145

v · n = v0 in ∂ΩD (6)

p = p0 in ∂ΩN (7)

[v · n] = 0 on Γl/a (8)

where the last condition (Eq. 8), the continuity of the normal velocity, ex-146

presses the mass conservation across the interface Γl/a.147
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2.2 Weak formulation 2 FLUID FLOW PROBLEM

2.2. Weak formulation148

In order to solve the previous Darcy’s system with a finite element method,149

the weak formulation of these equations has first to be established. Two ap-150

proaches exist to express the weak formulation. First, the Darcy’s problem151

can be formulated in pressure only, and the velocity post-calculated apart.152

However, mass conservation issues can appear when considering a jump of153

material properties such as a jump of permeability [29]. Second, and this154

is the strategy adopted here, a full velocity/pressure mixed weak formula-155

tion can be formulated, ensuring the mass conservation. Moreover, what is156

called the dual formulation of Darcy’s equations [8, 34] is chosen, in order to157

naturally enforce the pressure discontinuity.158

The dual variational formulation is obtained by multiplying the strong159

equations (Eq. 1) and (Eq. 2) respectively by any admissible and smooth160

enough velocity test function w and pressure test function q, and then by161

integrating by part the termw ·∇ p. The natural enforcement of the capillary162

stress results from this integration by parts:163

< w,∇ p >Ω = < w,∇ p >Ωl
+ < w,∇ p >Ωa

= − < ∇ ·w, p >Ω + < w · n, [p] >Γl/a
+ < w · n, p >∂ΩN

= − < ∇ ·w, p >Ω + < w · n,n · σcap · n >Γl/a
+ < w · n, p0 >∂ΩN

where, for a bounded region R, the bilinear form < ., . >R denotes the164

L2(R)n inner-product (n = 1 if a and b are scalars, n = d if they are vectors):165

< a, b >R=
∫

R
a·b dR, for a and b in L2(R)n the classical Lebesgues functional166

space,167

L2(R) = {q : R → R |

∫

R

q2 dR <∞}

In order to complete the functional setting associated with the weak168

Darcy’s equations, the Sobolev space H(∇ ·,Ω) is also introduced:169

H(∇ ·,Ω) = {u ∈ L2(Ω)d | ∇ ·u ∈ L2(Ω)}

Finally, the dual formulation of the mixed Darcy system (Eq. 1) - (Eq.170

2) - (Eq. 5) - (Eq. 6) reads: Find (v, p) ∈ H(∇ ·,Ω)×L2(Ω), with v ·n = v0171

on ∂ΩD, such that172

< µK−1v,w >Ω − < ∇ ·w, p >Ω = < f ,w >Ω + < w · n, p0 >∂ΩN

+ < w · n,n · σcap · n >Γl/a
(9)

< ∇ ·v, q >Ω = < h, q >Ω (10)

∀(w, q) ∈ H(∇ ·,Ω)× L2(Ω), with w · n = 0 on ∂ΩD, and µ = µi in Ωi.173
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2.3 Stabilized FE formulation 2 FLUID FLOW PROBLEM

2.3. Stabilized FE formulation174

The computational domain Ω is discretized by using a mesh made up of175

triangles in 2D or tetrahedrons in 3D. Let Ωh be this discretized domain. The176

velocity v and the pressure p are approximated by vh and ph, which are both177

continuous and piecewise linear functions (P1/P1 approximation). However,178

such an approximation is not stable [8, 3, 29] according to Ladysenskaya-179

Brezzi-Babuška theory. In this work, this difficulty is overcome by using a180

Variational Multi-Scale (VMS) technique [8, 40] consisting in adding some181

stabilization terms to the Galerkin formulation. More precisely, the velocity182

and pressure functional spaces, V ≡ H(∇ ·,Ω) and P ≡ L2(Ω) are split as183

V = Vh ⊗ V ′ and P = Ph ⊗ P ′

where Vh and Ph are the velocity and pressure finite element spaces and184

V ′ and P ′ are the so-called subgrid or unresolvable scale spaces of velocity185

and pressure. Following this approach, the solution (v, p) of the variational186

problem (Eq. 9)-(Eq. 10), as well as the test functions (w, q) are divided as187

v = vh + v′, p = ph + p′

w = wh +w′, q = qh + q′

Subsequently, the variational problem is broken down into a problem at188

the resolvable scale, the finite element problem, and a subgrid scale problem,189

which cannot be explicitly solved. Consequently, the strategy of VMS meth-190

ods consists in approximating the effects of the subgrid scale onto the finite191

element scale, leading to additional terms in the finite element formulation.192

In this work, the Algebraic SubGrid Scale (ASGS) technique is used, a sub-193

type of VMS method developed by Badia and Codina in [8, 9, 25, 37]. The194

subgrid terms are expressed as a function of the finite element residual such195

that, on a mesh element e196

v′
|e ≈ −τu

e(µK−1vh +∇ ph − f)|e (11)

p′|e ≈ −τ ep (∇ ·vh − h)|e (12)

where τu
e and τ ep are stabilization parameters (Eq. 13) on the element e.197

They depend on the mesh size he, the geometry (through L0, a characteristic198

length of the domain Ω), the fluid viscosity, the porous medium permeability199

and the stabilization coefficients cu and cp (in this work, cu = cp = 1). As we200
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2.4 Pressure discontinuity 2 FLUID FLOW PROBLEM

are using P1/P1 approximation, these two parameters are expressed as [2, 8]:201

τu
e =

heK|e

cuL0µ|e

, τ ep =
µ|ecpL0he
Km|e

(13)

with Ke
m an equivalent permeability, chosen as [15]

Ke
m =

1

d
trace(K |e)

Including the subgrid scale effects, the discrete FE system reads: Find202

(vh, ph) ∈ Vh × Ph, with vh · n = v0 on ∂ΩhD, such that203

< µK−1vh,wh >Ωh
− < ∇ ·wh, ph >Ωh

− < ∇ ·vh, qh >Ωh

+
∑

e

τ ep < ∇ ·vh,∇ ·wh >e +
∑

e

τu
e < −µK−1vh −∇ ph, µK

−1wh +∇ qh >e

=< wh · n,n · σcap · n >Γhl/a
+ < wh · n, p0 >∂ΩhN

+ < f ,wh >Ωh
+ < h, qh >Ωh

+
∑

e

τu
e < f , µK−1wh +∇ qh >e +

∑

e

τ ep < h,−∇ ·wh >e

(14)

∀(wh, qh) ∈ Vh × Ph with wh · n = 0 on ∂ΩhD. In this formulation,
∑

e204

stands for the summation over all the mesh elements e.205

Note that when the porous medium is assumed to be isotropic, previous206

formulation (Eq. 14) can be slightly simplified, since the permeability K,207

the stabilization parameter τu and the capillary stress become scalar.208

2.4. Pressure discontinuity209

The capillary stress generates a pressure discontinuity at the liquid/air210

interface. Moreover, for two different liquids the jump of viscosity across211

this same interface leads to a discontinuity of the pressure gradient. In a FE212

framework, these two kinds of discontinuities represent a numerical difficulty213

to be dealt with. A first approach found in the literature consists in circum-214

venting the discontinuity by considering a smooth transition area around215

the interface [16]. The performance of this method depends strongly on the216

smoothing function, on the transition region thickness, and consequently on217

the local mesh size [27]. Since no mesh adaptation strategy is used in this218

work, the liquid-air interface will be identified by a continuous set of seg-219

ments (2D) or triangles (3D) crossing the mesh elements [15, 61] and built220

locally thanks to the level-set front-capturing method described in Section 3.221

10



2.4 Pressure discontinuity 2 FLUID FLOW PROBLEM

This approach allows to integrate the capillary term into (Eq. 14) directly222

on a segment or triangle, using one integration point if the capillary stress223

is piecewise constant. Moreover, additional integration points are considered224

in the elements e crossed by the interface, in order to evaluate accurately the225

term < µK−1vh,wh >e. Thus, in the 2D configuration (Fig. 2), assuming226

that both viscosities of the liquid and air are constant, 3 integrations points227

are used in each sub-element deriving from the element split.228

However, such a split is not sufficient to ensure the accurate capture of229

the pressure and pressure gradient discontinuities. Especially, continuous230

and piecewise linear approximation of the pressure, piecewise linear approx-231

imation of the interface, give rise to the parasitic current phenomenon (even232

if the curvature is not involved in the equations), which consists in spu-233

rious oscillations of the velocity, possibly deteriorating the interface [33].234

Here again, several options are available in the literature to reduce these235

oscillations [23, 30, 55]. In particular, an enrichment of the pressure space236

[6, 20, 26, 42, 43, 44] can be set up, locally in the elements crossed by the237

fluid front. This work considers the pressure enrichment developed by R.238

Ausas et al. [6]. Originally introduced to deal with discontinuities involved239

in Navier-Stokes equations, this technique is applied here to Darcy’s equa-240

tions. This consists in adding, in the elements crossed by the interface, the241

two discontinuous shape functionsM1 andM2 described in Fig. 2 and derived242

as following:243

M1(x) = (1− S(x))χl(x) (15)

M2(x) = S(x)χa(x) (16)

with244

S(x) =
∑

J∈J a

NJ(x) (17)

where NJ is the usual linear shape function associated with node J , χl is245

equal to 1 in the liquid region, to 0 elsewhere, and χa = 1− χl. The set J a
246

corresponds to the element nodes being in Ωa.247

In such elements, the pressure field ph is expressed as248

ph(x) =
∑

J

PJNJ(x) + C1M1(x) + C2M2(x) (18)

where PJ are the degree of freedom associated with the element vertices J ,249

while C1 and C2 are those associated with the discontinuous shape functions250

11



3 FLUID FRONT CAPTURING: LEVEL-SET METHOD

Figure 2: 2D local pressure enrichment and surface reconstruction (inspired of [6]).

M1 and M2. However, since C1 and C2 are defined per element, they can251

be eliminated by static condensation, at the elementary level, prior to the252

final assembly. Therefore, the main advantage of combining the interface253

reconstruction and local pressure enrichment is that the discontinuity gener-254

ated by the capillary stress is treated without increasing the number of final255

degrees of freedom and affecting the computation time.256

3. Fluid front capturing: level-set method257

The moving flow front is captured by a level-set method [57, 69], con-258

sisting in choosing a continuous function, the so-called level-set function,259

ψ(x, t) : Ω× R
+ → R, negative in Ωl and positive in Ωa. Consequently, the260

interface Γl/a is implicitly described as the zero-isovalue of function ψ:261

Γl/a(t) = {x ∈ Ω | ψ(x, t) = 0} (19)

where t denotes the time variable. Note that the gradient of ψ allows the262

computation of the normal vector normal at the interface.263

Assuming the flow velocity v, defined both in Ωl and Ωa, known at each264

instant t ∈ [0, T ] (T is the final time of the simulation), the level-set function265

is then convected according to the hyperbolic equation (Eq. 20):266

∂ψ

∂t
+ v · ∇ψ = 0 ∀(x, t) ∈ Ω× [0, T ] (20)

ψ(x, t = 0) = ψ0 ∀x ∈ Ω (21)

ψ(x, t) = g(x, t) ∀(x, t) ∈ ∂Ω− × [0, T ] (22)

where g(x, t) (Eq. 22) corresponds to the value of ψ to be imposed on the267

incoming boundary ∂Ω− (Fig. 1)268

∂Ω−(t) = {x ∈ ∂Ω | v(x, t) · n < 0},

while (Eq. 21) states for the initial condition at t = 0.269

12



3.1 SUPG formulation3 FLUID FRONT CAPTURING: LEVEL-SET METHOD

3.1. SUPG formulation270

Transport equation (Eq. 20) is solved by a FE technique, using the same271

mesh as for Darcy’s equations. The variational formulation is first obtained272

by multiplying (Eq. 20) by any admissible and smooth enough test function273

and integrating the product over Ω. The time interval is discretized by a set274

of points 0 = t0 < t1 < · · · < tn < tn+1 < · · · < tN , and a finite difference275

scheme in time, the implicit Crank-Nicholson scheme, is then applied to276

(Eq. 20). It results that at each instant tn, ψ(·, tn) is approximated by277

ψh(·, tn) a continuous piecewise linear function. However, the usual Galerkin278

approach is known to be not stable for hyperbolic equations. This issue can279

be avoided by considering a Streamline Upwind Petrov-Galerkin (SUPG)280

method, introduced by Hughes in [19], and consisting in taking the test281

functions in a space different of the shape functions. More precisely, shape282

functions are still the nodal functions NJ already introduced, but the test283

functions, denoted N∗
J , are now defined on a mesh element e, as284

N∗
J = NJ + τ ev ·∇NJ

where the stabilization parameter τ e is chosen as285

τ e =
1

2

he
ve

with he the size of element e and ve the norm of the average velocity in e.286

This modification of the test functions adds, in a consistent way, an up-287

wind artificial diffusion term stabilizing the FE formulation, at least as long288

as the convective term remains under control.289

3.2. Filtered level-set290

For the level-set procedure described below to be effective, the level-set291

function ψ has to be initialized with a specific expression. Let d0(x) denote292

the signed distance function from point x to the initial liquid-air interface293

Γla(0). The initial expression of the level-set function, involved in the initial294

condition (Eq. 21) is then chosen as295

ψ0(x) = ε tanh

(

d0(x)

ε

)

(23)

where ε can be viewed as the thickness of the interface. In practice: ε = 3he.296
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3.2 Filtered level-set3 FLUID FRONT CAPTURING: LEVEL-SET METHOD

Outside a narrow band around the interface, ψ0 quickly tends towards297

the constant values ±ε. Therefore, condition (Eq. 22) to be prescribed on298

the inflow boundary can easily be enforced. Additionally, within this tiny299

band close to the interface, ψ0 is equal, in the first order, to the distance func-300

tion d0. A distance function have, by definition, a unit gradient: ‖∇ d0‖ = 1.301

This property ensures the “control” of the convection term in transport equa-302

tion (Eq. 20) and thus the efficiency of the SUPG stabilization. However,303

the initial ”tanh-like” shape (Eq. 23) is not preserved under the transport304

of ψ with the Darcy’s velocity field v. That is why, as this velocity varies305

abruptly (but continuously) through the liquid-air interface, steep gradients306

of level-set function will develop in its vicinity, and the SUPG stabilization307

will fail. This problem is avoided by periodically reinitializing the level-set308

function: the zero-isovalue is preserved, while the tanh property is applied309

elsewhere. Based on the relation d tanh(x)/dx = 1− tanh2(x), function ψ is310

of the form (Eq. 23) if311

‖∇ψ‖ =

∣

∣

∣

∣

∣

1−

(

ψ

ε

)2
∣

∣

∣

∣

∣

(24)

At a given time tn, the reinitialization step consists in solving iteratively312

the Hamilton-Jacobi equation313

∂ψ̃

∂τ
+ sgn(ψ̃)



‖∇ ψ̃‖ −

∣

∣

∣

∣

∣

∣

1−

(

ψ̃

ε

)2
∣

∣

∣

∣

∣

∣



 = 0 (25)

ψ̃(x, τ = 0) = ψ(x, tn) (26)

until reaching the steady state, i.e. ∂ψ̃/∂τ = 0, corresponding consequently314

to the property (Eq. 24). This state gives the reinitialized level-set func-315

tion. In practice, only a few increments (3 in our simulations) are necessary316

to recover the unit gradient property in the narrow band around the inter-317

face. In (Eq. 25), τ is a time-like variable, and sgn is the regularized sign318

function [57]319

sgn(ψ) =
ψ

√

ψ2 + ‖∇ψ‖2h2e
(27)

Note that, classically, Hamilton-Jacobi equation (Eq. 25) can be consid-320

ered as a transport equation with a right-hand-side, and is then solved in the321

same way as the level-set convection equation (Eq. 20). The reinitialization322
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velocity is equal to sgn(ψ) ∇ ψ̃

‖∇ ψ̃‖
, while the non-linear terms are explicitly323

evaluated at the previous iteration.324

3.3. Time-stepping strategy325

The time-stepping strategy consists, for a given time increment, in solving326

Darcy’s equations, then updating the flow front position by solving the level-327

set transport equation using the Darcy’s velocity, and moving on to the next328

time increment. To sum up, the algorithm coupling Darcy’s and level-set329

problems is as following:330

Algorithm 1 Staggered algorithm for Darcy’s and level-set problems

Require: ψ(x, t = 0) = ψ0 the initial value for the level set function
while 0 < tn+1 < T do

1- Fluid problem:

Find (vh, ph) ∈ Vh × Ph by solving Darcy’s equations (Eq. 14)
2- Flow front problem:

Find ψh by solving the level-set equations
3- Reinitialization problem:

Repeat 3 times: Solving Hamilton-Jacobi’s equations (Eq. 25)
end while

4. Convergence analysis331

The FE model presented in the previous section has been implemented332

in the FE software Z-set [68]. The efficiency of the implementation, as well333

as the accuracy of the approach, are evaluated by an error analysis based334

on the Method of Manufactured Solutions (MMS) [64]. This consists in335

selecting velocity and pressure fields that satisfy Darcy’s equations (Eq. 1)-336

(Eq. 2) and calculating the corresponding right-hand-side terms that are then337

prescribed in the FE problem. Performance of the implementation measures338

the capability of reproducing the initial fields.339

The 2D-computational domain is the unit square Ω = [0, 1]× [0, 1]. The340

analytical pressure field is defined as341

p(x, y) =

{

sin(2πx) sin(2πy) for y < 1
2

sin(2πx) sin(2πy) + σcap for y > 1
2

(28)
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with σcap the scalar value of the capillary stress in the isotropic case.342

343

Replacing (Eq. 28) inside Darcy’s equation (Eq. 1) gives the components344

of the velocity, vx and vy345

vx =
K

µ
2π cos(2πx) sin(2πy)

vy =
K

µ
2π sin(2πx) cos(2πy) (29)

These fields (Eq. 28) and (Eq. 29) satisfy Darcy’s system (Eq. 1)-(Eq.346

2) with the term h taken as347

h = ∇ ·v =
K

µ
8π2 sin(2πx) sin(2πy) (30)

Only one type of boundary condition is considered here, the Dirichlet348

one (Eq. 6): v · n = v0 = 0 on ∂Ω. Thus, the so-called compatibility349

condition is fulfilled, that is350

∫

Ω

∇ ·v dΩ =

∫

∂Ω

v · n dΓ =

∫

∂Ω

v0 dΓ = 0

In all the simulations shown in this section, the pressure jump across the351

line {y = 1
2
} is equal to 1, [p] = σcap = 1, while the ratio K/µ is also unit352

(isotropic case). Pressure and velocity obtained by the FE strategy described353

before are plotted in a 3D-representation in Fig. 3 using an unstructured mesh354

of element size he = 0.0125. The pressure discontinuity is well-captured,355

without apparent oscillations of pressure. This is qualitatively confirmed356

in Fig. 4, where the computed pressure is satisfactorily compared to the357

analytical one along two lines, {x = 1
4
} and {x = 1

2
}.358

Next, a quantitative analysis of the error made on velocity and pressure is359

performed by considering 4 structured meshes of size, respectively, he = 1/20,360

1/40, 1/80 and 1/160. On each of these meshes, pressure error is calculated361

with the usual L2-norm denoted ‖·‖L2 , while velocity error is estimated both362

in L2-norm and in H(∇·)-norm denoted ‖ · ‖H(∇·) (Eq. 31):363

‖u‖L2 =

(∫

Ω

u2dΩ

) 1

2

, ‖u‖H(∇·) =
(

‖u‖2L2 + ‖∇ · u‖2L2

)
1

2 (31)
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(a) Pressure (b) Velocity

Figure 3: 3D-plot of pressure and velocity fields (Eq. 28)-(Eq. 29), obtained by the FE
solution.

The theoretical convergence rates, without discontinuity of pressure, are364

2 in L2-norm both for the pressure and velocity, and 1 in the H(∇·)-norm365

for the velocity [3, 8, 53]. Therefore, three different cases are proposed here:366

a continuous case, corresponding to σcap = 0, in order to assess the Darcy’s367

solver in a classical situation and have a reference situation; two discontinuous368

cases with σcap = 1 as mentioned above, but one without pressure enrichment369

of Section 2.4, and one with this technique. Results are summarized in370

Tables 1-2-3 and Fig. 5.371

Mesh he ‖p− ph‖L2 ‖v − vh‖L2 ‖v − vh‖H(∇·)

20× 20 0.05 0.0213803 0.0839136 6.76775
40× 40 0.025 0.00389416 0.0188836 3.3258
80× 80 0.0125 0.000714466 0.00416498 1.61289
160× 160 6.25 · 10−3 0.000148175 0.00100372 0.812385

Table 1: Error in the L2-norm for the pressure, and both the L2-norm and H(∇·)-norm
for the velocity. Case with a continuous pressure.

We observe that without pressure discontinuity, the convergence rate ob-372

tained is in agreement with the optimal one, since the rate is slightly higher373
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(a) x = 1

4
(b) x = 1

2

Figure 4: Comparison between analytical pressure field (Eq. 28) (continuous line) and
results of simulation (dots), along the lines x = 1

4
and x = 1

2
.

Mesh he ‖p− ph‖L2 ‖v − vh‖L2 ‖v − vh‖H(∇·)

20× 20 0.05 0.0889837 0.109918 7.2842
40× 40 0.025 0.0475362 0.0203123 3.33272
80× 80 0.0125 0.0367567 0.00888546 2.1614
160× 160 6.25 · 10−3 0.0231142 0.00189264 0.906225

Table 2: Error in the L2-norm for the pressure, and both the L2-norm and H(∇·)-norm
for the velocity. Case with pressure discontinuity and no pressure enrichment.

Mesh he ‖p− ph‖L2 ‖v − vh‖L2 ‖v − vh‖H(∇·)

20× 20 0.05 0.0615517 0.0933167 6.94098
40× 40 0.025 0.0211956 0.0247864 3.63211
80× 80 0.0125 0.00571188 0.00801094 1.9443
160× 160 6.25 · 10−3 0.00237119 0.00323276 1.55267

Table 3: Error in the L2-norm for the pressure, and both the L2-norm and H(∇·)-norm
for the velocity. Case with pressure discontinuity and local pressure enrichment.

than 2 for both pressure and velocity in L2-norm, and equal to 1 for the veloc-374

ity inH(∇·)-norm. As expected, the two cases with pressure discontinuity let375

show lower convergence rates compared to the continuous case, especially for376

the pressure. Without enrichment strategy, a sub-optimal convergence rate377
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4 CONVERGENCE ANALYSIS

(a)

(b) (c)

Figure 5: Error analysis: continuous case (a), discontinuous case without pressure enrich-
ment (b) and discontinuous case with local pressure enrichment (c).

of 0.62 is obtained for pressure, corresponding to approximatively 1/3 of the378

theoretical order predicted for the continuous case. However, when enriching379

locally the pressure space, this rate is greatly improved, since jumping up to380

80% of this same theoretical order, with the value of 1.6. Note that, with this381

same enrichment technique, but considered in the context of Navier-Stokes382

equations, Ausas and co-authors [6] obtained a pressure convergence rate383

equal to 75% of the one predicted with a continuous pressure. Hence, we can384

conclude that the numerical approach presented below allow us to describe385

with accuracy the pressure discontinuity when solving the Darcy’s equations386

with a capillary stress applied on the moving flow front.387
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5 NUMERICAL APPLICATIONS

5. Numerical applications388

This section assesses and demonstrates the performance of our numerical389

model in realistic contexts. First, numerical simulations of flows through390

porous media with a very low permeability are carried out, and the interest391

of local pressure enrichment is highlighted. Next, capillary wicking simula-392

tions are performed and the results are compared with experimental studies.393

Finally, a first approach of flows in 3D orthotropic materials is provided394

through the simulation of the filling stage of a T-stiffener during a LRI pro-395

cess. It is also used to demonstrate that simply shifting the pressure at a396

boundary condition by the capillary stress may hold for UD cases, but is not397

satisfactory in terms of filling scenario and results for general 3D cases.398

5.1. Ascending capillary flow and realistic parameters399

The numerical strategy is assessed by simulating a unidirectional flow400

in a porous medium with realistic properties, in terms of permeabilities,401

viscosities and capillary stresses, in the context of composite materials man-402

ufacturing. Thus, the computational domain Ω is a square of 1 meter side.403

The isotropic permeability K is equal to 3.0 × 10−13m2, while the isotropic404

capillary stress, applied on the interface Γl/a ≡ {y = h = 1/2}, is of 32× 103405

Pa. Viscosities are µl = 10−3Pa.s and µa = 10−5Pa.s This pressure is the406

only driving force, since boundary conditions on both planes {y = 0} and407

{y = 1} are set to the atmospheric pressure. The remaining boundaries are408

considered as impervious walls, thus the v ·n = 0 condition is applied on the409

vertical edges of the domain, {x = 0} and {x = 1}. All numerical values of410

material properties and boundary conditions are sum up in Fig. 6.411

In the case of a unidirectional flow, the analytical solution of Darcy’s412

equations is quite simple to determine. Indeed, the pressure is piecewise413

linear, while the velocity is constant. With the notations introduced in Fig. 6,414

the pressure and velocity fields can be written as415

p(x, y) = µl
p1 − p0 − σcap
hµl + (1− h)µa

y + p0 in Ωl

p(x, y) = µa
p1 − p0 − σcap
hµl + (1− h)µa

(y − 1) + p1 in Ωa

vx(x, y) = 0 in Ω

vy(x, y) = −K
p1 − p0 − σcap
hµl + (1− h)µa

in Ω

(32)
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5.1 Ascending capillary flow and realistic parameters5 NUMERICAL APPLICATIONS

Figure 6: Material properties and boundary conditions used in the numerical simulation
of unidirectional flow.

The velocity and pressure fields computed with a structured mesh of size416

he = 1
50

(4800 triangular elements corresponding to 2499 nodes) and an417

interface crossing the elements, are given in Fig. 7 and 8. Two cases are418

considered: without and with the pressure enrichment introduced in section419

2.4. In the first case, the pressure jump is not well-captured at the interface420

(Fig. 7(b)), resulting in a spurious velocity around this interface (Fig. 7(a)).421

On the contrary, the discontinuity of the pressure field is accurately computed422

with the enrichment (Fig. 8(b)) leading to a uniform velocity field as expected423

by Equation (Eq. 32) (Fig. 8(a)). Numerical and analytical values of the424

velocity are identical, and equal to 1.901 × 10−5 m.s−1 in norm. This also425

proves the accuracy of the pressure description. To complete this analysis,426

analytical and numerical pressures have been plotted on the line {x = 1
2
}427

in Fig. 9, for different structured meshes. Again, no pressure oscillation is428

observed.429
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5.1 Ascending capillary flow and realistic parameters5 NUMERICAL APPLICATIONS

(a) Velocity (b) Pressure

Figure 7: Velocity and pressure fields obtained without pressure enrichment

(a) Velocity (b) Pressure

Figure 8: Velocity and pressure fields obtained with pressure enrichment
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Figure 9: Comparison between analytical and numerical pressures, plotted along the line
{x = 1

2
}, for different mesh sizes he.
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5.2 Capillary wicking 5 NUMERICAL APPLICATIONS

5.2. Capillary wicking430

In this section, simulation of wicking in carbon reinforcements is con-431

fronted to experimental data [62, 63]. The only driving force is thus due to432

capillary effects.433

5.2.1. Experimental approach434

Pucci et al. [62] proposed an experimental procedure to determine the435

scalar capillary stress σcap in the three main directions of a unidirectional436

(UD) carbon fabric (Fig. 11). On the one hand, for a given direction, the437

mass of water in the fabric m(t) is recorded over time using a tensiometer.438

Wicking is commonly described by a modified Washburn equation [74] for439

porous media relating mass and time440

m2(t) =

[

(cr̄)φ2(πR2)
2

2

]

ρ2l γ cos θa
µl

t (33)

where c is a constant accounting for the tortuous path of liquid in the equiv-441

alent capillary tube arrangement of mean radius r̄. φ is the porosity and R442

the inner radius of the cylindrical sample holder. The first term in square443

brackets finally represents a geometric factor of the porous medium. ρl and444

µl are, respectively, the liquid (water) density and its viscosity. θa is the445

apparent mean advancing contact angle during the capillary rise and γl the446

liquid surface tension.447

On the other hand, from Darcy’s equation applied to a unidirectional448

flow (Eq. 32) following the assumption of spontaneous impregnation under449

the effect of capillary stress σcap (Fig. 10) the square of the water height h
2(t)450

(see Fig. 11) can be expressed as a function of time451

h2(t) =
2Kσcap
µlφ

t (34)

This expression is easily obtained from the last equation of the analytical452

model (Eq. 32), considering that vy = φdh
dt
, p1 = p0, µa = 0 and integrating453

it with respect to time.454

Taking into account the cylindrical shape of radius R, the mass gain can455

be related to the height by456

m2(t) = h2(t)φ2ρ2l (πR
2)2 (35)

Considering the equivalence between Eq. 33 and Eq. 35, it is then possible457

to describe capillary stress σcap for a given permeability K [62].458
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Figure 10: Capillary wicking in a cylindric quasi-UD carbon reinforcement according to
Darcy law for the three principal directions of the medium.

5.2.2. Numerical simulations and results459

Three 2D numerical simulations of wicking of water into a cylindrical460

quasi-UD carbon reinforcement have been carried out. For each simulation,461

the fabric is oriented in one of the directions x, y or z. Note that consequently,462

each of these simulations is reduced to an isotropic case. The computational463

domain, the 2R × H rectangle described in Fig. 11, is discretized with a464

fixed mesh of 2, 352 triangular elements and 1, 250 nodes. The boundary465

conditions prescribed for this simulation are a zero normal velocity on the466

vertical sides and a pressure of 1 bar on the two other sides.467

The definition of the orthotropic permeability tensor, orthotropic capil-468

lary stress tensor applied on the flow front and identified from experience,469

are given in Table 4, as well as the water and “air” viscosities, the water470

density, the porosity, and the dimensions 2R and H of the computational471

domain.472

In order to have realistic simulations, the porosity has to be taken into ac-473

count in Darcy’s equations. This is achieved by substituting vφ for v Darcy’s474

equations. From the position of the water height h(t) obtained by simula-475

tion, the corresponding water weight is calculated by Eq. 35 and compared476

(Fig. 12), with experimental data and the analytical expression given by Eq.477
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Permeabilities [49] (m2)
Kx 3 ·10−11

Ky 1.5 ·10−11

Kz 3 ·10−13

Capillary stress [62] (kPa)
σxcap 1.15±0.30
σycap 0.51 ± 0.14
σzcap 32.10 ± 11.60

Others
µwater 10−3 Pa.s
ρwater 103 kg.m−3

µair 10−5 Pa.s
φ 0.40
2R 12 mm
H 20 mm

Table 4: Capillary wicking parameters.

Figure 11: Geometrical parameters and boundary conditions of the capillary wicking.
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34-35. It can be shown that numerical simulations and analytical expres-478

sion give comparable results. Therefore, the numerical simulations reflect479

the experimental wicking. It confirms that the numerical model is correct480

since wicking in each main directions were already correctly described by481

the analytical model. However, the key point is that the proposed numerical482

methodology simulates wicking, a transient phenomenon, here in an isotropic483

context, but with realistic values of parameters involved in the model.484

(a) (b)

(c)

Figure 12: Comparison of the time dependent numerical and experimental weight in the
x (a), y (b) and z (c) directions.
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Parameters Values Units
Kt 10−14 m2

Kp 10−12 m2

σtcap 0.3 bar
σpcap 0.01 bar
µresin 0.1 Pa.s
µair 10−5 Pa.s
φ 40%
∆t 100 s

Table 5: Inputs - LRI simulation.

5.3. Full 3D-simulations of LRI process filling stage485

This section investigates the 3D-simulation of the filling stage of a Liquid486

Resin Infusion (LRI) process [15, 22]. More precisely, the objective is to487

evaluate the influence of capillary effects on the resin impregnation. The part488

to be infused is the aeronautic-like stiffener shown in Fig. 13. Furthermore,489

the preform is assumed to have an additional symmetry: two eigen-values490

of the permeability tensor, as well as two eigen-values of the capillary stress491

tensor are equal. Hence, Table 5 gives the values of the in-plane permeability492

Kp, which is a hundred times larger than the transverse permeability Kt. As493

capillary forces are more significant in less permeable media, the capillary494

stress σtcap in the transverse direction is higher than the value in the plan495

σpcap. These values, completed by the resin viscosity, the air viscosity, the496

porosity and the time step ∆t are also provided in Table 5. Figure 13 shows497

the corresponding materials eigen-directions yt and xp on a cutting plane.498

That is the transverse direction and the plane orthogonal to this direction in499

three different areas, allowing to compute numerical values of permeabilities500

and capillary stresses at each integration point of finite elements. Moreover,501

the boundary conditions both in velocity and pressure are given. The resin502

flow front is initialized as the plane {y = 0.5cm}. The flow is driven by503

the difference of pressure between the “inlet” (plane {y = 0}) and the “top”504

(plane {y = 12cm}) boundaries, equal to 105 Pa, and additionally by the505

capillary stress on Γl/a when this is taken into account.506

Regarding the solution for 1D cases, one may question about a simple507

way of accounting for capillary effects by modifying the overall pressure gra-508

dient. Although an extension to 3D is not straightforward, in order to assess509
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Figure 13: Geometrical dimensions and boundary conditions of the stiffener.

also such a basic approach, 3 simulations for the T-stiffener were considered:510

one carried out without capillary effects, one accounting for capillary effects511

by modifying the overall pressure gradient through changing the boundary512

condition in the plane y = 0 : n ·σ ·n = 105 Pa→ n ·σ ·n = 105 Pa+σtcap -513

Modified BC -, and finally integrating orthotropic capillary stresses with the514

proposed method - Discontinuous Pressure-. Figure 14 compares the flow515

front position during infusion for the corresponding three simulations. As516

expected, the part is filled more quickly when the capillary effects are taken517

into account: 1h58 min with the Modified BC approach using the highest518

capillary stress σtcap, 2h 10min with our discontinuous pressure numerical519

model and 3 hours without any capillary effects. One can verify that cap-520

illary effects will help the filling of the preform. Besides, the pressure and521

fluid front kinetics resulting from the approaches integrating these effects522

differ largely.523

More precisely, the pressure computed from the 3 methods are presented in524

Figure 15, for locations along a vertical line {0.01; y; 0.2} as sketched in Fig-525

ure 14b. One can verify that the pressure profiles obtained without capillary526

effects and with the Discontinuous Pressure method are quite close, showing527

the ability of the latter method to capture properly the pressure field out of528

the interface region (pressure gradient) while integrating locally the capillary529

effects. As for the Modified BC, the obtained pressure profile is largely modi-530

fied. Also, it can be noticed that the Discontinuous Pressure approach yields531
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(a) t=1500s (b) t=3000s

(c) t=4000s (d) t=5500s

Figure 14: Numerical results - position of the fluid front during the filling of an orthotropic
stiffener at different times

a pressure jump whose magnitude is a combination of both capillary stresses532

in the transverse and plane directions. This method is intrinsically able to533

account for the capillary stress orthotropy, and the corresponding flow front534

follows the preform principal directions.535

It can be concluded that with the Modified BC method, first the or-536

thotropic character of the capillary effects will not be accounted for by the537

simple overall gradient correction, and second the pressure field will not be538

discontinuous, opposite to the physics of two-phase flows. Consequently, a539

finer analysis is not possible with this approach, and especially it will no540

longer hold for a more exhaustive modelling approach relying on velocity541

and fluid pressure fields. Conversely, the proposed approach with discontin-542

uous pressure will yield relevant pressure and velocity distributions which can543

then be incorporated in more exhaustive approaches of the filling stage in-544

cluding solid-fluid mechanics couplings through the fluid pressure. Of course,545
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Figure 15: Comparison of the pressure fields with the Modified BC - Discontinuous Pres-

sure methods and without capillary effects at t=3000s along a vertical line {0.01; y; 0.2}
plotted in Fig. 14b.

further experimental studies are required to validate and calibrate the nu-546

merical model for industrial-like structures. However, these results show that547

capillary effects may have huge impact on the filling strategy for the out-of-548

autoclave processes targeted here.549

6. Conclusion550

In our macroscale configuration, the capillary action is represented by551

capillary stresses, acting at the liquid/air interface by the mean of the nor-552

mal vector. This stress is weakly enforced in Darcy’s equations as an input553

parameter of the model and generates a pressure jump at the interface. These554

equations are discretized using a stabilized mixed FE method, linear in both555

velocity and pressure. The spurious velocities due to the pressure discontinu-556

ity are limited by using a local pressure enrichment technique. The numerical557

model gives the expected convergence rates, both for velocity and pressure.558

Besides, the 2D isotropic simulations of a capillary wicking of water inside559

a carbon fabric show a good correlation between the numerical results and560

the experimental data, as well as with the analytical model of Washburn’s561

equation. Finally, a full 3D and orthotropic case has been investigated: the562

filling of an aeronautic part with a LRI process. This simulation enlightens563

the influence of the capillary effects on the progress of the filling stage, and564

demonstrates that the overall response is of highest importance, but also the565
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proper representation of the pressure discontinuity is mandatory for velocity566

and pressure fields predictions to be used for solid-fluid mechanics couplings567

for instance [15]. Further experimental studies are now required in order to568

confirm this scenario.569
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[17] J. Bréard, A. Saouab, and G. Bouquet. Numerical simulation of void623

formation in lcm. Composites: Part A, 34:517–523, 2003.624

[18] F. Brezzi, T. J. R. Hughes, L. D. Marin, and A. Masud. Mixed Discontin-625

uous Galerkin methods for Darcy flow. Journal of Scientific Computing,626

22(1-3):119–145, 2005.627

33



6 CONCLUSION

[19] A. N. Brooks and T.J.R Hughes. Streamline upwind/Petrov-Galerkin628

formulations for convection dominated flows with particular emphasis629

on the incompressible Navier-Stokes equations. Computer Methods in630

Applied Mechanics and Engineering, 32(1):199–259, 1982.631

[20] G. Buscaglia and R. Ausas. Variational formulations for surface tension632

capillarity and wetting. Computational Methods Applied Mechanical633

Engineering, 200(45-46):3011–3025, 2011.634

[21] T. Carraro and S. Wetterauer. On the implementation of the eX-635

tended finite element method (XFEM) for interface problems. Archive636

of Numerical Software, 4(2):1–23, 2016.637

[22] P. Celle, S. Drapier, and J-M. Bergheau. Numerical modelling of liquid638

infusion into fibrous media undergoing compaction. European Journal639

of Mechanics -Part A: Solids, 27(4):647–661, 2008.640

[23] J. Chessa and T. Belytschko. An eXtended finite element method for641

two-phase fluids. Transaction of the ASME, 70:10–17, 2003.642

[24] L. Chevalier, N. Moulin, P-J. Liotier, J. Bruchon, and S. Drapier. Ac-643

counting for local capillary effects in two-phase flows with relawed sur-644

face tension formulation in enriched finite element. Preprint, 2018.645

[25] R. Codina. On stabilized finite element methods for linear systems of646

convection-diffusion-reaction equations. Computer Methods in Applied647

Mechanics and Engineering, 182:61–82, 2000.648

[26] H. Coppola-Owen and R. Codina. Improving eulerian two-phase on finite649

element approximation with discontinuous gradient pressure shape func-650

tions. International Journal for Numerical Methods in Fluids, 49:1287–651

1304, 2005.652

[27] T. Coupez, L. Silva, and E. Hachem. Implicit Boundary and Adaptive653

Anisotropic Meshing, pages 1–18. Springer International Publishing,654

2015.655

[28] H. Darcy. Les fontaines publiques de la ville de Dijon. Paris: Victor656

Dalmont, 1856.657

34



6 CONCLUSION

[29] A. Dereims, S. Drapier, J-M. Bergheau, and P. De Luca. 3D robust itera-658

tive coupling for Stokes, Darcy and solid mechanics for low permeability659

media undergoing finite strains. Finite Element Analysis, 94:1–15, 2015.660

[30] M. Discacciati, D. Hacker, A. Quarteroni, S. Quinodoz, S. Tissot, and661

F. M. Wurm. Numerical simulation of orbitally shaken viscous fluids662

with free surface. International Journal for Numerical Methods in Fluids,663

71(3):294–315, 2013.664

[31] T.-P. Fries and T. Belytschko. The extended/generalized finite element665

method: An overview of the method and its applications. International666

Journal for Numerical Methods in Engineering, 84(3):253–304, 2010.667

[32] A. Fumagalli and A. Scotti. An efficient XFEM approximation of Darcy668

flows in arbitrarily fractured porous media. Oil & Gas Science and669

Technology, 69(4):555–564, 2014.670

[33] S. Ganesan, G. Matthies, and Tobiska L. On spurious velocities in671

incompressible flow problems with interfaces. Computer Methods in672

Applied Mechanics and Engineering, 196:1193–1202, 2007.673

[34] G. N. Gatica, R. Oyarzua, and F-J. Sayas. Analysis of fully-mixed finite674

element methods for the Stokes-Darcy coupled problem. Mathematics675

of Computation, 276:1911–1948, 2011.676

[35] C. Geuzaine and J. F. Remacle. Gmsh: a three-dimensional finite677

element mesh generator with built-in pre- and post-processing facil-678

ities. International Journal for Numerical Methods in Engineering,679

79(11):1309–1331, 2009.680

[36] Q. Govignon, S. Bickerton, and P. A. Kelly. Simulation of the reinforce-681

ment compaction and resin flow during the complet resin infusion pro-682

cess. Composites Part A: Applied Science and Manufacturing, 41(1):45–683

57, 2010.684

[37] O. Guasch and R. Codina. An algebraic subgrid scale finite element685

method for the convected Helmholtz equation in two dimensions with686

applications in aeroacoustics. Computer Methods in Applied Mechanics687

and Engineering, 196:4672–4689, 2007.688

35



6 CONCLUSION

[38] R. Helmig, Weiss A., and B. I. Wohlmuth. Dynamic capillary effects689

in heterogeneous porous media. Computational Geosciences, 11(3):261–690

274, 2007.691

[39] T. J. R. Hughes. Multiscale phenomena: Green’s functions, the692

Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and693

the origins of stabilized methods. Computer Methods in Applied694

Mechanics and Engineering, 127:387–401, 1995.695

[40] T. J. R. Hughes. The variational multiscale method - A paradigm for696

computational mechanics. Computer Methods in Applied Mechanics697

and Engineering, 166(1-2):3–24, 1998.698

[41] T. J. R. Hughes, A. Masud, and J. Wan. A stabilized mixed Discontin-699

uous Galerkin method for Darcy flow. Computer Methods in Applied700

Mechanics and Engineering, 195(25-28):3347–3381, 2006.701

[42] S. R. Idelsohn, J. M. Gimenez, J. Marti, and N. M. Nigro. Elemental702

enriched spaces for the treatment of the weak and strong discontinu-703

ous fields. Computational Methods Applied Mechanical Engineering,704

313:535–559, 2017.705

[43] S. R. Idelsohn, J. M. Gimenez, and N. M. Nigro. Multifluid flows with706

weak and strong discontinuous interfaces using an elemental enriched707

space. International Journal for Numerical Methods in Fluids, pages708

n/a–n/a. accepted for publication, DOI: 10.1002/fld.4477.709

[44] S. R. Idelsohn, N. Mier-Torrecilla, N. Nigro, and E. Onate. On the anal-710

ysis for heterogenous fluids with jumps in the viscosity using a discon-711

tinuous pressure field. Computational Mechanics, 46(1):115–124, 2010.712

[45] Y. Jung, S. J. Kim, and W. S. Han. Numerical simulation of RTM713

process using the extended finite element method combined with the714

level set method. Journal of Reinforced Plastics and Composites, 32:308–715

317, 2013.716

[46] S. Koubaa, C. Burtin, and S. Le Corre. Investigation of capillary im-717

pregnation for permeability prediction of fibrous reinforcements. Journal718

of Composite Materials, 50(11):1417–1429, 2016.719

36



6 CONCLUSION

[47] D. Krauss. Two-phase flow in homogeneous porous media - The role of720

dynamic capillary pressure in modeling gravity driven fingering. Mas-721

ter’s thesis, 2011.722

[48] S. Lee and M. F. Wheeler. Enriched Galerkin methods for two-723

phases flow in porous media with capillary pressure. arXiv preprint724

arXiv:1709.01644, 2017.725

[49] M. Li, S. K Wang, Y. Z Gu, K. Potter, and Z. G. Zhang. Evaluation726

of through-thickness permeability and the capillary effect in vaccum727

assisted liquid molding process. Composites Science and Technology,728

72(8):873–878, 2012.729

[50] Y. Liu, L. Wang, X. Liu, and T. Ding. Effects of capillary pressure -730

fluid saturation - relative permeability relationships on predicting carbon731

dioxide migration during injection into saline aquifers. Energy Procedia,732

63:3616–3631, 2014.733

[51] R. Lucas. Rate of capillary ascension of liquids. Kollid Z, 23:15–22,734

1918.735

[52] R. Masoodi and K. M. Pillai. Wicking in Porous Materials - Traditional736

and Modern Approaches. CRC Press, 2012.737

[53] A. Masud and T. J. R. Hughes. A stabilized mixed finite element738

method for Darcy flow. Computer Methods in Applied Mechanics and739

Engineering, 191(25-28):4341–4370, 2002.740

[54] V. Michaud and A. Mortensen. Infiltration processing of fibre reinforced741

composites: governing phenomena. Composites: Part A, 32:98–996,742

2001.743

[55] P. D. Minev, T. Chen, and K. Nandakumar. A finite element tech-744

nique for multifluid incompressible flow using Eulerian grids. Journal of745

Computational Physics, 187(255-273), 2003.746

[56] A. Monlaur, S. Fernandez-Mendez, and A. Huerta. Discontinuous747

Galerkin methods for the Stokes equations using divergence-free ap-748

proximations. International Journal for Numerical Methods in Fluids,749

57:1071–1092, 2008.750

37



6 CONCLUSION

[57] S. Osher and R. P. Fedkiw. Level set methods: an overview and some751

recent results. Journal of Computational Physics, 169(2):463–502, 2000.752

[58] G. Pacquaut, J. Bruchon, N. Moulin, and S. Drapier. Combining a levet-753

set method of mixed stabilized p1/p1 formulation for coupling Stokes-754

Darcy flows. International Journal of Numerical Methods in Fluids,755

69(2):459–480, 2012.756

[59] C. H. Park, A. Lebel, A. Saouab, J. Brard, and W. Lee. Modeling and757

simulation of voids and saturation in liquid composite molding processes.758

Composites Part A: Applied Science and Manufacturing, 42(6):658–668,759

2011.760

[60] R. S. Pierce, B. G. Falzon, and M. C. Thompson. A multi-physics pro-761

cess model for simulating the manufacture of resin - infused composite.762

Composites Science and Technology, 149:269–279, 2017.763
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