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Decision-Aid Methods Based on Belief Function 
Theory with Application to Torrent Protection

Simon Carladous, Jean-Marc Tacnet, Jean Dezert, 
and Mireille Batton-Hubert

Abstract In mountainous areas, decision-makers must find the best solution to pro-
tect elements-at-torrential risk. The decision process involves several criteria and is
based on imperfect information. Classical Multi-Criteria Decision-Aiding methods
(MCDAs) are restricted to precise criteria evaluation for decision-making under a
risky environment and suffer of rank reversal problems. To bridge these gaps, several
MCDAs have been recently developed within belief function theory framework. The
aims of this chapter are to introduce how these methods can be applied in practice
and to introduce their general principles. To show their applicability to the real-life
problem, we apply them to the Decision-Making Problem (DMP) comprising the
comparison of several protective alternatives against torrential floods and selection
of the most efficient one. We finally discuss the method improvements to promote
their practical implementation.
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15.1 Introduction

Mountainous torrential floods are different from plains’ floods because of high
flow velocity and high concentration of materials in flowing. Materials come from
headwaters, are transported in a channel by debris flows or bedload transport, and
finally spread on the alluvial fan. As shown in Fig. 15.1, they put people, buildings,
and networks at risk.

Protective systems aim is to reduce damage on elements-at-risk. Therefore, they
have specific functions. For instance, the check dam series maintain materials in
headwaters whereas sediment traps stop materials before they reach elements-at-
risk [1]. In practice, risk managers decide on actions based on several criteria, for
example, cost vs. damage reduction. An example of a practical Decision-Making
Problem (DMP) is given in Fig. 15.2. The goal is to compare several potential
protective actions Ai within a torrential watershed (i) to assign each alternative to a
class (or label) as classically done by experts, or (ii) to rank all alternatives according
to a preference order, or (iii) to choose the best alternative [2].

Classical Multi-Criteria Decision-Aiding methods (MCDAs) such as Analytic
Hierarchy Process (AHP) [3], Technique for Order Preference by Similarity to
the Ideal Solution (TOPSIS) [4], and Cost-Benefit Analysis (CBA) [5] help to
make decision on such Multi-Criteria Decision-Making (MCDM) problems. While
evaluations of criteria in practice are done with different units and scales, imperfect,
provided by more or less reliable sources, and made under an epistemically uncer-
tain environment [6], classical MCDAs only consider perfect criteria evaluation,
suffer from rank reversal problems, and are limited to decisions under a risky
environment.

Fig. 15.1 Torrential phenomena and examples of elements-at-risk
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To bridge these gaps, several MCDAs were developed within belief function
theory framework. As for any MCDA, the first step is to specify the DMP, potential
alternatives, decision criteria [2], their scoring scale, and their importance weights.
To assign each alternative to a qualitative label (i.e., good, bad, very bad, etc.),
Evidential Reasoning for Multi-Criteria Decision Analysis (ER-MCDA) approach
extends the AHP by taking into account imperfect evaluation of each criterion
provided by several sources. Belief function theory is coupled [7] with fuzzy sets [8]
and possibility theories [9]. Belief Function-based Technique for Order Preference
by Similarity to the Ideal Solution (BF-TOPSIS) methods are more robust to rank
reversal phenomena to rank all alternatives than classical MCDAs [10]. Cautious
Ordered Weighted Averaging with Evidential Reasoning (COWA-ER) [11] and
Fuzzy COWA-ER (FCOWA-ER) [12] improve initial OWA [13] to help to make
decision under an epistemically uncertain environment.

This chapter shows how these new methods can be combined and applied in
practice. Therefore, Sect. 15.2 not only recalls basics of MCDM problems and
decision-making under uncertainty but also basics of fuzzy set, possibility, and
belief function theories. Section 15.3 introduces general principles of ER-MCDA,
BF-TOPSIS, and FCOWA-ER methods. They are then applied in Sect. 15.4 to
the same DMP introduced in Fig. 15.2. In Sect. 15.5, we finally discuss needed
improvements to encourage their practical implementation.

Fig. 15.2 A real-life DMP within a torrential watershed

3



15.2 Basics of Decision-Making and Imperfect Information

This section provides a formal description of the DMPs, models of representing
imperfect information, and decision methods given it.

15.2.1 Formalization of Decision-Making Problems

Any DMP is about comparing M alternatives Ai ∈ A and selecting the best
one. A decision-maker (DM) faces a MCDM problem if decision depends on
several criteria gj , j = 1, . . . , N . A set S represents the states of the nature.
Since the beginning of the twentieth century, it has been proposed to distinguish
decision-making under risk from decision-making under uncertainty, given the DM
knowledge on S [14]. This subsection introduces related formalisms to represent
the whole MCDM problem under uncertainty.

15.2.1.1 Multi-criteria Decision-Making Problem

A DM assigns an importance weight ωj to each criterion gj , j = 1, . . . , N .
Respecting the condition

∑N
j=1 ωj = 1, the vector w = [ω1, . . . , ωj , . . . , ωN ]

represents the DM preference over these criteria. For each gj , a specific scoring
scale Xj is defined. The DM scores each alternative Ai based on each gj . This
score is denoted xij ∈ Xj . The DM eventually provides the M × N score matrix
S = [xij ] defined by Eq. (15.1) [15].

S �

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

g1, ω1 . . . gj , ωj . . . gN , ωN

A1 x11 . . . x1j . . . x1N

...
...

...
...

Ai xi1 . . . xij . . . xiN

...
...

...
...

AM xM1 . . . xMj . . . xMN

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(15.1)

15.2.1.2 Decision-Maker Preferences

The DM has preferences not only over criteria but also to compare alternatives
according to each criterion. First, AHP helps to establish the N -vector w which
represents the DM preferences over criteria by comparing criteria pairwisely [3].
Second, DM has a preference ordering between all alternatives Ai ∈ A , given a
scoring scale Xj for each gj . For instance, considering three alternatives A1, A2,
and A3 and their scores x1j , x2j , x3j ∈ Xj , the DM preference can be represented
by:
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• a total pre-order which assumes preference transitivity: if A1 ≻ A2 and A2 ≻ A3,
then A1 ≻ A3 [16].

• a partial pre-order which relaxes transitivity assumption [2].

15.2.1.3 From Decision-Making Under Risk to Decision-Making Under

Uncertainty

In practice, torrential hazard is generally represented by a finite set of states of the
nature S = {S1, . . . , Sk, . . . , SK }, as recalled in Fig. 15.1. Each Sk is commonly
referred to as scenario [17]. Given Sk , Cik is the global payoff expected for each
alternative Ai . DM provides the M × K payoff matrix C = [Cik] defined by
Eq. (15.2) [11].

Given C, decision-making depends on the DM knowledge on S [11]:

• Decision-making under certainty: since only one Sk is known and certain to
occur, it consists in choosing the best Ai⋆ with i⋆ � arg maxi{Cik}.

• Decision-making under risk (or aleatory uncertainty): the true state of the nature
is unknown, but one knows all the probabilities pk = P(Sk). In the context of
natural hazards, the expected payoff E[Ci] =

∑

k pk ·Cik is generally computed
for each Ai . The best Ai⋆ is with i⋆ � arg maxi{E[Ci]}.

• Decision-making under ignorance: one assumes no knowledge about the true
state of the nature but that it belongs to S . Yager’s Ordered Weighted Averaging
(OWA) approach [13] can be used to make a decision in this context.

• Decision-making under uncertainty: a belief structure characterizes the knowl-
edge on S. In practice, this is the closest representation of torrential hazard
knowledge. Its elicitation by subjective probabilities pk = P(Sk) is usually
used. Thus, decision-making is similar to decision-making under risk [18]. A
more interesting approach is the OWA proposed by Yager [13] and improved in
[11, 12].

C �

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

S1 . . . Sk . . . SK

A1 C11 . . . C1k . . . C1K
...

...
...

...

Ai Ci1 . . . Cik . . . CiK
...

...
...

...

AM CM1 . . . CMk . . . CMK

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(15.2)

Formalisms of MCDM problems and decision-making under uncertainty are
complementary in representing the DMP. A multi-criteria aggregation based on S

can give each vector Ck � [C1k, . . . , Cik, . . . , CMk] of C. For each Ai and gj ,
computing the expected payoff E[Ci]j from C can provide xij = E[Ci]j in S [6].
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15.2.1.4 Several Types of Imperfect Information

Whatever the DMP, decisions depend on the quality of information used to assess
scores xij (i = 1, . . . ,M; j = 1, . . . , N ), payoffs Cik , and states of the nature Sk

(k = 1, . . . , K). There are various types of information imperfection [19]:

• inconsistency, which is related to conflict between sources such as several
experts;

• imprecision referring, for example, to interval of numerical values;
• incompleteness, which represents the lack of information while data exist;
• aleatory uncertainty referring to aleatory events;
• epistemic uncertainty, which is linked to the lack of knowledge.

In practice, probabilities are usually used to represent imperfect information. A
first criticism is their limit1 to represent uncertainty, while other formalisms are
available: sets for imprecision, fuzzy sets for vagueness [8], possibility distributions,
and imprecise probabilities for both uncertainty and imprecision [9, 27]. A second
criticism is the use of subjective probabilities [18] both to decide under ignorance
[20] and to represent the DM attitude with few information [21]. Belief function
theory allows taking into account all types of imperfect information but also to make
decisions under ignorance and epistemic uncertainty [22].

15.2.1.5 What Is the Decision-Making Problem About?

A DMP is about comparing the M alternatives Ai gathered in the set A . In practice,
three different objectives can be given [2]. For instance, the aim is to compare
M = 4 potential protective actions Ai within a torrential watershed based on their
efficiency:

1. to assign each Ai to a predefined qualitative class (or label) of efficiency such as
“high,” “medium,” “low,” and “none” [23];

2. to rank all Ai , i = 1, . . . ,M , totally or partially: for instance, A3 ≻ A4 ≻ A1 ≻

A2 is a total order, while A3 ∼ A4 ≻ A1 ∼ A2 is a partial order;
3. to choose the best alternative Ai⋆ ∈ A , for instance, A3.

1Indeed, the ignorance of a parameter value x belonging to [a, b] is usually modeled by a uniform
probability distribution function (pdf) over [a, b], which yields from the probability calculus to a
nonuniform pdf of 1/x on [1/b; 1/a]. This result is not acceptable from the ignorance modeling
standpoint because if one has no specific information on x, we cannot get more information on
1/x but that 1/x belongs to [1/b; 1/a]. Therefore the uniform pdf often used to model ignorance
in probability theory is problematic.
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15.2.2 Imperfect Information: From Representation

to Decision-Making

This subsection details the three main steps to take into account imperfect informa-
tion: (1) representation, (2) combination and propagation, and (3) decision [24].

15.2.2.1 Representation of Imperfect Information Provided by a Source

• Fuzzy set theory was developed to represent linguistic assessment of fuzziness
[8]. Given individual elements x of the universe of discourse X, the membership
function μθ (x) ∈ [0, 1] associates each x ∈ X to the fuzzy set θ with the
grade of membership μθ (x). As shown in Fig. 15.3a, a simple way to represent a
membership function is to use a trapezoidal membership function defined by the
quadruplet {a, b, c, d} in Eq. (15.3) [25]: [a, d] is the fuzzy set support denoted
by suppθ , while [b, c] is its core coreθ . Given X, θ̄ is the complement fuzzy
set of θ defined by Eq. (15.4) (Fig. 15.3a), and a mapping model [19] is a set �

of n fuzzy sets θe, for e = 1, . . . , n (Fig. 15.3b). Given two fuzzy sets θ1 and
θ2, the membership function μθ1∪θ2 defined by Eq. (15.5) represents their union
(Fig. 15.3c), while their intersection μθ1∩θ2 is defined by Eq. (15.6) [8].

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0 ifx /∈ suppθ

x−a
b−a

ifx ∈ [a, b]

1 ifx ∈ coreθ

x−d
c−d

ifx ∈ [c, d]

(15.3)

μθ̄ (x) � 1 − μθ (x), x ∈ X (15.4)

μθ1∪θ2(x) � max
x∈X

(μθ1(x), μθ2(x)) (15.5)

μθ1∩θ2(x) � min
x∈X

(μθ1(x), μθ2(x)) (15.6)

Fig. 15.3 (a) Fuzzy set � and its complement �̄; (b) mapping model (n = 3); (c) union
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Fig. 15.4 (a) Fuzzy set �; (b) possibility distribution π = μF ; (c) possibility measure of �

given π

• Zadeh, Dubois, and Prade then developed the possibility theory in the fuzzy logic
framework [9, 27]. Considering the fuzzy set F of possible values of x ∈ X, the
possibility distribution π is given by μF (x) � π(x) ∈ [0, 1] [26]. Given Y a
subset of X and Ȳ its complement, the possibility and necessity measures are
�(Y) � supx∈Y π(x) [9] and N(Y ) � 1 − �(Ȳ ), ∀Y, Ȳ ⊆ X [27], as shown
in Fig. 15.4b. �(Y) and N(Y ) are considered as the upper and lower bounds of
the probability P(Y ). Given X, the membership function μθ , and a possibility
distribution μF (Fig. 15.4c), the possibility measure of θ denoted by �(θ) is
defined by Eq. (15.7) [9].

�(θ) � sup
x∈X

μθ∩F (x) (15.7)

• In the meantime, Shafer introduced the belief function theory, also called
Dempster-Shafer Theory (DST) [22]. The Frame of Discernment (FoD) is a finite
set � = {θ1, . . . , θe, . . . , θn}, with n > 1, which gathers the potential answers of
the DMP under concern. In DST, all FoD elements are assumed exhaustive and
mutually exclusive. The power set of � denoted by 2� is the set of all subsets of
�, the empty set ∅ included. The complement of a subset A ∈ 2� is denoted Ā.
Its cardinality is |A|. A source (or body) of evidence is characterized by a basic
belief assignment (BBA) m�(·), which is a mapping m�(·) : 2� → [0, 1] that
satisfies m�(∅) = 0, and ∀A �= ∅ ∈ 2� the condition

∑

A⊆� m�(A) = 1. The
vacuous BBA models the full ignorance of the source of evidence. If m�(A) > 0,
A is a focal element of m�(·). m�

A denotes the categorical BBA which focuses
on A �= ∅. More precisely, m�

A(A) = 1 and m�
A(Y ) = 0 for any Y �= A. Focal

elements of a Bayesian BBA are only singletons on 2�. Given the FoD � for
final decision, it is possible to represent imperfect evaluation of the score xij ,
for each alternative Ai according to each criterion gj , through the BBA m�

ij (·)

providing the M × N BBA matrix M� = [m�
ij (·)]. Thus, it must be compared

with the M × N score matrix S = [xij ], defined by Eq. (15.1). Given m�(·),
belief and plausibility functions are, respectively, defined by:
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Bel�(A) �
∑

Y⊆A|Y∈2�

m�(Y ) (15.8)

Pl�(A) �
∑

Y∩A �=∅|Y∈2�

m�(Y ) (15.9)

Considering that the universe of discourse X is the FoD �, the plausibility
measure Pl�=X(A) is a possibility measure �(A), ∀A ⊆ � = X [26]. Bel�(A)

and Pl�(A) are interpreted as lower and upper bounds of the unknown probability
P�(A). The interval BI�(A) � [Bel�(A), Pl�(A)] is its belief interval. Its length
Pl�(A) − Bel�(A) characterizes the uncertainty, also called ambiguity, on A [28].

Given m�(·), several transformations help to approximate probability
function P�(·) : Smets’ pignistic transformation provides BetP�(·) [29], DSmP
transformation gives DSmP�

ǫ (·) where ǫ ≥ 0 is a tuning parameter [30] (Vol. 3),
and others.

Shafer’s exhaustivity assumption means that the FoD is considered as a “closed
world” (c.w.). In some practical problems, this assumption is too strict and it is
more convenient to consider the original FoD as an “open world” (o.w.).

1. In Smets’ Transferable Belief Model (TBM) [31], �o.w. � {θ1, . . . , θq} and ∅ =

�̄o.w.. One has
∑

A∈2� m(A) = 1, and one allows m(∅) � 0.
2. In Yager’s approach [32], the open world is closed by an hedge element θc, so

that �c.w. � �o.w. ∪ {θc}. The cardinality |θc| is not known.

Shafer’s mutual exclusivity assumption can be also too strict. Dezert-
Smarandache Theory (DSmT) framework modifies DST to relax this assumption
and proposes new techniques to combine the sources of evidence and to make a
decision [30].

15.2.2.2 Combining Information Provided by Several Sources of Evidence

First of all, the source reliability and its importance must be clearly distinguished.
Reliability is the source objective ability to give the correct solution of the
DMP [33]. For each source sq , q = 1, . . . ,Q, it is represented by a reliability
discounting factor αq ∈ [0, 1] [34]. Given the initial BBA m�

q (·) provided by sq ,
Shafer’s discounting method defined by Eq. (15.10) is generally used to provide the
discounted mass m�

αq
(A) [22].

m�
αq

(A) �

{

αq · m�
q (A) ifA ∈ 2� �= �

αq · m�
q (A) + (1 − αq) ifA = �

(15.10)
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Importance is the subjective weight granted to the source by DM [33]. In a
MCDM problem, each criterion can be considered as a source represented by a
BBA m�

j (·). Each weight ωj is the importance discounting factor used to provide

the discounted BBA2 m�
ωj

(·).

m�
ωj

(A) �

{

ωj · m�
j (A) ifA ∈ 2� �= ∅

ωj · m�
j (A) + (1 − ωj ) ifA = ∅

(15.11)

Once BBAs have been discounted, the combination of distinct sources of
evidence is denoted by ⊕ to provide the combined BBA m�

⊕(A),A ⊂ �. The
largely used initial Dempster’s rule (DS) [22] has been subject to strong debates
in fusion community, showing it does not behave well in high conflicting case [35]
but also in low conflicting cases [36].

As a consequence, since the 1990s, many alternatives have been proposed
to combine belief functions more or less efficiently. The Proportional Conflict
Redistribution (PCR) rules have been developed in DSmT [30] (Vol. 3) to palliate
disadvantages of the classical Dempster’s fusion rule [37]. PCR rule no 6 (PCR6)
defined by Eq. (15.12) for combining two sources of evidence (K = 2) m�

1 (·) and
m�

2 (·) is also consistent for more than two bodies of evidence (K > 2) [38].

m�
PCR6(A) �

∑

X1,X2∈2�

X1∩X2=A

m�
1 (X1) · m�

2 (X2)

+
∑

Y∈2�\{A}
A∩Y=∅

[

m�
1 (A)2 · m�

2 (Y )

m�
1 (A) + m�

2 (Y )
+

m�
2 (A)2 · m�

1 (Y )

m�
2 (A) + m�

1 (Y )

]

(15.12)

Combination by PCR6 fusion rule of the N importance discounted BBAs m�
j (·)

defined by Eq. (15.11) provides a BBA denoted m�
PCR6∅

(·) with m�
PCR6∅

(∅) > 0.
Then, we commit zero to the mass of the empty set, and we normalize this BBA to
get a proper normalized BBA m�

PCR6(·) with m�
PCR6(∅) = 0; see [33] for details.

15.2.2.3 Decision-Making Given a Combined Belief Mass

Given a BBA m�(·), choosing a singleton θ̂ ∈ � or a subset Â ⊆ � is the
decision issue. In general, it consists in choosing θ̂ = θe⋆, e = 1, . . . , n with
e⋆ � arg maxeC(θe), where C(θe) is a decision-making criterion chosen according

2For a technical reason, one allows to commit some mass on the empty set in this discounting. This
is not a problem because the final fusion result will be normalized.
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to the DM attitude: belief for a pessimistic attitude, plausibility for an optimistic
one, one of the probabilistic transformations for an attitude of compromise.

In general, the DM attitude is not well known in DST. Moreover, in some
practical cases, taking into account non-singletons A ⊆ � is needed to decide. For
these cases, the minimum of any strict distance metric d(m�,m�

A) between m�(·)

and the categorical BBA m�
A(·) can be used in Eq. (15.13) [39]. If only singletons

of 2� are accepted, decision is defined by Eq. (15.14).

Â = arg min
A∈2�

dBI(m
�,m�

A) (15.13)

θ̂ = arg min
θe∈�

dBI(m
�,m�

θe
) (15.14)

Among the few true distance metrics3 between two BBAs m�
1 (·) and m�

2 (·), the
belief interval-based Euclidean dBI (m

�
1 ,m�

2 ) ∈ [0, 1] is based on Wasserstein’s
distance [40] and provides reasonable results [41].

The quality indicator q(Â) defined by Eq. (15.15) evaluates how good the
decision Â is with respect to other focal elements: the higher q(Â) is, the more
confident DM should be in its decision Â. If only singletons of 2� are accepted,
q(θ̂) is defined by Eq. (15.16).

q(Â) � 1 −
dBI(m

�,m�
A)

∑

A∈2�\{∅} dBI(m�,m�
A)

(15.15)

q(θ̂) � 1 −
dBI(m

�,m�
θe

)
∑n

e=1 dBI(m�,m�
θe

)
(15.16)

15.3 Belief Function-Based Decision-Aiding Methods

Classical Decision-Aiding Methods (DAMs) have some limitations: (i) classical
MCDAs do not consider imperfect evaluations of criteria, (ii) ranking can be
affected by rank reversal problems [42, 43], and (iii) probability framework is
limited by an epistemic uncertainty affecting the knowledge on the states of the
nature S [20, 21]. This section introduces new belief function-based DAMs which
help to overcome these three limitations using (i) Evidential Reasoning for Multi-
Criteria Decision Analysis (ER-MCDA) [44], (ii) Belief Function-based Technique
for Order Preference by Similarity to Ideal Solution (BF-TOPSIS) methods [39],
and (iii) Fuzzy Cautious Ordered Weighted Averaging with Evidential Reasoning
(FCOWA-ER) [12], respectively.

3For any BBAs x, y, z defined on 2�, a true distance metric d(x, y) satisfies the properties of non-
negativity (d(x, y) ≥ 0), non-degeneracy (d(x, y) = 0 ⇔ x = y), symmetry (d(x, y) = d(y, x)),
and triangle inequality (d(x, y) + d(y, z) ≥ d(x, z)).
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15.3.1 ER-MCDA: Multi-criteria Assignment Given Imperfect

Scores

As detailed in Fig. 15.5, ER-MCDA methodology [44] is an extension of the
Analytic Hierarchy Process (AHP) [3]. Given the FoD for decision � (step 1), it
associates fuzzy logic framework and belief function theory to represent imperfect
evaluation of the score of each alternative Ai , i = 1, . . . ,M based on each criterion
gj , j = 1, . . . , N , potentially provided by several sources sq , q = 1, . . . ,Q,
through a BBA m�

q,ij (·) (step 2). A second improvement is the combination of BBAs
taking into account reliability αq of each source and importance ωj of each criterion
gj (step 3). It finally helps to assign each Ai to the element θ̂ (Ai) (step 4).

15.3.1.1 ER-MCDA-Step 1: DMP Formalization

The scoring scale Xj is specified for each criterion gj , j = 1, . . . , N . The FoD
for decision � is also defined: for instance, we consider four qualitative labels (or
classes) θe of efficiency with � = {θ1 = high, θ2 = medium, θ3 = low, θ4 =

none}.

15.3.1.2 ER-MCDA-Step 2: BBA m�
q,ij

(·) Construction

For each gj , j = 1, . . . , N , the mapping model is first provided (Fig. 15.3): n fuzzy
sets μj,θe represent a partial pre-order of the DM preference for Xj [44]. Then,
for each alternative Ai , i = 1, . . . , M , each source (e.g., an expert) sq provides its
imprecise and uncertain evaluation of xij ∈ Xj through a possibility distribution
πq,ij (Fig. 15.4).

Given these elements, the mapping process consists in transforming each πq,ij

into a BBA m�
q,ij (·) using the gj mapping model. The initial mapping process

[19] was based on a geometric transformation and was restricted to provide only
Bayesian BBAs. A new mapping model was recently developed to provide general
BBAs [45, 46], for each Ai and each gj :

1. since fuzzy sets are given for an open world, Yager’s hedged element θc [32]
is used to provide membership functions in an hedged world (c.w.), and all
membership functions μj,X, X �= ∅ ∈ � are built applying Eq. (15.5);

2. all membership functions μj,X̄, X �= ∅ ∈ � are built applying Eq. (15.4);
3. given the possibility distribution πq,ij , Eq. (15.7) gives the possibility measures

�q,ij (X̄) corresponding to the plausibility measure Pl�q,ij (X̄);

4. the belief function Bel�q,ij (·) is directly obtained such as the BBA m�
q,ij (·).
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15.3.1.3 ER-MCDA-Step 3: Combination of Two BBAs

For each Ai and each gj , fusion 1 combines BBAs provided by Q sources sq , taking
into account reliability factor αq and using PCR6 fusion rule. For each Ai , fusion
2 combines BBAs provided for N criteria gj , taking into account importance factor
ωj and using PCR6∅ fusion rule. Final BBA m�

i (·) is obtained.

15.3.1.4 ER-MCDA-Step 4: Making Decision for Each Ai

Given � and m�
i (·), DM must assign each Ai to labels by choosing θ̂ (Ai).

Therefore, DM can decide according to a pessimistic attitude (max of belief), an
optimistic one (max of plausibility), or an attitude of compromise (max of subjective
probability).

For the latter, whatever the probability transformation, the cardinality |θc| must
be known. Therefore, a strong hypothesis is to consider |θc| = 1 which can be
theoretically discussed. Using Eq. (15.14) to decide through the minimal of belief
interval distance does not involve any hypothesis on it.

15.3.2 BF-TOPSIS: A More Robust Multi-criteria Ranking

Given the score matrix S defined by Eq. (15.1), the classical MCDAs such as
the AHP [3], Technique for Order Preference by Similarity to the Ideal Solution
(TOPSIS) [4], or Estimator Ranking Vector (ERV) [47] are limited by rank reversal
problems [42, 43]. As detailed in Fig. 15.6, the four new BF-TOPSIS methods [10]
are inspired by the ERV to avoid a normalization step and by TOPSIS to compare
each Ai with an ideal best and an ideal worst solutions. They are based on a common
preliminary step and have an increasing computation complexity and robustness to
rank reversal problems [6, 10].

15.3.2.1 Preliminary Step: DMP Formalization and BBA mA

ij
(·)

Construction

A DMP is about ranking all alternatives Ai and choosing the best one Ai⋆ ∈ A :
the FoD � for decision is the set of alternatives A . Given the score matrix S (see
Fig. 15.6), this common step consists of constructing the M ×N BBA matrix MA =

[mA

ij (·)].

For each Ai and gj , the positive support Supj (Ai) �
∑

k∈{1,...,M}|xkj ≤xij
|xij −

xkj | and the negative one Infj (Ai) � −
∑

k∈{1,...,M}|xkj ≥xij
|xij − xkj |, respectively,

measure how much Ai is better and worse than other alternatives according to gj .

Given A
j
max � maxiSupj (Ai) and A

j

min � miniInfj (Ai), each mA

ij (·) is defined by:

14
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mA

ij (Ai) �

⎧

⎨

⎩

Supj (Ai )

A
j
max

ifAj
max �= 0

0 ifAj
max = 0

(15.17)

mA

ij (Āi) �

⎧

⎨

⎩

Infj (Ai )

A
j
min

ifAj

min �= 0

0 ifAj

min = 0
(15.18)

mA

ij (Ai ∪ Āi) � mA

ij (�) � 1 − (BelAij (Āi) + BelAij (Ai)) (15.19)

The four BF-TOPSIS methods differ from each other in the way they process the
matrix MA. All of them compute the relative closeness of each alternative Ai with
an ideal best solution Abest denoted by C(Ai, A

best). The preference ordering of all
alternatives is built given the following criterion: the higher it is, the better Ai is. An
extension of BF-TOPSIS methods for dealing with imprecise scores is proposed in
[48].

15.3.2.2 BF-TOPSIS1

(1) For each Ai and gj , the ideal best and worst BBAs are defined by mbest
ij (Ai) � 1

and mworst
ij (Āi) � 1 which are used to compute the distances dBI (m

A

ij ,m
A,best
ij )

and dBI (m
A

ij ,m
A,worst
ij ).

(2) The respective averaged distances dbest(Ai) and dworst(Ai) are computed by
weighting previous distances by importance weights ωj of criteria gj .

(3) For each Ai , the relative closeness is computed by:

C
(

Ai, A
best

)

�
dworst(Ai)

dworst(Ai) + dbest(Ai)
(15.20)

15.3.2.3 BF-TOPSIS2

(1) This step is the same as for BF-TOPSIS1. (2) For each Ai and gj , the
relative closeness Cj (Ai, A

best) is computed. (3) The averaged relative closeness
C(Ai, A

best) is computed by weighting Cj (Ai, A
best) by importance weights ωj of

criteria gj .

15.3.2.4 BF-TOPSIS3

(1) For each Ai , the N BBAs mA

ij (·) are combined through PCR6 fusion rule to give

mA

i (·) taking into account the importance factor ωj of each criterion gj [33]. (2) For

16



each Ai , the ideal best and worst BBAs allow to give dbest(Ai) = dBI (m
A

i ,m
A,best
i )

and dworst(Ai) = dBI (m
A

i ,m
A,worst
i ). (3) This step is the same as for BF-TOPSIS1.

15.3.2.5 BF-TOPSIS4

This method differs from BF-TOPSIS3 only by the choice of the ZPCR6 fusion rule
[49] instead of PCR6 rule of combination.

15.3.3 FCOWA-ER: Choice Under Epistemic Uncertainty

Given the payoff matrix C defined by Eq. (15.2), the DMP requires choosing the best
alternative Ai⋆ ∈ A. COWA-ER has been proposed [11] for such decision-making
given uncertain knowledge on S . It mixes cautiously the principle of Yager’s
Ordered Weighted Averaging (OWA) approach based on belief function theory [13]
with fusion rules, notably the PCR6 one [30]. As detailed in Fig. 15.7, FCOWA-
ER [12] is a modified version of COWA-ER using fuzzy sets which improves
performances of COWA-ER and reduces its computational burden.

15.3.3.1 From the OWA Approach. . .

Under ignorance, Yager uses the OWA operator as a weighted average of ordered
values of a variable defined by Eq. (15.21). For each Ai , i = 1, . . . ,M , it consists
in choosing a normalized set of weighting factors Wi = [wi1, . . . , wik, . . . , wiK ],
where wik ∈ [0, 1],

∑

k wik = 1, and Wi depends on the DM attitude: Wi =

[0, 0, . . . , 0, 1] represents the pessimistic attitude, while Wi = [1, 0, . . . , 0, 0] is
used for the optimistic one. The OWA value Vi is computed for the collection of
payoffs Ci1, Ci2, . . . , CiK , with bik as the kth largest element in it. The best Ai⋆ is
chosen with i⋆ � arg maxi{Vi}.

Under epistemic uncertainty, considering the states of the nature S as the FoD,
Yager represents the DM belief structure by a BBA mS(·) : 2S → [0, 1], which is
characterized by the s focal elements Xr ∈ 2S. For each alternative Ai , restricting
the states of the nature to Sk ∈ Xr , one has Mir � {Cik|Sk ∈ Xr}, r = 1, . . . , s.
For each Ai , each Xr , and some DM attitude chosen a priori, the OWA value Vir =

OWA(Mir) is computed. The derivation of a generalized expected value Ci of payoff
is defined by Eq. (15.22). The best Ai⋆ is thus chosen with i⋆ � arg maxi{Ci}.

Vi � OWA(Ci1, Ci2, . . . , CiK) =
∑

k

wik · bik (15.21)

Ci =

s
∑

r=1

mS(Xr)Vir (15.22)
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15.3.3.2 . . . to the COWA-ER and FCOWA-ER Approaches

For each alternative Ai , COWA-ER method exploits only the results of the two
extreme attitudes (pessimistic and optimistic OWA) jointly [11]. Decision-making
under uncertainty is thus based on the M imprecise valuations (or intervals) of
expected payoffs gathered in the M-vector E[C] given by Eq. (15.23).

FCOWA-ER method [12] has been then developed to go beyond two COWA-ER
limitations. (1) The BBAs obtained by using α-cuts are consonant support (nested
in order) without any correlation between information sources. (2) The compu-
tational time for making the combination does not depend on the number M of
alternatives.

15.3.3.3 FCOWA-ER-Step 1: Construction of BBAs

Each column in E[C] is, respectively, normalized to obtain the column-wise
normalized expected payoff EFuzzy[C] given by Eq. (15.24).

E[C] �

⎡

⎢

⎢

⎢

⎣

[Cmin
1 , Cmax

1 ]

[Cmin
2 , Cmax

2 ]
...

[Cmin
M , Cmax

M ]

⎤

⎥

⎥

⎥

⎦

(15.23)

EFuzzy[C] �

⎡

⎢

⎢

⎢

⎣

Nmin
1 , Nmax

1
Nmin

2 , Nmax
2

...

Nmin
M , Nmax

M

⎤

⎥

⎥

⎥

⎦

(15.24)

The vectors μ1 = [Nmin
1 , . . . , Nmin

M ] and μ2 = [Nmax
1 , . . . , Nmax

M ] can be seen
as two fuzzy membership functions (FMFs) μ : Ai ∈ A → [0, 1]. Given the FoD
A = {A1, A2, . . . , AM }, they are, respectively, converted into two BBAs mA

Pess(·)

and mA

Opti(·) using the α-cut approach [50], considering M as the number of α-cuts.

15.3.3.4 FCOWA-ER-Steps 2 and 3: Combination

of the Two BBAs and Decision

The two BBAs mA

Pess(·) and mA

Opti(·) are combined with the PCR6 fusion rule.
The decision is about choosing Ai⋆ according to the DM attitude or the minimal
distance.
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15.4 Application to Efficiency of Torrential

Protective Actions

The example previously introduced in Fig. 15.2 is used to show how new belief
function-based MCDAs can help DMs to decide on real DMPs. The DMP is
first formalized. ER-MCDA, BF-TOPSIS, and FCOWA-ER are then successively
applied without detailing computation steps: we only provide inputs and main
results.

15.4.1 Formalization of the Decision-Making Problem

The problem is about comparing under uncertainty several torrential protective
actions based on their efficiency by involving several criteria.

15.4.1.1 Multi-criteria Decision-Making Problem

Alternatives and decision criteria, with their scoring scales and importance weights,
must be specified to provide the structure of the score matrix S defined by Eq. (15.1).

The set A gathers M = 5 protective alternatives Ai (Fig. 15.2):

• A1: doing nothing;
• A2: building check dam series in headwaters;
• A3: building a sediment trap on the alluvial fan apex;
• A4 = A2 ∪ A3: building both check dam series and a sediment trap;
• A5: building individual protections for each element at-risk.

On the one hand, these actions aim at reducing potential damage on elements-at-
risk. Several types of damage can occur such as housing destruction or environmen-
tal damage due to destruction of dangerous sites, etc. Their assessment in monetary
value can strongly be debated as, for example, for human casualties [6]. On the other
hand, each alternative involves high investment and maintenance cost.

A DM thus considers N = 5 criteria gj with specific scoring scale Xj [6] to
compare alternatives according to their efficiency. He wants to minimize g1 and
g2 (decreasing preference) and to maximize g3, g4, and g5 (increasing preference),
with:
• g1: investment cost in e (xi1 ∈ X1 = R

+);
• g2: annual maintenance cost in e (xi2 ∈ X2 = R

+);
• g3: annual risk reduction of damaged houses surface in m2 (xi3 ∈ X3 = R

+);
• g4: annual risk reduction in human casualties (xi4 ∈ X4 = R

+);
• g5: annual risk reduction in number of dangerous sites (xi5 ∈ X5 = R

+).
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In practice, for each Ai and gj , annual risk reduction 
Rj (Ai) is computed as
reduction of potential damage expected value: 
Rj (Ai) = Rj (0) − Rj (Ai), where
Rj (0) is the baseline risk (without Ai) and Rj (Ai) is the residual risk with Ai [6].

Given this set of criteria, DM uses the AHP process [3] to define the 5-vector of
their importance weights: w = [0.08, 0.04, 0.10, 0.46, 0.32].

15.4.1.2 Decision-Making Under Uncertainty

Damage assessment depends on torrential hazards: without flood, there is no
damage; during a big but rare flood, damage are higher; damage are much higher
with a big debris flows. In practice, several scenarios of torrential hazards are thus
taken into account to assess annual risk reduction criteria. They must be specified to
provide the structure of the payoff matrix C defined by Eq. (15.2).

A DM considers a set of states of the nature S with K = 7 scenarios as
follows:

• liquid floods without bedload transport : S1 with Ql < Ql1
4; S2 with Ql � Ql1;

• floods with bedload transport : S3 with Vs < Vs1
5; S4 with Vs � Vs1;

• debris flow : S5 with Vl < Vl1
6; S6 with Vl1 � Vl < Vl2; S7 with Vl � Vl2

15.4.2 ER-MCDA to Assign an Efficiency Label to Each

Alternative

In practice, a first DMP is about assigning each alternative to a qualitative efficiency
label. Therefore, ER-MCDA methodology can be used.

15.4.2.1 ER-MCDA Inputs

FoD for decision gathers n = 4 exhaustive and mutually exclusive efficiency labels,
with � = {θ1 = no, θ2 = low, θ3 = medium, θ4 = high}. The mapping model of
each criterion is provided in Fig. 15.8.

Two sources (experts) sq , q = 1, 2, are assumed totally reliable (α1 = α2 = 1).
For each Ai and gj , each one provides the possibility distributions πq,ij in
Table 15.1.

4Ql = liquid flow.
5Vs = solid volume.
6Vl = debris flow volume.
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Fig. 15.8 ER-MCDA-input: N = 5 mapping models

Table 15.1 ER-MCDA-input: imprecise evaluations πq,ij (q = 1, 2; i = 1, . . . , 5; j = 1, . . . , 5)

Ai sq g1
a g2

a g3
b g4

b g5
b

A1 s1 0,0,0,0 0,0,0,0 0,0 0,0 0,0

A1 s2 0,0,0,0 0,0,0,0 0,0 0,0 0,0

A2 s1 (2, 3, 3, 5).105 (3, 5, 7, 8).103 1.1, 4.3 (2.1, 8.9).10−3 (3.4, 6.4).10−2

A2 s2 (1, 2, 2, 3).105 (2, 3, 4, 5).103 2, 5.2 (1.2, 10.3).10−3 (4.3, 8.7).10−2

A3 s1 (2, 4, 4, 6).105 (1, 1.5, 2, 3).103 1.2, 4.8 (2.3, 11.8).10−3 (5.1, 8.5).10−2

A3 s2 (4, 5, 6, 8).105 (0.5, 1, 1, 2).103 0.1, 5.5 (3.1, 13.1).10−3 (3.7, 8.5).10−2

A4 s1 (4, 7, 7, 11).105 (4, 7.5, 9, 11).103 3.3, 8.45 (3.5, 16.8).10−3 (6.2, 9.4).10−2

A4 s2 (5, 7, 8, 11).105 (2.5, 4, 5, 7).103 3.1, 8.9 (3.4, 16.1).10−3 (4.3, 9.2).10−2

A5 s1 (9, 10, 12, 14).105 0, 0, 0, 0 4.2, 9.2 (3.7, 8.4).10−3 (3.1, 8.4).10−2

A5 s2 (8, 9, 10, 11).105 0, 0, 0, 0 4.65, 8.25 (2.1, 9.3).10−3 (1.5, 9.2).10−2

aCriteria assessed by {a,b,c,d} as shown in Fig. 15.3
bCriteria assessed by {a,d} (a = b and c = d)

15.4.2.2 ER-MCDA Results

For each criterion gj , the new mapping process is used in ER-MCDA-Step 2 to map
each πq,ij of Table 15.1 into the gj mapping model of Fig. 15.8. It provides BBAs
m�

1,ij (·) for s1 and m�
2,ij (·) for s2. Applying ER-MCDA-Step 3 on those BBAs,

M = 5 BBAs m�
i (·) are finally obtained in Table 15.2.

To avoid assumption |θc| = 1, ER-MCDA-Step 4 is based on computing
distances dBI (m

�
i ,m�

X), from each column of Table 15.2. For each Ai , the chosen

focal element X̂(Ai) ∈ 2�, the corresponding value of minimal distance dmin
BI , and

the decision quality q(X̂(Ai)) are given in Table 15.3.
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Table 15.2 ER-MCDA-Step 3 results: BBAs m�
i (·) obtained for each alternative Ai

Focal elements X m�
1 (·) m�

2 (·) m�
3 (·) m�

4 (·) m�
5 (·)

θc 0.00049 0.00075 0.00067 0.00079 0.04062

θ1 ∪ θc 0.96997 0 0 0 0.03157

θ2 ∪ θc 0 0.26680 0.02393 0.02293 0

θ1 ∪ θ2 ∪ θc 0 0 0 0.00830 0

θ3 ∪ θc 0 0.36178 0.97036 0.71702 0.86412

θ2 ∪ θ3 ∪ θc 0 0.36113 0.00416 0.02852 0

θ4 ∪ θc 0.02954 0 0.00018 0.17687 0.03597

θ3 ∪ θ4 ∪ θc 0 0.00954 0.00070 0.04557 0.02772

Table 15.3 ER-MCDA-Step
4 results: decision based on
dBI (m

�
i ,m�

X)

Alternative Ai dmin
BI X̂(Ai) q(X̂(Ai))

A1 0.0172 θ1 ∪ θc 0.9990

A2 0.1855 θ2 ∪ θ3 ∪ θc 0.9878

A3 0.0154 θ3 ∪ θc 0.9991

A4 0.1319 θ3 ∪ θc 0.9919

A5 0.0567 θ3 ∪ θc 0.9968

Solution A1 of doing nothing is mainly no efficient. Alternative A2 is lowly or
mediumly efficient, while the three other ones are mediumly efficient. It corresponds
to a partial preference order: A3 ∼ A4 ∼ A5 � A2 ≻ A1.

As shown in Table 15.3, quality indicators of decisions are similar for A3 and A5

and better than for A4. For A2, global mass is more distributed with m�
2 (θ3 ∪ θc) =

0.36, m�
2 (θ2 ∪ θ3 ∪ θc) = 0.36, and m�

2 (θ2 ∪ θc) = 0.27: decision quality is less
good.

15.4.3 BF-TOPSIS to Rank Alternatives

Another DMP is about ranking all potential solutions given previous criteria. BF-
TOPSIS methods are compared to help to solve it.

15.4.3.1 BF-TOPSIS Inputs

A precise score of each Ai based on each gj must be provided to obtain the score
matrix S, consistent with possibility distributions πq,ij given in Table 15.1. To take
into account decreasing preference, initial scores of g1 and g2 are multiplied by −1
providing the score matrix Spref defined by Eq. (15.25).
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Table 15.4 BF-TOPSIS results: relative closeness C(Ai , A
best)

Alternative Ai BF-TOPSIS1 BF-TOPSIS2 BF-TOPSIS3 BF-TOPSIS4

A1 0.12 0.12 0.03 0.03

A2 0.49 0.49 0.68 0.68

A3 0.66 0.66 0.85 0.85

A4 0.69 0.69 0.88 0.88

A5 0.92 0.92 0.97 0.97

Spref �

⎛

⎜

⎜

⎜

⎜

⎝

g1 g2 g3 g4 g5

A1 0 0 0 0 0
A2 −300000 −6000 5 0.007 0.02
A3 −300000 −1500 5 0.008 0.04
A4 −600000 −7500 7 0.008 0.05
A5 −1000000 0 7 0.008 0.1

⎞

⎟

⎟

⎟

⎟

⎠

(15.25)

15.4.3.2 BF-TOPSIS Results

Given Spref, applying the four BF-TOPSIS methods provides relative closeness
C(Ai, A

best) of each alternative Ai with the ideal best solution Abest in Table 15.4.
In this case, whatever the BF-TOPSIS method used, preference ranking of all

alternatives according to descending order of C(Ai, A
best) is A5 ≻ A4 ≻ A3 ≻

A2 ≻ A1. In [6], for this application case, authors not only give computation details
but also a comparison with classical MCDA methods such as CBA and AHP. They
show that CBA is very sensitive to criteria choice for monetary valuation such as the
human life (g4) and that BF-TOPSIS is more robust to rank reversal problems than
AHP.

15.4.4 FCOWA-ER to Choose the Best Alternative Under

Uncertainty

The final practical DMP is about choosing the best solution to implement, consider-
ing the knowledge on the states of the nature.

15.4.4.1 FCOWA-ER Inputs

For each Ai , i = 1, . . . , 5 and each scenario Sk , k = 1, . . . , 7, Cik is the efficiency
level in the 5 × 7 matrix C defined by Eq. (15.26). It can be extracted after
implementing ER-MCDA to solve a previous MCDM problem, given a specific
Sk . A quantitative transformation of labels θe, e = 1, . . . , n into [1; 10] (the higher
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Table 15.5 FCOWA-ER result: credibility, BetP, DSmPǫ=10−6 , and plausibility of Ai efficiency

Ai BelA(Ai) BetPA(Ai) DSmPA(Ai)ǫ=10−6 PlA(Ai)

A1 0.000000 0.027908 0.000004 0.139530

A2 0.000000 0.060282 0.000008 0.269030

A3 0.000000 0.132010 0.000013 0.470130

A4 0.000000 0.180390 0.000015 0.566890

A5 0.404960 0.599420 0.999960 1.000000

is score, the higher is payoff) is proposed. Results of ER-MCDA in Tables 15.2
and 15.3 help give payoffs for S4.

C =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

9 3 2 2 1 1 1
10 8 4 3 2 1 1
10 7 6 6 4 4 1
10 6 8 7 3 2 1
10 8 6 6 6 5 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(15.26)

Expert represents uncertainty on the states of the nature S through a BBA mS(·).
s = 4 focal elements Xr ∈ 2S are considered:
mS(X1) = mS(S1 ∪ S3 ∪ S5) = 0.4, mS(X2) = mS(S2 ∪ S4 ∪ S5 ∪ S6) = 0.25,
mS(X3) = mS(S7) = 0.1, mS(X4) = mS(S ) = 0.25.

X1, X2, and X3 are partial ignorances, and X4 is the full ignorance.

15.4.4.2 FCOWA-ER Results

Given payoff matrix C and BBA mS(·), applying FCOWA-ER steps, provides the
two BBAs mA

Pess(·) and mA

Opti(·) for the FoD A (step 1) which are combined to give

the final BBA mA

PCR6(·) through PCR6 fusion rule (step 2). Table 15.5 shows values
of BelA(·), BetPA(·), DSmPA

ǫ=10−6(·) and PlA(·) based on mA

PCR6(·) (step 3).
Whatever the decision rule, the best action Ai⋆ is always A5. The total preference

ranking is deducted: A5 ≻ A4 ≻ A3 ≻ A2 ≻ A1.

15.5 Conclusions and Perspectives

In practice, torrential risk managers must decide on the best action to reduce damage
on elements-at-risk. Therefore, the comparison of efficiency of potential alternatives
is generally used. Each one can be assessed through qualitative labels that require a
partial ranking of alternatives, but it generally cannot help to choose the best action
that requires a total preference ranking.
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The decisions are based on several criteria, such as costs and different types
of damage reduction, imperfectly assessed under an epistemically uncertain envi-
ronment corresponding to torrential hazards. Confronted with such difficulties,
decisions are generally based on expert knowledge which directly takes into account
imperfect information.

This chapter shows how recent developments of MCDAs based on belief function
theory actually can help decision-makers in their decision process. A practical
example is proposed and new methods, showing their possible combination for a
global decision-making was applied.

Whatever the method is used, the first step of any DMP is to define alternatives to
compare, criteria to take into account, their importance weights which represent the
DM preference between them, and the set of states of the nature. Given the scores
of each alternative based on each criterion, the final step is about aggregating this
multi-criteria and multi-scenario evaluation to help decision.

The three methods applied in this chapter (ER-MCDA, BF-TOPSIS, FCOWA-
ER) are combined at a combination step, while the PCR6 fusion rule is preferred.
Nevertheless, analyzing the effect of this choice on the results of each method should
be done.

To solve MCDM problems, ER-MCDA helps to take into account imperfect
evaluation of criteria potentially provided by several sources. FoD of decision is
first specified through qualitative or quantitative labels. Each expert is considered
as source who gives a possibility distribution (imprecise scoring) and a mapping
model based on fuzzy sets. ER-MCDA makes it possible to choose a label for each
alternative providing the quality of this decision.

The four BF-TOPSIS methods help a total preference ranking of all alternatives
with a better robustness to rank reversal problems than classical MCDAs. It is based
on a precise score matrix representing the MCDM problem. Using intermediary
results of ER-MCDA as an intermediary decision step helps to take into account
imprecise scoring in BF-TOPSIS.

FCOWA-ER is different from the two previous methods because it proposes a
method to solve DMP under uncertainty. It improves the OWA method used when
the knowledge of the states of the nature is uncertain. It was first developed to decide
given a precise scoring of each payoff. As for BF-TOPSIS, it is possible to apply ER-
MCDA for each scenario and to propose a quantitative transformation if qualitative
labels are used. It thus helps to take into account initial imperfect scoring.

From an operational point of view, this chapter shows how theoretical methods
can help a better formalization of the decision-making process. Indeed, expert
and DM elicitation is always needed to express, given the DMP under concern,
the criteria to take into account, their importance, and the preferences for their
evaluation. Moreover, methods have been applied to DMPs related to protection
efficiency, but they are generic and can be applied for any other DMP.
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