Skip to Main content Skip to Navigation
Journal articles

Accounting for local capillary effects in two-phase flows with relaxed surface tension formulation in enriched finite elements

Abstract : This paper introduces a numerical method able to deal with a general bi-fluid model integrating capillary actions. The method relies first on the precise computation of the surface tension force. Considering a mathematical transformation of the surface tension virtual work, the regularity required for the solution on the evolving curved interface is weakened, and the mechanical equilibrium of the triple line can be enforced as a natural condition. Consequently, contact angles of the liquid over the solid phase result naturally from this equilibrium. Second, for an exhaustive representation of capillary actions, pressure jumps across the interface must be accounted for. A pressure enrichment strategy is used to properly compute the discontinuities in both pressure and gradient fields. The resulting method is shown to predict nicely static contact angles for some test cases, and is evaluated on complex 3D cases. (C) 2018 Academie des sciences. Published by Elsevier Masson SAS.
Document type :
Journal articles
Complete list of metadatas

https://hal-emse.ccsd.cnrs.fr/emse-02016311
Contributor : Géraldine Fournier-Moulin <>
Submitted on : Tuesday, February 12, 2019 - 3:57:29 PM
Last modification on : Wednesday, June 24, 2020 - 4:19:15 PM

Links full text

Identifiers

Collections

Citation

Loïc Chevalier, Julien Bruchon, Nicolas Moulin, Pierre-Jacques Liotier, Sylvain Drapier. Accounting for local capillary effects in two-phase flows with relaxed surface tension formulation in enriched finite elements. Comptes Rendus Mécanique, Elsevier Masson, 2018, 346 (8), pp.617-633. ⟨10.1016/j.crme.2018.06.008⟩. ⟨emse-02016311⟩

Share

Metrics

Record views

169