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transformation process of the underlying PSS meta-model using knowledge from case studies 

and the literature. The method has proven to be a practical means for gradual enrichment of the 
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Specifying a modelling language for PSS Engineering – a 

development method and an operational tool 

 

Abstract. Although the literature is full of research on the transition of industry towards Product-

Service Systems (PSS), the question of how to effectively support PSS engineering is poorly addressed. 

The compelling need for decision support throughout the various stages of the engineering process is 

particularly challenging due to the inherent complexity of PSS. In this sense, visualisation and modelling 

at large have been put forth as promising means for supporting PSS engineering. This paper proposes a 

method for specifying a modelling language for PSS engineering, putting together PSS domain-specific 

knowledge and modelling concepts inherited from conceptual modelling and model-based engineering. 

It relies on a recursive transformation process of the underlying PSS meta-model using knowledge from 

case studies and the literature. The method has proven to be a practical means for gradual enrichment of 

the modelling language leading to successful experimentations in the industrial context.  

Keywords: PSS engineering, conceptual modelling, modelling language, domain-specific modelling, 

model-based system engineering.     

1. Introduction 

The industrial transition towards more customer-centric operations, further automation and increasing 

digitalization has fostered the development of new business models such as Product-Service Systems 

(PSS). PSS can be seen as an integrated offering consisting of products and services to meet individual 

customer expectations. While PSS have been widely adopted in many sectors, PSS engineering is still 

hindered by several challenges owing to its inherent complexity. PSS complexity stems from 

combining (tangible) products and (intangible) services within a unique offering. This adds to the 

complexity of the cross-domain PSS engineering process, calling for various skills. Furthermore, 

changing customer requirements suggest a close collaboration among PSS stakeholders (including 

customers) in order to continuously adapt the PSS (Berkovich et al., 2011; Cavalieri and Pezzotta, 

2012; Vasantha et al., 2012; Boucher et al., 2016; Wolfenstetter et al., 2018). Subsequently, proper 

methods and tools are needed to mitigate the engineering process complexity. Hence recent 

research has started to apply the System Engineering (SE) principles to PSS engineering, for 

instance (Trevisan and Brissaud, 2016; Wiesner et al., 2017; Maleki et al. 2018). System 

engineering is defined by the International Council on Systems Engineering (INCOSE) as an 

engineering discipline whose responsibility is creating and executing an interdisciplinary process to 

ensure that the customer and stakeholder's needs are satisfied in a high quality, trustworthy, cost 

efficient and schedule compliant manner throughout a system's entire life cycle. However, viewing 

PSS as a system and using SE principles adds other challenges to the PSS engineering process, due 

to the significant amount of knowledge to be managed (PSS requirements, PSS structure, PSS 

behaviour, life cycle perspective, etc.).    

PSS visualisation has been recognised as an important means for elucidating knowledge throughout PSS 

engineering (Lee and Kim, 2010; Geng and Chu, 2011; Cavalieri and Pezzotta, 2012; Lim et al., 2012; 

Bertoni et al., 2013; Wolfenstetter et al., 2018). The elucidation process allows for sharing a 



common understanding among the PSS stakeholders of the whole PSS including the functional 

domain (value expectation) and solution domain (value proposition) (Meier et al., 2010; 

Wolfenstetter et al., 2018). The prerequisite of the elucidation process is to enable smooth 

integration of different domain-specific models into a holistic and comprehensive PSS 

representation.    

To cope with such integration, conceptual modelling as a (formal) representation of systems has been 

identified as one major method which can be used for developing models, languages and methods easing 

knowledge sharing across multi-disciplinary designers or researchers (Mylopoulos, 1992; Karagiannis 

and Heinrich, 2016; Bock et al., 2017).  

This paper proposes a method for specifying a modelling language for PSS engineering, putting 

together PSS domain-specific knowledge and modelling concepts inherited from conceptual 

modelling and model-based engineering. The method has proven to be a practical approach for gradual 

enrichment of the modelling language. It relies on a recursive transformation process of the underlying 

meta-model, integrating knowledge extracted from several case studies and the literature.     

The remainder of the paper is organised as follows: section 2 provides a state of the art focusing on PSS 

engineering and providing basic modelling concepts for the method proposed. Section 3 elaborates a 

method for building a PSS modelling language. Section 4 applies the method within an industrial 

context, based on knowledge extraction from several case studies. The resulting modelling language and 

its implementation are presented in Section 5. Section 6 discusses the proposed method. Concluding 

remarks are presented in Section 7.  

2. State of the art and research method 

2.1. PSS engineering complexity and the need for visualisation methods 

PSS engineering has received a great deal of attention from the scientific community due to its inherent 

complexity. The last decade witnessed an increasing number of publications dealing with PSS 

conceptualisation and PSS engineering (Meier et al., 2010; Berkovich et al., 2011; Cavalieri and 

Pezzotta, 2012; Beuren et al., 2013; Wiesner et al., 2015; Qu et al., 2016; Marques et al., 2017). 

However, while much of this research work argues about the multidimensional intrinsic nature of 

PSS, operational guidance for PSS engineering is still scarce, owing to the lack of tools supporting 

PSS understanding and evaluation (Meier et al., 2010; Vasantha et al., 2012; Beuren et al., 2013; 

Wolfenstetter et al., 2018).   

Unlike traditional products, PSS design calls for a cross-domain engineering process relying on 

various backgrounds related to product and/or service design (Vasantha et al., 2012; Wolfenstetter 

et al., 2018). This comes with a major challenge: how to integrate the contributions of 

engineers/stakeholders from different backgrounds into the design of a successful PSS. Most of the 

models used by the engineers are domain-specific (CAD models, service blueprints, simulation 

models, etc.) each representing a single perspective of the PSS. This is likely to impede the 

communication and the collaborative development of the PSS (Wiesner et al., 2017; Wolfenstetter 

et al., 2018). Furthermore, changing customer requirements calling for PSS customisation require 

good traceability allowing for easy mapping of the PSS components in the requirements (Meier et 

al., 2010; Marques et al., 2017; Hribernik et al., 2017; Khan and Wuest, 2018; Wolfenstetter et al., 



2018). Subsequently recent works have started to promote system engineering as a means to foster PSS 

engineering and thus development in the manufacturing sector. This is consistent with the nature of PSS 

which is intrinsically a system and needs to be addressed throughout its life cycle (Cavalieri and 

Pezzotta, 2012; Trevisan and Brissaud, 2016; Wiesner et al., 2017; Maleki et al. 2018). While SE was 

originally intended for designing complex technological systems, its potential in the PSS domain has 

been made apparent in several research works. Trevisan and Brissaud (2016) developed an integrated 

modelling framework aimed at putting together existing models from product design and service design 

domains. Maleki et al. (2018) proposed a PSS meta-model to support PSS design following the System 

Engineering approach. In the proposed meta-model, both the PSS and its supporting system are modelled 

considering a life cycle perspective.  

As a corollary to this, visualisation as a means to graphically represent PSS, is put forth as a 

promising way to mitigate design complexity and support communication among PSS stakeholders 

(Sakao and Shimomura, 2007; Geum and Park, 2011; Vasantha et al., 2012; Bertoni et al., 2013; Qu et 

al., 2016). This is evidenced by the significant piece of literature dealing with PSS visualisation (Lim et 

al., 2012; Bertoni et al., 2013; Durugbo et al., 2011). 

Although several works have contributed to advancing the research in the PSS visualisation domain, a 

comprehensive approach covering PSS dimensions is still missing as the focus has often been on a 

particular PSS aspect, e.g. service activities (Sakao and Shimomura, 2007; Geng and Chu, 2011; 

Geum and Park al., 2011), requirements and PSS functions (Lee and Kim, 2010), PSS life cycle 

perspective (Wiesner et al., 2015; Wellsandt et al. (2017). Therefore, there is a compelling need for 

methods and tools to support PSS visualisation along the engineering process. The ultimate goal is 

thus to enable more informed decisions and to build a common understanding of the PSS 

envisioned. Furthermore, most of the contributions available provide evidence of the applicability of the 

visualisation techniques; however the elaboration methods of the visualisation techniques and modelling 

language are usually implicit. The objective of the current paper is to frame a comprehensive PSS 

modelling language and to specify the elaboration method thereof.  

Building on the inherent complexity of PSS and the underpinning system view, the next section gives an 

overview of the modelling concepts and principles which provides the foundations for the specification 

and implementation of a PSS modelling language supporting its engineering process.       

2.2. Conceptual modelling and modelling concepts 

The aim of this section is not to perform an exhaustive literature review on modelling, but merely 

to introduce relevant modelling concepts supporting the formalisation of a new PSS modelling. In 

this sense, conceptual modelling was identified as an appropriate context for discussing modelling 

concepts. The appropriateness of conceptual modelling to large-scale and complex modelling and 

simulation problems has fostered its use among various communities (Karagiannis et al., 2016; Bock et 

al., 2017). Conceptual modelling can be defined as the activity of formally describing some aspects of 

the physical and social world around us for purposes of understanding and communication 

(Mylopoulos, 1992). Conceptual modelling is closely related to formal representations of systems which 

supports integration across engineering domains (Klinger and Becker, 2012; Bock et al., 2017). 

According to Becker et al. (2010), conceptual modelling eases the communication among 

interdisciplinary project teams due to its formality in representing a system. This characteristic is 



consistent with PSS engineering which involves cross-disciplinary teams with backgrounds in product 

design, service engineering, management, marketing, etc.  

It can be inferred unambiguously from the Mylopoulos definition that conceptual modelling relies on 

representing systems using models. Jouault et al. (2008) see a model as a representation of a system 

which captures some of its characteristics and provides knowledge about it. Complementarily, Silva 

(2015) defines a model as an abstraction of a system under study which may already exist or is intended 

to exist in the future. Selic’s (2003) definition introduces the viewpoint of models for understanding a 

system; he sees a model as a reduced representation of some system that highlights the properties of 

interest from a given viewpoint. Models support the definition of a common vision and sharing 

knowledge among different stakeholders. Model definitions and characteristics including abstraction, 

knowledge sharing and viewpoints, are consistent with PSS peculiarities, in particular the need to 

visualise such a complex system in a way to support its engineering process.  

Usually, models are formally developed using modelling languages. The latter can be defined as a set of 

possible models that are conformant with the modelling language abstract syntax, represented by one or 

more concrete syntaxes and that satisfy a given semantics (Silva, 2015). The abstract syntax refers to a 

meta-model which is also referred to as a model of a model. Silva (2015) defines a meta-model as a 

model that defines the structure of a modelling language. Concrete syntax refers to the graphical 

notations used by the modelling language. Depending on the modelling language scopes, these can be 

General Purpose Modelling Languages (GPML) or Domain-Specific Modelling Languages (DSML). A 

GPML, as a set of generic modelling concepts, is assumed to be independent from any particular 

domain. A commonly used example of GPML is the Unified Modelling Language (UML). Adversely, a 

DSML enriches modelling concepts with domain-specific knowledge and is relevant to such specific 

domains (Frank, 2010).  

Klinger and Becker (2012) introduced a formal modelling approach to represent product and 

service portfolios. They highlight the need for formally representing the interdependencies 

between product and service portfolios (inter-tree dependencies) and within product and service 

portfolios (intra-tree dependencies). The resulting notations are expected to support PSS 

configuration. Becker et al. (2010) investigated the potential of existing conceptual (reference) 

models to PSS representation. They came to the conclusion that several constructs embedded in 

the models available fit into some areas in the PSS domain. However their analysis uncovered 

several shortages of existing models, namely, integration of products and services, and 

inappropriateness of service-oriented models to product and vice versa. Becker et al. (2010) argue 

that one way of addressing these issues is to integrate modelling languages. This could be enabled 

through merging the meta-models of different modelling languages into a new meta-model and 

then instantiating conceptual models that are compliant with the new meta-model (Becker et al., 

2010).        

In light of the gaps identified in the literature, the aforementioned concepts will be useful for both 

the process for building the PSS modelling language (section 3) and specifying the modelling 

language (sections 4 and 5).  

 

 



2.3.Research method  

The objective of the research method is to specify a PSS modelling language while building on case 

studies and literature In case studies researchers develop an in-depth analysis of a case, often a 

program, event, activity, process, or one or more individuals (Creswell, 1994). This choice is due to 

the lack of integrated models covering the various PSS dimensions, also illustrated in the literature 

review findings. The aim is thus to explore use cases in order to derive concepts relevant to the 

current study, following an iterative process defined in section 3. A multiple case study was chosen 

for the sake of robustness of the results. Data from the case studies are collected through 

interviews, work meetings and reports. These data support a progressive specification of the 

modelling language. In order to ensure more consistency, the output from the case studies is 

confronted to reference models from the literature so as to check, improve and/or validate it. 

Complementarily, a final validation of the industrial applicability consists in experimenting the 

modelling language in an industrial context, as reported in section 5.2. This subsequently allows 

for extension of the body of knowledge in the literature on PSS engineering with empirical 

findings.   

3. Iterative process for building a modelling language for PSS engineering 

3.1.Overview of the method 

This section elaborates on a method for developing a DSML supporting PSS engineering. The proposed 

modelling method is intended to support the PSS representation in a comprehensive way by covering 

different perspectives of the PSS engineering scope. The ultimate objective is to enable PSS 

representation so as to support the communication and sharing of a common understanding of the PSS 

solutions by the various stakeholders, throughout the engineering process. The method relies on an 

iterative process driven by industrial PSS case studies and reference models from the literature. The 

process basically consists in gradual enrichment of meta-models with knowledge from use cases and 

existing literature. Figure 1 shows the inputs, outputs, controls and mechanism of the elementary activity 

of the iterative process, following the IDEF0 standards (National Institute of Standards and Technology, 

1993). For a set n of use cases, the iterative process consists of a series of n elementary processes 

namely, Process use case i, with i ranging from 1 to n. Process use case i consists in applying an initial 

meta-model i-1 (the input) to a given use case i, in order to extend the scope of the meta-model i-1. The 

output is an extended meta-model i.  

 

Figure 1: Elementary activity of the iterative process 



The transformation process impacting factors are represented by the controls of the elementary process 

(Figure 1) namely, domain-specific knowledge, modelling language, reference models, and evolution 

patterns. The iterative process uses UML – Unified Modelling Language in order to formally represent 

knowledge from use cases. UML is a general purpose and object-oriented modelling language, whose 

specifications are detailed by the Open Management Group (OMG) (OMG, 2017; Silva, 2015). The 

domain-specific knowledge is basically built upon data collected from use case reports and information 

system software tools and through interviews with personnel from the use cases. The reference models 

refer to PSS models existing in the literature which may be used to extend the meta-model (e.g. Lim et 

al., 2012). In the event that no explicit models are discussed, relevant PSS-related concepts may be 

derived from conceptual or review papers (Cavalieri and Pezzotta, 2012). The extension is enabled 

by an iterative transformation of the meta-models supported by the evolution patterns. These patterns 

can be defined as a set of rules for adapting a given (meta-) model towards more generic ones with 

extended scopes. Three main patterns are used namely generalisation, specialisation and grouping. 

Generalisation consists in identifying a new concept embedding common inherent properties of different 

concepts. Specialisation refers to breaking down a general concept into several concepts, each reflecting 

a specific piece of domain-specific knowledge. Grouping consists in creating a pool of concepts sharing 

common properties in a given context. The basic activity of the proposed method namely ‘Process 

use case i’ (see Figure 1) is detailed in Section 3.3, titled model transformation process. For the 

sake of readability, the supporting modelling platforms are presented beforehand, in Section 3.2. 

3.2.Supporting modelling platforms   

The supporting platforms are represented by the mechanisms of the elementary process (bottom arrows). 

The process is supported by a UML modelling platform and a meta-modelling platform. The former 

allows for building and updating meta-models while the latter supports the implementation of the meta-

models and the application to use cases.  

To illustrate the subsequent steps (i.e. details of the iterative process and model transformation), it is 

worthwhile providing an overview of the software platforms supporting meta-model implementation and 

application to use cases. To build and update meta-models, the Eclipse Luna platform was selected and a 

plug-in to build UML class diagrams consistently with OMG standards was installed. For meta-model 

implementation and application, an open meta-modelling platform was selected, namely ADOxx. This 

platform is consistent with a meta-modelling approach that was developed within the framework of the 

Open Models Laboratory (OMiLAB) (Karagiannis et al., 2016). The abstraction layers supporting the 

meta-modelling approach are shown in Figure 2.   

 

Figure 2: Abstraction layers in meta-modelling, adapted from (Karagiannis et al., 2016) 



The ADOxx platform provides a powerful development and modelling toolkit enabling, respectively, the 

implementation of a given meta-model in a library and the use of this library as a modelling tool to 

instantiate the meta-model using use cases. Unlike most of the meta-modelling platforms, ADOxx 

provides very useful graphical modelling facilities. Additionally it allows a smooth back and forth 

process for updating the meta-model layer based on requirements from the modelling layer and vice 

versa.  

3.3.Model transformation process 

Figure 3 shows the details of the elementary process described above. For a given use case i, the 

transformation process starts with modelling the PSS scenario using an UML modelling platform (step 

A0-1), resulting in a draft meta-model i. Reference models from the literature can be used as a starting 

point or to enrich the meta-model if additional concepts (or associations) are needed. The basic tool for 

evolving a meta-model i-1 is evolution patterns, which are applied according to the need of use case i 

beyond meta-model i-1.  

The resulting draft meta-model i is then implemented in the ADOxx platform (step A0-2). The 

implementation consists in transforming the meta-model described using UML class diagrams into an 

ADOxx library. Model transformation is quite straightforward as the library relies on object-oriented 

modelling. UML classes and associations are respectively represented by class objects and association 

class objects within the meta-modelling library. Additional attributes are available in the ADOxx library 

for the class object for graphical and calculation purposes. The different association types in UML can 

be modelled using constraints in the ADOxx library.  

The output of step A0-2 is an ADOxx library of the draft meta-model specifying a modelling language. 

The subsequent step, A0-3, consists in building an instance of use case i using the ADOxx platform. In 

other words, use case i is modelled consistently with the draft meta-model i using the ADOxx library. 

The instance resulting from step A0-3 undergoes a consistency check in step A0-4, in order to see 

whether the concepts used in modelling the instance are still consistent with meta-model i-1. This 

ensures a gradual extension of the scope of the method without losing consistency. If the consistency 

check suggests that refinements are required, then an update of use case i meta-model is needed (step 

A0-5). Similarly to step A0-1, the refinement uses evolution patterns. The result of step A0-5 is a refined 

meta-model i. Inconsistencies may happen in the event that some relevant objects or associations 

are lost when applying the evolution pattern, leading to narrowing of the scope of the meta-model. 

For example when applying the generalisation to introduce a generic service concept, one may lose 

a useful piece of information on specific service types. In this case, it is worth keeping service types 

as several concepts (object classes) in addition to the generic service concept.         



 

Figure 3: Implementation and iteration process details 

4. Building a modelling and visualisation language for PSS engineering – 

case study  

4.1. Overview and use cases 

This section provides an overview of the application of the method and presents the three use cases 

which helped in developing a PSS modelling language. The development process spanned over one 

year involving the authors and other contributors. The development team includes domain-

specific experts, researchers with background in model-based engineering and conceptual 

modelling, and software engineers.  

The iterative process is jointly driven by three use cases linked to industrial research projects and by 

reference models from the literature. Each of the three research projects involves both industrials and 

academics including the authors’ team. The three projects share a common general objective that is to 

design an industrial PSS-oriented offering. The three use cases from the three projects belong to different 

sectors and have different sizes and challenges. Consequently, they involve different complexity levels 

of the PSS engineering process.  

Within the current case study, the aim of building a modelling language for PSS engineering is multi-

fold: first, foster the reuse of the models representing PSS over many projects, second, contribute 

towards well informed decisions, third, ease the communication among the multi-disciplinary actors 
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involved in the engineering process (internally), and other stakeholders such as public institutions to 

promote the PSS potential (externally).  

The real names of the use cases and the projects will not be disclosed for confidentiality purposes. All 

three cases involve manufacturing companies and are in the business-to-business context. In the 

following, the use cases are presented and the PSS solution is briefly mentioned. However, the details of 

the engineering process will not be reported on (Table 1). 

Table 1. Overview of the use cases 

 Use case 1 – C1 Use case 2 – C2 Use case 3 – C3 

PSS function Water-saving sanitary 

equipment for healthcare 

facilities  

Analysis of the physical 

properties of extracted 

stones for quarry 

production companies 

Recycling steel sludge  

PSS content  Shower head & 

maintenance services 

Laser video system, with 

traceability and 

maintenance services 

Compacting and 

briquetting equipment & 

maintenance services 

PSS provider 1 SME 1 SME 1 equipment provider (A1) 

PSS customer Hospital  Stone quarry companies Machining company (A2) 

Other actors    PSS product customer 

(A3) 

Customer 

involvement  

Minor Strong Strong 

  

The first use case, C1, is a small SME (Small and Medium-sized Enterprise) providing water-saving 

sanitary equipment for healthcare facilities. The PSS project relies mainly on the efforts of C1. Other 

actors such as the customer (hospital) are only partly involved through a few interviews moderated by 

C1. The authors’ team is also involved by defining services and potential PSS scenarios. C1 struggles to 

define an attractive offer for its main customer, a local hospital, involving a shower head and some 

cleaning and maintenance services. Such an innovative solution is coupled with a modular shower head 

easing the maintenance and spare part replacement. The envisioned PSS scenario involves C1 who will 

take care of all services for the hospital and a sub-contractor who will provide the shower head.  

The second use case, C2, is an SME providing equipment to the quarry production market. The PSS 

project involves both the provider (C2) and the customer. The authors’ team is also involved and 

supports usage analysis, service catalogue definition, and PSS scenario definition and assessment. The 

envisioned PSS solution consists of a conveyor integrating a laser video system to enable the analysis of 

the physical properties of the extracted stones. The two PSS scenarios envisioned consist namely of a 

sales-oriented and a use-oriented PSS. In each of the scenarios a set of services is provided which 

basically relates to the maintenance of the technical system and performance data recording. Unlike C1, 

where the customer role is minor, PSS relies here on strong customer involvement during both PSS 

design and operation.  

The third use case, C3, consists of a consortium of several actors led by a research and development 

institution. The consortium involves an equipment manufacturing company (A1), a machining company 

(A2), and a smelting company (A3). The authors’ team is involved as a sub-contractor supporting usage 



analysis, service catalogue definition, and PSS scenario definition and assessment. The PSS project is 

driven by an innovative idea impacting the whole value chain of machining sludge. The idea consists of 

using a PSS-oriented offering to process the machining sludge generated by A2 using special equipment 

provided by A1. This would give rise to sellable briquettes made of the machining sludge which can be 

sold to A3. The PSS backbone is the briquetting equipment and maintenance services. Several scenarios 

were identified, each of which characterised by a different assignment of the roles to the actors of the 

value chain. However, the typical set of value creation activities is the same over the scenarios namely, 

manufacturing the equipment and using it to produce briquettes out of machining sludge. The equipment 

can be sold or rented to A2. The briquettes are sold to A3.        

In all three cases, the work of the authors’ team is closely related to the designers who focus on the 

tangible part of the PSS. A continuous interaction process took place in order to identify suitable 

services complementing product functions and increasing the value for both the customer and PSS 

provider.    

The next two paragraphs illustrate the application of the method (§4.2) and elaborate on how 

reference models from the literature have fostered the development process (§4.3), respectively.       

4.2.Iterative development process  

This section reports on the general steps of the iterative process focusing specifically on the meta-model 

transformations brought by domain-specific knowledge.  

PSS literature reveals a general agreement on some general requirements of the PSS engineering 

process. In particular, the PSS offering (including products and services), the actors involved and the 

infrastructure are put forth as a backbone for PSS design and development. These requirements provide a 

first set of guidelines to establish meta-model 0. Use case C1 scenario is in line with these requirements 

and allows for some of them to be refined, in particular the infrastructure. Figure 4 shows the resulting 

meta-model 1 and an instance of use case 1.     



 

Figure 4: Use-case 1 derived meta-model  

In the case of C1, there is no accurate insight into the scenario in terms of specific activities of each 

stakeholder of the PSS. This is partly due to lack of involvement of the various potential actors 

supporting the PSS. Furthermore, a clear vision of the performance indicators that might be used to 

evaluate the scenarios is missing within use case 1. The implementation of the meta-model in an ADOxx 

library is quite straightforward and no specific focus was put on graphical notations. The aim at this 

point is to provide a readable model.    

Within use case 2, the offer includes both PSS and sales contracts, thus the contract concept was 

extended through a generalisation. PSS and sales contracts are inherited from a newly created parent 

class named contract. Furthermore, unlike C1, C2 is interested in a more established list of services with 

different types. Thus, a specialisation of services is introduced classifying them into training, 

maintenance and installation. This principle is consistent with the domain-specific knowledge as service 

packages are commonly used in both PSS and service industries. Similarly, product grouping can be 

used to put together product components or products sharing the same characteristics and which can be 

considered as one object. Basically, service and product groupings aimed at reinforcing use case instance 

readability.  

C2’s vision of the PSS scenarios is more advanced than C1, particularly due to the involvement of 

potential customers within the PSS project. Thus C2 is concerned with an assessment of the economic 

and operational performances of the scenario. This requires a set of economic indicators associated to 

contracts (to measure revenues) and activities (to measure costs), and operational performance indicators 



related to the activities (e.g. inventory). In addition, specific data on the operators within the PSS 

scenario led to the introduction of an operator concept associated to the activities and services. 

These extensions resulted in a more loaded model with additional concepts and associations. In order to 

keep the readability of the meta-model and subsequent instances, the meta-model was broken down into 

two views, namely demand and offer, and performance evaluation. These adaptations resulted in meta-

model 2 which was implemented in an ADOxx library allowing to easily model PSS scenarios of both 

C2 and C1. The graphical notations are still basic at this point.       

Use case 3 boosted the development of the modelling language further due to its wealth and  PSS 

scenario maturity. As mentioned in the use cases overview, the PSS project involves multiple actors as 

the PSS spans over a major part of the machining sludge value chain. Several PSS scenarios were 

identified with different actor responsibilities. This required the introduction of a new concept in order to 

decouple activities from PSS actors so as to ease the configuration of the PSS scenarios. The newly 

added concept is named role, it links a set of activities to a given actor. Furthermore, the detailed 

information about the activities enabling a given service led to the extension of the activity concept 

through a generalisation. The activity became an abstract class from which inherit production and 

service activities.  

While the implementation of meta-model 3 in an ADOxx library was straightforward, using this latter to 

model the PSS scenario of use case 3 did reveal some issues. In particular, the complexity of the model 

induced by the high number of interconnected concepts impedes the readability of the model. 

Consequently, meta-model 3 was broken down into 7 viewpoints, namely, demand, product, service, 

offer, organisation, activities, and scenario. All first six viewpoints provide the foundation for building 

the scenario viewpoint, in this sense they are used as pools of useful objects for scenario configuration. 

The graphical notations were also improved through identifying a colour protocol. Obviously, these 

adaptations are due not only to use case 3 but also the modelling experience acquired throughout use 

cases 1 and 2. The resulting meta-model 3 is shown in Figure 5. 

 
Figure 5: meta-model 3 



4.3. Contributions from the literature  

The previous section illustrates how the PSS meta-model can be extended recursively through applying 

the method to use cases. By applying the same model transformation approach, the meta-model can be 

enriched with PSS modelling concepts from the scientific literature. This section shows a single iteration 

of the method involving the concepts from literature rather than case studies. In the area of PSS 

engineering and design, several state of the art papers emphasise various modelling methods (Becker et 

al., 2010; Cavalieri & Pezzotta, 2012; Vasantha et al., 2012; Qu et al., 2016). To achieve further 

exhaustiveness, a review of the literature was pursued using the following keywords: e.g. PSS 

conceptual models, PSS generic models, PSS meta-model, PSS design support tools, PSS modelling 

method, PSS representation. This resulted in around 50 papers, mostly published before 2018 given 

the period when this step was carried out. This set of contributions was further filtered in order to i) 

eliminate papers which do not provide enough conceptual insights on the models considered, and ii) avoid 

redundancy. This filtering resulted in a list of 10 papers, grouped below according to the modelling 

approaches discussed. Table 1 summarizes these results. 

 

Table 2. Selected PSS modelling approaches 

PSS Modelling 

Approach 

Description References 

Extended Product 

Service Blueprint 

Extensions of the “Service Blueprint” using BPMN (Business Process Modelling 

Notations) have been developed to take advantage of service-oriented concepts but 

also include product-oriented features to support service activities. This category 

refers to both ‘Extented Service Blueprint’ by (Hara et al., 2009) and ‘Product-

Service Blueprint’ by (Geum and Park, 2011). 

(Hara et al. 2009; Geum 

and Park, 2011)  

PSS Layer Method A multi-layer modelling framework which defines a meta-model of nine classes for 

a PSS. The framework provides a structured documentation to highlight 

requirements and tasks for PSS design. 

(Müller et al., 2010) 

Integrated Life Cycle A modelling technique based on an integration of product lifecycle into service 

lifecycle. It also integrates a set of parameters to model cost, resource consumption 

and states of the product and the customer. 

(Yang et al., 2010; Aurich 

et al., 2006) 

Functional Hierarchy 

Modelling 

A modelling technique that focuses on the representation of PSS functions. A novel 

PSS typology is suggested based on the level of integration between products and 

services and on the dominant PSS revenue mechanism. 

(Van Ostaeyen, 2013)  

Service Engineering A multi-model framework for PSS design which allows the representation of 

critical concepts such as value, costs and functions of products or services. Both 

qualitative and quantitative models are used. They are distributed into 4 views: flow 

model, scenario model, scope model and view model.  

(Sakao and Shimomura 

2007; Sakao et al. 2009) 

PSS Multi-View 

Modelling 

Framework 

A multi-view modelling framework that combines both models used in product 

engineering and service engineering domains consistently with a systems 

engineering approach. The framework is focused on detailed design phases and 

supports interactions of PSS actors involved in the design process. 

(Trevisan and Brissaud, 

2016) 

IPS² Metadata Model A metadata reference model for PSS lifecycle management based on an analysis of 

the requirements of PSS providers and customers, and the different types of PSS. 

(Abramovici et al., 2009) 

 
The 10 key papers were analysed to extract useful pieces of knowledge and formalise this into several 

models represented using UML class diagrams. These models will support the extension of the PSS meta-

model (Figure 5) through evolution patterns.  

For illustration purposes Figure 6 shows a model derived from the Extended Product Service Blueprint. 

Basically both the extraction of the knowledge and the use of the resulting model to extend the PSS meta-

model involve domain specific experts. For instance, the concepts ‘Function’ and ‘Activity’ show an 

improvement potential for the PSS meta-model. Function allows for describing PSS requirements 

regardless of the design solution, be it a product or service. This helps to broaden the design solution 

space so as to unleash the potential of product and service integration. Furthermore, with Activity being 



limited to three types in the PSS meta-model, the derived model helps to cover further activity types. This 

is likely to help in clarifying PSS actor roles within value creation networks.  

 
Figure 6: Extended Product Service Blueprint model 

 

Following the same process as above, several additional concepts were identified and used to extend the 

PSS meta-model, some examples are provided in the following.   

− Periphery represents a secondary product supporting the delivery of the PSS core products.  

− Value specifies the expected benefits for the customers out of the PSS.  

− Use profile characterises a dominant customer behaviour using PSS core product which could 

provide valuable information for defining services (customer autonomy, dependence, etc.).  

The process of knowledge extraction from the literature led us to create two additional views and to 

consider changes in many concepts of the existing views. The final meta-model resulting from both the 

three industrial case studies and the integration of concepts from the PSS literature is presented in the next 

section. 

5. A modelling language for PSS engineering 

5.1.  Meta-model overview  

The PSS meta-model is structured into nine complementary modelling views (Figure 7). Each view 

comprises a set of specific concepts supporting a given area of the PSS design.   

 

 



 

Figure 7: Modelling views 

The Requirement view is aimed at capturing the end user value and functional expectations and translating 

them into a hierarchy of functions. The remaining views define the way to answer this function hierarchy. 

These views can be understood by referring to two main perspectives. The first perspective gathers four 

views dedicated to model the ‘PSS Structure’. All the basic components required to define the architecture 

of the PSS offer and the associated delivery network are characterised through these four views: 

• Product view is aimed at representing the overall structure of the core products, as well as the 

periphery products which support them, and to capture key technical features of these components 

resulting from the design decisions. 

• Service view supports the progressive specification of services that can be delivered by the PSS 

provider throughout the PSS offer lifecycle (requirements, deployment, operation, retirement). 

• Activity view represents the processes and activities required to build the PSS value chain. At this 

level, the value chain is still not configured, but all potential processes and activities are identified 

and characterised. 

• Organisation view describes the required capabilities for PSS provision (collective capabilities of 

the firms) which are offered by the potential actors of the value chain. Two types of organisational 

actors characterise this view: internal and external actors (internal actors correspond to 

departments of the focal company of the PSS value chain). Any organisational actor can have one 

or more resources and can be characterised by its capability to take charge of a set of activities of 

value creation. 

The second perspective gathers four additional views, dedicated to model the behavioural and dynamic 

features of the PSS offer. The final objective consists in modelling key dynamic aspects of alternative 

value chains configured to deliver the PSS offer. These characteristics are also linked to further design 

decision-making supports which are not within the scope of this paper. 

• Demand view characterises the potential PSS markets and potential customer classes with specific 

use profiles.  

• Offer view is used to specify the various alternative PSS offers which can be defined through 

combining objects from Product, Service and Demand views. Depending on the PSS offer 

content, alternative contracts can be defined specifying the economic model associated to the offer 

(use-, result- or performance-oriented contracts).  



• Performance view defines sets of performance indicators to express PSS actor expectations from 

the PSS (economic, environmental, etc.).  

• Scenario view is crucial in the design process as it allows for alternative PSS value chains to be 

specified by sharing the responsibilities among PSS actors. The scenario is defined by two main 

attributes: (1) a specific offer associated with a selling contract (detailed in the Offer view), and 

(2) an assignment of different roles to the PSS actors involved in the value chain depending on 

their capabilities.  

 

All nine views are described by the meta-model in Figure 8.  

 

Figure 8: Resulting meta-model  

 

 



5.2.Modelling tool: implementation and first experimentations  

The modelling tool was developed iteratively as the proposed method suggests the implementation of each 

meta-model in an ADOxx library. These libraries are intermediary versions of the modelling tool. The 

resulting tool is named PS3M, which stands for Product-Service Systems Scenarios Modeler. The main 

graphical notations of the concepts used are summarised in Tables 2 and 3. The associations are 

represented with arrows or dashed arrows labelled with the association type. For each of the objects shown 

in Tables 2 and 3 there is a notebook including object attributes such as name, unit cost, etc. This 

information is useful for the subsequent steps of PSS engineering consisting in the economic assessment.   

In order to ease the modelling process, a modelling procedure has been defined which organises the 

modelling viewpoints into a sequence starting from the requirements view up to the scenario view. Figure 9 

shows a simplified view of the modelling procedure highlighting the main information flows between the 

modelling steps. The requirements view bridges customer needs and solution domain, providing an input 

for product and service view building. The offer as a combination between a contract and a set of products 

and services can only be determined by clearly defining product and service views. Afterwards, the 

activities required for product and service provision are defined. Subsequently, the organisation view is 

defined by specifying the capabilities of the PSS actors in terms of activities (who can do what). The 

performance view is then built consistently with the actors’ required criteria for assessing the PSS 

scenarios. The demand view specifies information on the demand if any and can be defined at any time 

before defining the offer. The final step is to define the scenario based on previous views; more 

specifically a scenario is a given configuration of the actor network in terms of activities assigned to 

provision a given offer.  

 
Figure 9: Modelling procedure 

While the loops occurring during the modelling are not represented for readability purposes, these are of 

utmost importance. For instance there are usually loops between service and product views and between 

these views and the requirements view. The modelling tool is enhanced with a set of graphical notations 

aligned with the semantics of the concepts used. Some examples of these notations are highlighted in 

tables 2 and 3.  



Table 3: Main graphical notations – PSS structure views 

View Notation Meaning – corresponding object in the meta-model   

R
eq

u
ir

em
en

ts
 v

ie
w

 

 
Customer value 

 
End user (customer) requirement  

 Function 

 
Technical function  

 Service function – a function which can be fulfilled through a service  

 
Structural element – a product or a service  

 Association linking an end user requirement to a customer value 

Association linking a customer value to an end user requirement 

 
Association linking a technical function to a structural element 

Association linking a service function to a structural element 

P
ro

d
u
c
t 

 

Product 

 Association linking a product to its components  

S
er

vi
ce

  
Service group  

 
Service 

 Association linking a Service to a Service group 

A
ct

iv
it

y 

Macro activity 

 
Activity (production, logistics, design, service) 

Product reference 

 
Service reference 

 Association linking an Activity to its output Product 

 Association linking an Activity to its input Product 

 Association linking a Maco activity to its elementary Activity 

 Association linking a Service to its realisatipon Activity 

O
rg

a
n

is
a

ti
o
n
 

 
Actor 

 
Activity reference 

 
Internal actor 

Operator (human resource) 

 Software resource 

Physical resource 

 Association linking an Actor to a potential Activity he/she can perform 

 Association linking two Actors 

 Association linking a resource to an Actor 

 Association linking an Internal actor to an actor  

 

 

DCV

EU Requirement

Function

Technical Function

Service Function

Structural Element

is composed of

intervenes in

Macro-Activity

Activity

output of

input of

consists of

performed through

Biolog

Activity

has capability of



Table 4: Main graphical notations – PSS dynamic views  

View Notation Meaning – corresponding object in the meta-model   

D
em

a
n

d
 

 
Demand 

 
Customer class 

 
Customer profile 

 Association linking a Customer class to a Customer profile 

 
Association linking a demand to a Customer Class 

O
ff

er
 

 
Offer 

 Contract 

 
Product-Service System (PSS) 

 
Service package  

 
Association linking a Contract to a Demand 

 Association linking a Contract to a PSS 

 Association linking a Service Package to a PSS 

 Association linking a Service to a Service Package 

P
er

fo
rm

a
n

c
e 

 
Performance dimension 

Performance indicator 

Macro-Activity reference 

 Association linking a Performance indicator to a Performance dimension 

 Association linking two Performance indicators 

 Association linking a Performance indicator to a Macro Activity reference 

S
ce

n
a

ri
o
 

 
Actor reference 

Role 

Macro-Activity reference 

 
Indicator reference 

 
Offer reference 

 decision node 

 Association linking a Role to an Offer reference 

 Association linking a Role to an Actor reference 

 Association linking two roles  

 Association linking a Role to an Offer reference 

 Association linking a Role to a Macro-Activity reference 

 Association linking a Performance indicator to a Role  

 Association linking a Macro Activity reference to a decision node 

 Association linking two Macro-Activity references  

 

 

Macro-Activity

Reference

measures

Role

Macro-Activity

Reference

supplier of

assigned to

sub-contractor of

customer of

performes

evaluates performance of



Figure 10 shows an extract of the PS3M tool interface highlighting the different model types 

corresponding to the views (on the left) and an example of a scenario view (on the right). The graphical 

notations were worked out iteratively in order to improve ergonomic aspects.         

 

Figure 10: PS3M interface  

The first experimentations of the modelling tool were launched to test its applicability to the PSS design 

process and its usefulness for practitioners. By applying the modelling procedure shown in figure 9, the 

tool users (designers, within a PSS design multi-disciplinary team) make the PSS progressively explicit 

and generate a knowledge repository covering the PSS design scope. The current version of the 

modelling tool, as a prototype, was used for two different industrial projects aiming at designing 

integrated offerings of products and services in a Business-to-Business context. 

The first project is aimed at providing an industrial cleaning solution for the meat transformation 

industry. The PSS is based on an autonomous robotic cleaning solution and a set of potential associated 

services. This project was finished in June 2018 and took nearly 4 years. The second project is still 

ongoing and is focused on providing a PSS solution to improve quality control and traceability along the 

cheese production process. The PSS offer is based on a technological solution relying on RFID chips and 

a robotic system to put the chips on and take them off from the cheese.  

The models built using PS3M supported both the understanding of the PSS, validation of various 

decisions throughout the engineering process and preparation of data collection for subsequent PSS 

quantitative analysis. These first two experimentations in a real industrial environment bear witness to 

the feasibility of using the PS3M tool and its underlying PSS design approach within industrial contexts. 

As a matter of fact, the cleaning solution developed within the first project and supported by the 

proposed modelling language, is at the final development stage right before market launch. Furthermore, 

both of the projects underline an acceptability of the modelling framework by practitioners as they were 

active users and contributors to the different modelling views.  

Overall, the projects provide evidence of the usefulness of the modelling tool and help point out the 

areas of improvement which are related to ergonomic aspects. Further utilisation of the tool is likely to 



uncover other opportunities for generalising the underlying meta-model and to provide further validation 

of its acceptability by PSS designers. 

6. Discussion  

The twofold contribution of the paper (proposed method and modelling language) helps to bridge two 

gaps in the literature. The first one relates to the need for a comprehensive modelling language (thus 

underlying meta-models) covering the various PSS dimensions involved in the engineering process. The 

resulting meta-model draws upon domain-specific knowledge derived from use cases and formal 

representation of the PSS as a system, using the conceptual modelling approach. This contributes to 

sharing the knowledge about the PSS so as to build a common understanding of the scenarios among 

cross-disciplinary teams. Additionally the alignment of the meta-model with the industrial requirements 

fosters the applicability of the modelling language.    

The second gap addressed by the paper is due to the lack of guidelines for developing modelling 

languages for PSS. In fact, despite the amount of research addressing PSS modelling through ontologies, 

conceptual frameworks, etc., the methods for building such models are not made explicit. Thus the 

extension and even the use of these models are impeded in many cases. The iterative process underlying 

the method proposed within this paper shows how domain-specific knowledge and formal modelling 

approaches can be coupled to provide a modelling language with a targeted use.  

The current version of the meta-model is quite comprehensive and has proven to be applicable to 

several use cases. However, some drawbacks still hinder full coverage of the PSS engineering 

scope. For example, the early steps of value expectations and value proposition definition are not 

addressed. This step goes hand in hand with the business model perspective which is only partially 

supported by the modelling language (Annarelli et al., 2017; Orellano et al., 2018). Besides, the 

current focus of the proposed approach is clearly only on the PSS design stage, whilst the 

operation and end-of-life stages are no less important. Therefore the extension of the modelling 

language presented to address PSS life-cycle is also an important perspective for future work 

(Hajimohammadi et al., 2017). 

It can also be inferred from the application of the method to different use cases, that there is potential for 

it to be used in other emerging contexts where the main source of knowledge is the targeted domain 

itself, such as industry 4.0. In this perspective, the research presented within the current paper 

promotes the use of models as a generic support for decision-making during systems engineering 

at large: one of the potential improvements of the current results consists in aligning the current 

meta-model with system engineering formal models.  This is consistent with recent advances in this 

domain which are vouched for by several initiatives such as the joint effort between the INCOSE and 

OMG for enhancing model-based system engineering (Elgammal et al, 2017). Yet, the scope of the 

presented PSS meta-model and modelling language can be extended further through additional iterations 

of the development method.     

The extension of the meta-model should however be addressed carefully in order to avoid high 

complexity. Trying to cover every single engineering situation may lead to overloading the meta-

model with additional concepts, thus limiting the ease of modelling and usefulness of the modelling 

language. From a practical point of view, the unused concepts for the modelling are likely to 

hinder the use of the modelling language. In general, practitioners usually prefer simple and useful 



tools rather than sophisticated methods hiding a lot of complexity in practice. Furthermore, 

during the extension of the meta-model, a set of hypotheses should be clearly delineated. This 

allows for sharing a common understanding of the goal of the meta-model and on what and what 

not to cover. Otherwise there is a risk of getting into an infinite loop of (irrelevant) updates of the 

meta-model, thus the modelling language. 

Furthermore, although the modelling language was used in several projects from different sectors, 

specific skills were always needed to generate the models and the involvement of the PSS 

stakeholders was often limited to reading and discussing the models. This does not limit the 

relevance of the modelling output but rather points out some avenues of improvement. The 

collaborative development of the PSS could be reinforced if the modelling language became part of 

the language used by the PSS engineering team. In other words, the idea is to get to a point where 

there is no need to translate the natural language or CAD drawings into the proposed modelling 

language, but to simply use the latter to express one’s raw ideas.      

7. Conclusion 

The current paper specifies a modelling language for PSS engineering using a step-wise process 

coupling domain-specific knowledge with formal modelling approaches. The usefulness of the method is 

evidenced through the development of the modelling language. The implementation and consistency 

check iterations provide proof of the concept of the modelling language and the underlying meta-model. 

The contribution of the paper is relevant not only to PSS engineering but also to model-based system 

engineering at large. Future research perspectives include a generalisation of the method to support 

systems engineering in the industry 4.0 context.  

Both the case studies and the research projects which helped to develop the research presented in 

this paper, uncovered some areas of improvement in the modelling language. For instance, a 

major concern of the actors involved in PSS engineering relates to the economic assessment of the 

scenarios and to some extent, its environmental impact. Consequently, two areas to investigate are 

the extension of the meta-model to cover economic and environmental concerns from the early 

design stages and working the interoperability of the meta-model with other models for economic 

and environmental assessment.     
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