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Job-shop scheduling problem with energy consideration

Abstract

These days, rising energy costs along with general concerns about major en-

vironmental issues (global warming, climate change), result in more and more

strict production constraints for the industrial sector, which is known to be the

first energy consumer and greenhouse gas emitter in the world. There is there-

fore a growing industrial need to address the problems of production systems

related to energy aspects.

In this paper, a job-shop scheduling problem with energetic aspects is consid-

ered. The objective is to minimize production costs in terms of energy, while

respecting a power peak limitation, along with more traditional production con-

straints. Two integer linear programming models are proposed for the addressed

problem. In order to evaluate and compare the performance of these formula-

tions, computational experiments are presented and numerical results are dis-

cussed and analysed.

Keywords: job-shop scheduling, power peak, energy prices, integer linear

programming.

1. Introduction

As is known, most energy production systems generate greenhouse gas emis-

sions. These cause the phenomenon of global warming responsible for rising

temperatures, climate change, rising of sea levels and changing of the length

of the seasons. Climate change also impacts our health and increases the risk

of infectious diseases. In addition, most energies used are based on scarce and

finite resources which tend to increase their price. This explains the growing

general concern about energy aspects in our daily life.
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According to Wang and Li [2013], the industrial sector is the first energy con-

sumer and greenhouse gas emitter in the world. Due to increases in energy

prices and environmental constraints, manufacturing companies are more and

more required to control their production costs, energy consumption, waste and

carbon emission.

In the last decades, the consideration of energy aspects in production have

gained a lot of attention from long- to short-term planning. Strategic decision-

making can concern the planning of investments related to for example the

location of warehouses or production plants, or the purchase of machinery and

equipment. The former aspect could be driven by factors such as the minimiza-

tion of vehicle movements, and hence energy consumption. The latter can be

affected by e.g. the choice of flexible, modular machines that allow to manage

the energy consumption of the plant. At a tactical level, different problems can

arise that concern energy aspects. For example, Rapine et al. [2018] tackles a

single-item lot-sizing problem in a production system with identical, capacitated

parallel machines, with a set of constraints limiting the energy consumption in

each period. Similarly, Masmoudi et al. [2017] proposes a lot-sizing problem in

a flow-shop system with energy consideration and Beck et al. [2018] addresses

an extended economic lot scheduling problem. Finally, problems arise at oper-

ational level since electricity prices vary according to short periods and specific

power limits are imposed by energy providers. In recent years, these aspects

have inspired many research works in several fields, as shown for example in

Zavanella et al. [2015] in which Queuing Theory is used to represent energy

and power use in a production context, or in Fernandez et al. [2013], which

uses buffers to allow an invariant system throughtput while reducing energy

consumption during some periods by switching off a subset of machines. In the

case of scheduling problems, the combination of energy cost and power limi-

tations can lead to scheduling problems with non-trivial energy optimization

criterion and/or constraints.

Concerning electricity profiles, two types of demand response programs are com-

monly considered (Goldman et al. [2010]). The first policy is the price-driven
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program where different rates of electricity are used during periods. This leads

manufacturers to manage their production planning to produce during periods

with a lower cost of energy (as examples Time Of Use (TOU), Critical Peak

Pricing (CPP)). The second policy is the event-driven program. In this case,

manufacturers are rewarded if they manage to reduce their energy consumption

in order to react to specific triggering events such as weather conditions. In both

cases, from the customers point of view, it is recommended to reduce the energy

consumption during peak periods in order to reduce their overall electricity cost.

However, there is a significant difference in the way these problems are dealt

with: in the price-driven response program all the prices data are known in

advance and thus we can consider deterministic scheduling problems, whereas

in the event-driven response program we have to consider dynamic optimization

scheduling problems. In this work, we will focus on the former.

Energy-related production costs add up with those related to production plan-

ning, which depend directly on the type of manufacturing system. Such situa-

tions occur, for example, in automotive industries, or industrial foundries, which

are among the largest energy consumers. Therefore, as shown in the recent study

of Wichmann et al. [2018], there is an industrial need to take into account the

energy costs in production systems, and more specifically time-dependent en-

ergy prices in the planning phase, in order to yield an energy-aware scheduling

of tasks.

Nowadays, factories need to be more agile in order to meet the challenges of

mass customization. This explains the increasingly large number of industrial

manufacturing systems organized to allow more flexibility than the previous

mass production systems. This flexibility can come from more flexible or re-

configurable resources but also from some changes in the choice of resources

used (e.g. with closed and open stations) or in the order of these resources (e.g.

U-shaped flow lines). As a generalization of flow-shop, job-shop systems can

take these new needs into account.

This work focuses on this type of issues and addresses the energy aspects of

scheduling for job-shop production systems. Energy considerations are twofold.
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2. Literature review

An increasing number of research works consider scheduling problems with

energy-related criteria as well as constraints. In this section, a short review

(summarized in Table 1) will be presented of some papers that deal with the

limitation of power consumption all along the time horizon (power peak), the

minimization of the overall energy required to process a set of operations (energy

consumption) or the minimization of the economic cost of such energy (energy

cost), so as to position the present work.

2.1. Power peak

Scheduling problems with a power peak aim at avoiding a given maximum

amount of available power to be overused at any time. The works covered by

our literature review that deal with a power peak resort to different solution

methods. Kemmoe et al. [2017] and Fang et al. [2011] use mixed-integer linear

programming (MILP) to minimize makespan in a job-shop system, and energy
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On the one hand, we try to minimize energy costs related to the scheduling. On

the other hand, we consider a power peak limitation that impacts the schedul-

ing of operations as each machine is characterized by a nominal power. Hence,

the contribution of this work consists of the definition of a job-shop scheduling

problem that considers these aspects, which to the best of our knowledge has

not yet been addressed. Two integer linear programming (ILP) models are pro-

posed, namely a disjunctive model and a time-indexed model. In addition, a

heuristic algorithm is developed in order to find good quality solutions in rea-

sonable computational time.

The remainder of the paper is organized as follows. Section 2 presents the liter-

ature review. Section 3 describes the studied problem and introduces the main

used notations. In Section 4, the two proposed mathematical formulations are

presented. Computational experiments are described and analysed in Section

5. Finally, Section 6 presents conclusions and some perspectives.



consumption, makespan and carbon footprint in a flow-shop system. Heuristic

methods are proposed to minimize energy cost in a system with parallel ma-

chines (Artigues et al. [2013]) and total tardiness and makespan in a flexible

flow-shop (Bruzzone et al. [2012]).

2.2. Energy consumption

In a general way, the minimization of energy consumption deals with either

the state of machines (turning on, turning off, idle, processing) or their speed.

In all the references that we studied, energy consumption is minimized along

with other criteria. Among these latter we find e.g. the makespan (Yildirim

and Mouzon [2012], Mansouri et al. [2016], Dai et al. [2013], May et al. [2015],

He et al. [2005]) or the tardiness (Mouzon and Yildirim [2008], Fang and Lin

[2013], Zhang and Chiong [2016]). A great variety of scheduling problem is dealt

with, from systems with single or parallel machines, to job-shop, flow-shop, and

flexible flow-shop systems. Heuristic approaches are developed in most of the

works, and particularly in those dealing with large-sized instances (like Liu et al.

[2016]), with some exception, like the exact approach of Fang et al. [2011].

2.3. Energy cost

Energy cost minimization amounts to take into account a fee schedule that

associate different per-energy-unit prices to different slots of the planning hori-

zon, and minimize the overall economic cost. Works in which energy cost is

the only criterion, or in which is one of a multi-objective driver (along with

e.g. holding costs or tardiness penalty) are found in almost equal number, the

former ones dealing with single machine systems (Shrouf et al. [2014], Che et al.

[2016]), parallel machine systems (Artigues et al. [2013]) and job-shop systems

(Selmair et al. [2016]), the latter ones dealing with flow-shop (Fernandez et al.

[2013], Wang and Li [2013]) and flexible flow-shop systems (Luo et al. [2013]).

Heuristic algorithms are developed in most of the cases, except for Selmair et al.

[2016] which proposes an Integer Linear Program.
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Reference

Type of
Objective(s)
to minimize

Additional
constraint(s)

Optimization
method(s)scheduling

problem

Shrouf et al. [2014]

Single
machine

energy cost Heuristic

Yildirim and Mouzon [2012] energy consumption Heuristic

makespan

Mouzon and Yildirim [2008] energy consumption Heuristic

total tardiness

Che et al. [2016] energy cost Heuristic

Artigues et al. [2013]
Parallel

machines

energy cost power peak Heuristic

Fang and Lin [2013] energy consumption Heuristic

tardiness penalty

Mansouri et al. [2016]

Flow-shop

makespan Heuristic

energy consumption

Fang et al. [2011] makespan power peak Mixed integer

energy consumption programming

carbon footprint (Disjunctive

formulation)

Wang and Li [2013] energy cost Heuristic

energy consumption

Dai et al. [2013]

Flexible
flow-shop

makespan Heuristic

energy consumption

Bruzzone et al. [2012] total tardiness power peak Heuristic

makespan

Luo et al. [2013] makespan Heuristic

energy cost

Zhang and Chiong [2016]

Job-shop

energy consumption Heuristic

total weighted

tardiness

May et al. [2015] energy consumption Heuristic

makespan

He et al. [2005] energy consumption Heuristic

makespan

Kemmoe et al. [2017] makespan power peak Heuristic

Selmair et al. [2016] energy cost Integer linear

programming

(Time-indexed

formulation)

Liu et al. [2016] energy consumption Heuristic

total weighted

tardiness

Table 1: An overview of the literature review for production systems with energy consideration.

2.4. Conclusion

As we can observe from this review, and to the best of our knowledge, the

joint consideration of energy cost minimization and power peak for a job-shop
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system has not been studied yet. Moreover, most works propose heuristics,

whereas few works consider exact approaches.

In this work, we study a job-shop scheduling problem without any case-specific

constraints for the sake of generality, and we consider an energy cost driver and

a power peak constraint. We propose for this problem two integer program-

ming formulations inspired by classic formulations for the job-shop scheduling

problem.

3. Problem introduction

This section is structured in two parts: in the first, the problem is formally

stated, while in the second a detailed example is given to help the reader under-

stand how the considered energy-related features (see Section 2.4) can impact

the scheduling in a job-shop system.

3.1. Formal problem definition

In the classic job-shop scheduling problem, the jobs of a set J must be

processed on a set M of machines. The processing of a job j on a machine

m is called an operation (j,m): the sequence of operations of each job is a

predefined, ordered subset Oj ⊆ M of machines, and the machine that must

process job j immediately after m ∈ Oj is denoted with sj(m) ∈ Oj . The

processing time qj,m of each operation is also known and deterministic. The

scheduling problem consists in determining the starting date of each operation.

The goal is to optimize some given economic and/or production criteria while

meeting some classic production constraints, for example preventing operations

to be preempted, or any two operations to be executed at the same time on the

same machine, or an upper bound Cmax on the last completion time (makespan),

and possibly some additional problem-specific constraints.

In this study, some energy aspects of the scheduling are taken into account.

Each machine m ∈ M has a nominal power φm, and each operation (j,m) has

a power consumption equal to φm and constant over its duration. Moreover,
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p′∈P :p′<p

Periods P are further defined so as to have
∑
p∈P

capp = Cmax, i.e. the length of

the time horizon.

Table 2 summarizes these notations.

symbol meaning

J set of jobs

M set of machines

Oj ordered subset of machines associated with job j

sj(m) machine that must process job j after machine m

Cmax length of the time horizon (upper bound on makespan)

qj,m processing time of operation (j,m)

φm nominal power of machine m

Wmax maximum overall power peak

P set of periods of the fee schedule

capp length of period p

cpp price per energy unit of period p

Cp starting time of period p

Table 2: Main notations used to describe the problem parameters.

Figure 1 illustrates the cost associated with one job to schedule on one machine

over a timespan of 11 hours. Let us consider a power consumption φ = 1 KW

for the machine and a processing time q = 2 hours for the operation. The energy

prices are defined over three periods as cp1 = 3, cp2 = 1 and cp3 = 2 e/KWh,
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a limit Wmax is imposed on the maximum overall power peak which cannot be

exceeded at any time. Such a limit is often found in real life contexts, as electric

power suppliers typically include a defined power limit in supply contracts for

companies.

The energy consumption φm · qj,m of an operation (j,m) has a price, which

evolves over time according to a given fee schedule. A set P of periods is

defined, each p ∈ P being associated with a length capp and a price per energy∑
unit cpp. We denote with Cp= capp

′
the starting time of period p.



Figure 1: Price profile variation and generated energy costs.

and their durations are 4, 3 and 4 hours respectively, as shown in the upper part

of the figure. The bottom part shows the generated energy cost depending on

the starting time of the unique operation. If for instance the starting time is 2,

then the operation starts and ends in the first period and its cost is cp1 ·q ·φ = 6

e, q · φ = 2 KWh being the energy consumption. If the starting time is 3, then

the processing of the operation spans over periods p = 1 and p = 2 and its

energy cost decreases to cp1 · 1 · φ+ cp2 · 1 · φ = 4 e, as it is expected since the

energy fee of period 2 is lower.

The problem proposed here consists in finding a schedule that complies with the

classic constraints (precedence, non-preemption, non-overlap, makespan upper

bound) and the maximal power peak while minimizing the overall energy cost.

An example can help the reader to understand more in depth how scheduling

can be affected by the energy aspects introduced before.

3.2. Impact of the energy aspects on the scheduling

This example deals with 3 jobs and 3 machines. The sets O1 = {1, 3, 2},

O2 = {2, 1, 3} and O3 = {2, 3, 1} and the notations s1(), s2(), s3() (introduced at

the beginning of Section 3.1) define how the operations of each job are sequenced,
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e.g. job j = 2 must be processed on machine m = 2 first, then on machine

m = 1, i.e. s2(2) = 1, and finally on machine m = 3, i.e. s2(1) = 3.

Table 3 gives the processing times of operations in hours.

jobs
machines

1 2 3

1 2 1 3

2 0.5 1.5 1

3 1 1.5 2

Table 3: Processing time of each operation.

Moreover, let us suppose the following energy features:

I the nominal power values are φ1 = 5, φ2 = 6 and φ3 = 8 KW;

I the maximum authorized overall power consumption is 13 KW;

I the time horizon is divided in a sequence of ON/OFF-peak periods. Slots

with odd p indices are ON-peak periods with capp = 3 hours and cpp = 0.159

e/KWh, whereas OFF-peak periods have capp = 4 hours and cpp = 0.13

e/KWh. These values are inspired by those proposed by the main French

electricity provider, see also Section 5.1.

If every energy aspect is neglected and the objective function to minimize is the

makespan, the optimal solution is the schedule represented by the Gantt chart

of Figure 2. The optimal makespan is 7.5 hours.

Figure 2: Gantt chart of the schedule that minimizes the makespan of the example, without

taking into account any energy aspects. Each block represents an operation (j,m), operations

of the same job have the same filling.
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3.2.1. Introduction of a power peak constraint

The introduction of the maximum power limit alone affects considerably the

scheduling. Figure 3 shows the solution schedule that minimizes the makespan

while meeting the maximum power requirement. This latter not only prevents

the three machines to be switched on at the same time, but even some subsets of

them, like e.g. machines m = 2 and m = 3 in this case. Due to this, the schedule

of some operations must be postponed as they must wait for power availability,

as it is the case here for operation (2,2). The makespan of the optimal solution

is then equal to 10 hours.

Figure 3: Gantt chart of the schedule that minimizes the makespan, while complying with the

maximum power limitation. The optimal makespan increases of a considerable 33%.

3.2.2. Energy cost minimization

Changing the objective function to seek for the solution that minimizes the

energy cost affects the production planning even more dramatically, as shown in

Figure 4, which considers the alternate ON- and OFF-peak periods. We point

out that the scheduling must not only comply with the power limitation: the

solution schedule in Figure 4 is obtained with a timespan upper bound Cmax

equal to 10 hours (i.e. the optimal value of makespan). Therefore such a solution

is equivalent to that of Figure 3 w.r.t the makespan minimization criterion.

However, as a result of the cost driver, as many operations as possible are

planned during the only OFF-peak slot, thus changing the schedule significantly.

The overall energy cost is 12.80 e, whereas the cost of the previous solution is

13.33 e.
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Figure 4: Production plan with minimum overall energy cost among those that have minimum

makespan and comply with the maximum power limitation. Ruled areas represent ON-peak

periods. Not surprisingly, operations tend to be scheduled as much as possible during OFF-

peak periods.

In some cases the available timespan can be larger than the optimal makespan

which allows to achieve further savings. In the case of Figure 5 we consider

schedules with a makespan up to 12 hours. This allows to use one more OFF-

peak period and some operations, e.g. (1,2), to be scheduled during it, which

reduces the overall energy cost to 12.39 e.

Figure 5: When priority is given to the energy cost and a higher makespan is tolerated, further

economies can be achieved. In the example, a larger timespan allows a cost reduction of more

than 3%.

4. Mathematical formulations and Heuristic algorithm IP2Hn

In this section, we present two integer programming models for the job-shop

scheduling problem with energy aspects, along with a heuristic algorithm that

12



can help find feasible solutions with a good ratio between solution quality and

computational time.

4.1. Disjunctive formulation IP1

The disjunctive formulation for the job-shop scheduling problem is based on

Manne [1960]. In spite of being known to have a weak linear relaxation (which

can result in a reduced efficiency of solving algorithms, as we will discuss in

Section 5.2), this formulation is among the most used in the literature. In this

section, we extend the base model to take into account the power and energy

cost features previously discussed (see Section 3.1). Moreover, in order to apply

the disjunctive formulation, an additional assumption must be done, i.e. no

operation can span over three or more periods in P . This can be expressed as

max
j,m
{qj,m} ≤ min

p
capp, i.e. the longest operation must be shorter than the

shortest period. We have also been inspired by Fang et al. [2011] concerning the

disjunctive modeling of the usage of cumulative resources, in order to express

the maximum power constraint.

4.1.1. Decision variables

The proposed disjunctive formulation for the job-shop scheduling problem

with energy consideration is an Integer Linear Program (ILP) IP1 whose binary

decision variables are the following:

I schedule variables Xp
j,m, j ∈ J , m ∈ Oj , p ∈ P , Xp

j,m = 1 ⇔ operation (j,m)

completes during period p;

Idisjunction variables yj,j′,m, j, j′∈J : j < j′, m∈Oj ∩Oj′ , yj,j′,m = 1⇔ job

j precedes job j′ on machine m;

I interperiod variables Sj,m, j ∈ J , m ∈ Oj , Sj,m = 1⇔ operation (j,m) starts

and ends in same period, Sj,m = 0⇔ operation (j,m) spans two consecutive

periods;

Ioverlap variables: given jobs j, j′ ∈ J and machines m ∈ Oj and m′ ∈ Oj′ :

Ifj,m,j′,m′ = 1⇔ starting time of operation (j′,m′) is strictly less than com-

pletion time of (j,m);
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Igj,m,j′,m′ = 1 ⇔ completion time of operation (j′,m′) is greater or equal

than the completion time of (j,m).

The model IP1 also makes use of some integer nonnegative variables, namely:

Ipartial completion time variables Cpj,m, j ∈ J , m ∈ Oj , p ∈ P , the date of

period p at which operation (j,m) completes;

I time consumption variables C
p

j,m, j ∈ J , m ∈ Oj , p ∈ P , the portion of period

p used to complete processing of operation (j,m), equal to min{Cpj,m, qj,m}.

It is worth giving some insight on how variables Cpj,m, C
p

j,m, fj,m,j′,m′ and gj,m,j′,m′

behave to help the reader to understand how they are used to model the problem.

Let us look at Figure 6.

In the upper part of the figure we have two operations (j′,m′) and (j”,m”). For

operation (j′,m′), Sj′,m′ = 0 holds as it spans over periods p − 1 and p (p > 1)

and Cpj′,m′ = C
p

j′,m′ = t3 − Cp < qj′,m′ = t3 − t1, and qj′,m′− Cpj′,m′ = Cp − t1 is

the quantity of period p − 1 spent for the first part of the operation. On the

other hand, operation (j”,m”) has Sj”,m” = 1 as it begins and ends in the same

period p, and we have Cpj”,m” = t4 − Cp ≥ qj”,m” = t4 − t2 = C
p

j”,m”. In both

cases, terms C
p

j,m and qj,m − C
p

j,m allow to compute, along with Sj,m, the time

spent by an operation in each period, hence its energy cost.

The bottom part of Figure 6 shows all possible cases of time overlap between

two operations. In we consider operations (j,m) and (j′,m′), then from the

definition of variables fj,m,j′,m′ and gj,m,j′,m′, we can see that they are both equal

to 1 only in cases d) and f), whereas in the other cases a), b), c), g), h) one of

the two variables is equal to 0. The other overlap situation, c), can be detected

analogously by using the symmetric variables fj′,m′,j,m and gj′,m′,j,m. The last

overlap possibility occurs with operations that are shorter of (j,m), like (j”,m”)

in e): this also can be detected since variables fj”,m”,j,m and gj”,m”,j,m will be

both equal to 1. Overlap variables f and g can therefore be used to measure

the cumulative use of the power resource, and ultimately to enforce the power

peak constraint.

14



Figure 6: Graphical explanation of how S, C, C variables and f , g variables can help comput-

ing the overall energy cost and enforcing the maximum power limit constraint, respectively.

4.1.2. Objective function and constraints

The objective function of model IP1 is then the following:

min z =
∑
j∈J
m∈Oj

(
cp1 φm qj,m X1

j,m+∑
p∈P
p>1

(
cpp−1 φm qj,m Xp

j,m + ((cpp − cpp−1) φm C
p

j,m)
)) (1)

In it, the overall energy cost is computed as the sum of the cost terms associated

with each operation. Such terms are computed as follows and similarly as ex-

plained in Figures 1 and 6. When an operation (j,m) ends during period p = 1,

X1
j,m = 1 and (∀p>1) Xp

j,m = 0, hence from (1) the energy cost is cp1·φm·qj,m. If

operation (j,m) ends during period p>1, then Xp
j,m = 1 and (∀p′ 6= p) Xp′

j,m = 0,

15



∑
p∈P

(Cp ·Xp
j,m + Cp

j,m) ≤ Cmax , ∀j ∈ J,m ∈ Oj (2)

Constraints (2) state that each operation must be completed before the timespan

limit Cmax. To this end, we note that term
∑
p∈P (Cp ·Xp

j,m + Cpj,m) represents

the completion time of operation (j,m), and hence
∑
p∈P (Cp ·Xp

j,m+Cpj,m)−qj,m
is its starting time.∑

p∈P
(Cp ·Xp

j,m + Cp
j,m) ≤

∑
p∈P

(
Cp ·Xp

j,sj(m) + Cp
j,sj(m) − qj,sj(m) ·Xp

j,sj(m)

)
, ∀j ∈ J,m ∈ Oj

(3)

Constraints (3) guarantee the execution sequence of each job, as a time gap is

imposed between the end of an operation (j,m) and the end of the following

operation of the same job, (j, sj(m)), and such gap is larger of equal to the

processing time qj,sj(m) of the latter.∑
p∈P

(Cp ·Xp
j′,m + Cp

j′,m − qj′,m ·X
p
j′,m)−∑

p∈P
(Cp ·Xp

j,m + Cp
j,m − qj,m ·X

p
j,m) ≥ qj,m + Cmax · (yj,j′,m − 1)

, ∀j, j′ ∈ J : j < j′,m ∈ Oj ∩Oj′

(4)

∑
p∈P

(Cp ·Xp
j,m + Cp

j,m − qj,m ·X
p
j,m)−∑

p∈P
(Cp ·Xp

j′,m + Cp
j′,m − qj′,m ·X

p
j′,m) ≥ qj′,m − Cmax · yj,j′,m

, ∀j, j′ ∈ J/j < j′,m ∈ Oj ∩Oj′

(5)

Constraints (4) and (5) are disjunction constraints: for each two jobs j and j′

that at some point must be processed on the same machine m, such constraints

are both defined once – which explains the condition j < j′. If yj,j′,m = 1, i.e.

operation (j,m) executes before operation (j′,m), then the associated constraint

(4) imposes a minimum time gap of qj,m between the starting time of (j,m)

and that of (j′,m), while (5) is redundant. The two constraints behave in a

complementary way if yj,j′,m = 0.∑
p∈P

Xp
j,m = 1 , ∀j ∈ J,m ∈ Oj (6)
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and either it is processed entirely during period p, or its processing begins at

period p − 1. In the first case, the term cpp−1φmqj,m + (cpp − cpp−1)φmCj
p

,m

correctly reduces to cppφmCj
p

,m as qj,m = Cj
p

,m; in the second case, the same

term reduces to cpp−1φm(qj,m−Cj
p

,m) + cppφmCj
p

,m, which is a weighted sum of

the energy unit costs of the two periods according to the time spent by (j,m)

in each one (see Section 4.1.1).

The constraints to be enforced are the following:



Constraints 6 enforce the scheduling of each operation at some point of the time

horizon.

Cp
j,m ≤ cap

p ·Xp
j,m , ∀j ∈ J ;m ∈ Oj , p ∈ P (7)

C1
j,m ≥ qj,m ·X1

j,m , ∀j ∈ J,m ∈ Oj (8)

Cp
j,m ≥ X

p
j,m , ∀j ∈ J,m ∈ Oj , p ∈ P : p > 1 (9)

Constraints (7) to (9) link schedule and partial completion time variables: for

each operation (j,m) and period p, they impose Xp
j,m = 0 ⇒ Cpj,m = 0 and

Xp
j,m = 1⇒ Cpj,m > 0, with (8) representing the special case of period p = 1.

Cp
j,m ≤ qj,m + (capp − qj,m) · Sj,m , ∀j ∈ J,m ∈ Oj , p ∈ P (10)

C
p
j,m ≤ Cp

j,m , ∀j ∈ J,m ∈ Oj , p ∈ P (11)

C
p
j,m ≤ qj,m , ∀j ∈ J,m ∈ Oj , p ∈ P (12)

C
p
j,m ≥ Cp

j,m − cap
p · Sj,m , ∀j ∈ J,m ∈ Oj , p ∈ P (13)

C
p
j,m ≥ qj,m ·(Sj,m+Xp

j,m−1) , ∀j ∈ J,m ∈ Oj , p ∈ P (14)

Constraints (10)-(14) link interperiod variables, partial completion time vari-

ables and time consumption variables as explained in Section 4.1.1. More in

detail, let (j,m) be a given operation, and p the period in which it completes,

i.e. s.t. Xp
j,m = 1. If the operation spans over periods p − 1 and p, then

Sj,m = 0, so constraints (14) are redundant while (11) and (13) jointly impose

(∀p′ ∈ P ) C
p′

j,m = Cp
′

j,m, but p is the only one in which they are not equal to 0

(due to (7)) but bounded by qj,m instead (due to (10) and (12)). Conversely, if

(j,m) also starts in p, then Sj,m = 1, constraints (10) are redundant while con-

straints (12) and (14) jointly impose C
p

j,m = qj,m (0 ≤ C
p′

j,m ≤ qj,m for periods

p′ 6= p).∑
p∈P

(Cp ·Xp
j,m + Cp

j,m)−∑
p∈P

(Cp ·Xp
j′,m′ + Cp

j′,m′− qj′,m′ ·Xp
j′,m′) ≤ Cmax · fj,m,j′,m′

, ∀j, j′ ∈ J,m ∈ Oj ,m
′ ∈ Oj′ ,m 6= m′

(15)
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∑
p∈P

(Cp ·Xp
j′,m′ + Cp

j′,m′)−
∑
p∈P

(Cp ·Xp
j,m + Cp

j,m) ≤ Cmax · gj,m,j′,m′− 1

, ∀j, j′ ∈ J,m ∈ Oj ,m ∈ Oj′ ,m 6= m′
(16)

φm ·
∑
p∈P

Xp
j,m +

∑
j′∈J

∑
m′∈Oj′
m′ 6=m

(fj,m,j′,m′ + gj,m,j′,m′ − 1) · φm′ ≤Wmax

, ∀j ∈ J,m ∈ Oj

(17)

Given operations (j,m) and (j′,m′), the corresponding constraints (15) forces

the variable fj,m,j′,m′ to value 1 in case the completion time of (j,m) is strictly

greater than the starting time of (j′,m′), i.e. accordingly to its definition. Simi-

larly for the corresponding constraint (16) w.r.t the variable gj,m,j′,m′. Then, the

corresponding constraint (17) prevents operation (j,m) from completing during

period p if some overlaps with other operations occur such that the total used

power exceeds the maximum authorized value Wmax.

4.2. Time-Indexed formulation IP2

The time-indexed formulation for the job-shop scheduling problem is based

on Bowman [1959] and is mainly used to model problems with cumulative re-

sources. A well-known drawback is that the time index causes the number of

variables to grow rapidly with the length of the time horizon. However, time-

indexed-based models can usually yield a good linear relaxation; moreover, the

additional assumption required to apply the disjunctive formulation for the job-

shop scheduling problem, i.e. max
j,m
{qj,m} ≤ min

p
capp (see Section 4.1) is no

longer necessary and can be discarded.

In this section, we extend the base time-indexed model of Bowman [1959] with

the power and energy cost features.

4.2.1. Decision variables and additional notations

The time-indexed formulation for the job-shop scheduling problem with en-

ergy consideration is a 0-1 Linear Program (01LP), which we name IP2, with

only one family of decision variables:

Ibinary schedule variables Xt
j,m, j ∈ J , m ∈ Oj , t ∈ {1,...,Cmax}, Xt

j,m = 1 ⇔

operation (j,m) is completed at time t.
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The key idea of time-indexed models like IP2 is to explicitly divide the planning

horizon in unit time slots, hence decisions concern how to allocate operations to

slots. To this end, specify the last occupied time slot of an operation is sufficient,

e.g. Xt
j,m = 1 states that operation (j,m) is deployed over slots t− qj,m + 1,...,t.

Let us denote for the sake of simplicity the time horizon {1,...,Cmax} with T and

the per-energy-unit cost at time t ∈ T with ctt = cpp ∀t ∈ [Cp, Cp+1[.

4.2.2. Objective function and constraints

The objective function of model IP2 is the following:

min z =
∑
t∈T

ctt
( ∑
m∈M

φm
( ∑
j∈J:
m∈Oj

∑
t′∈T :
t≤t′<t+qj,m

Xt′

j,m

))
(18)

Relation (18) can be explained as follows. The nominal power φm of machine

m ∈M is equal to the per-time-unit energy consumption of m when it is turned

on. Term ctt · φm is hence the energy cost of having m operative at time t ∈ T ,

which we pay for each operation (j,m) (j being a job that must be processed

on m) s.t. Xt′

j,m = 1, t′ ∈ {t,...,t+ qj,m − 1}, as it is explained in Figure 7.

Figure 7: The energy cost of an operation (j,m) is the sum of the per-time-unit energy costs of

the time slots involved in its deployment. In this example, qj,m = 4: the energy cost of using

machine m at time t is paid if the operation is completed at any time slot t′ ∈ {t,...,t + 3}.

The constraints to be enforced are the following:∑
t∈T

t ·Xt
j,m ≤ Cmax , ∀j ∈ J,m ∈ Oj (19)

Similarly to (2), constraints (19) force each operation to be completed within

the timespan limit Cmax.∑
t∈T

t ·Xt
j,m ≤

∑
t∈T

(t ·Xt
j,sj(m) − qj,sj(m) ·Xt

j,sj(m)) , ∀j ∈ J,m ∈ Oj (20)

Constraints (20), as constraints (3) for IP1, enforce the execution sequence of

each job by separating the completion times of two successive operations (j,m)
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and (j, sj(m)) of a same job j by a time gap greater or equal to the processing

time of the second one.∑
j∈J:
m∈Oj

∑
t′∈T :

t≤t′<t+qj,m

Xt′
j,m ≤ 1 , ∀t ∈ T,m ∈M

(21)

Disjunction constraints (21) assert that at most one operation can be processed

at a given date on a machine. The underlying principle is similar to that of

objective function (18) illustrated in Figure 7.∑
t∈T :

t≥qj,m

Xt
j,m = 1 , ∀j ∈ J,m ∈ Oj

(22)

∑
t∈T :

t<qj,m

Xt
j,m = 0 , ∀j ∈ J,m ∈ Oj

(23)

Constraints (22) impose the execution of all tasks, while relations (23) assert

that operation (j,m) cannot complete sooner that a date equal to its processing

time.∑
j∈J

m∈Oj

∑
t′∈T :

t≤t′<t+qj,m

φm ·Xt′
j,m ≤Wmax , ∀t ∈ T

(24)

Constraints (24) enforces at each date the maximum power limit, again similarly

to (18) and (21).

4.3. Comparison of the size of models IP1 and IP2

Before describing in detail the computational session conducted to assess the

performance of the two proposed models, it is useful to compare their size in

terms of both number of variables and number of constraints, as summarized

by Table 4. The main reason of this comparison is that, as was pointed out

at the beginning of Section 4.2, one of the main drawbacks of time-indexed

formulations that are found in the literature is the large number of variables.

The number of variables of IP2 is greater than that of IP1 when the following

condition (25) is fulfilled:

|T | > 2|J ||M | − 3|J|+1
2 + 3|P |+ 1 (25)

Indeed, the number of variables of IP2 is not much higher than that of IP1 as

usually with these types of scheduling models. The reason probably lies in the
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model # of binary v. # of nonnegative integer v. # of constraints

IP1 |J ||M | (2|J ||M | − 3|J|+1
2 + |P |+ 1) 1 + 2|J ||M ||P | |J ||M | (2|J ||M | − |J |+ 7|P |+ 3)− |J |+ 1

IP2 |J ||M ||T | 0 |J | (4|M | − 1) + |T | (|M |+ 1)

Table 4: Comparison of the proposed two models for the job-shop scheduling problem with

energy consideration. |J |, |M |, |P |, |T | denote the number of jobs, the number of machines,

the number of periods of the fee schedule and the number of time slots, respectively.

overlap variables of IP1, f and g, which are required to model the cumulative

use of the power resource and hence enforce the limit on the power consumption.

The number of such variables, which are not present in basic disjunctive models

for the job-shop scheduling problem, grow as fast as 2|J |2|M |2. This can become

quickly very huge even for medium-sized job-shop problem instances.

4.4. A heuristic algorithm based on the time-indexed ILP formulation

Both the two formulations IP1 and IP2 give an exhaustive representation of

the studied problem, in the sense that for both of them, each feasible solution

corresponds to a feasible schedule, and each schedule can be represented by at

least one feasible solution. This means that any Branch&Bound (B&B) algo-

rithm based on one of these two models is an exact algorithm, as it can implicitly

explore the set of all the feasible schedules and yield an optimal solution.

An interesting aspect of IP2 is that it can easily give rise to a heuristic algo-

rithm by simply considering a subset of dates T ⊂ T instead of the whole set.

By doing so, we obtain a restricted model IP2(T ) whose set of schedule vari-

ables Xt
j,m decreases proportionally in size, as do some families of constraints

(namely (21) and (24)). Clearly, not every feasible schedule has a corresponding

solution of such a restricted model: more exactly, every schedule with at least

one operation (j,m) having a completion time at a date t ∈ T\T cannot be

represented, thus a B&B algorithm based on IP2(T ) cannot find it. For this

reason, such an algorithm is heuristic, and the solution it yields comes with

no proof of optimality: nevertheless, it can be interesting to use it in order to

quickly find feasible solutions, as it certainly ends in a shorter time than a B&B

algorithm based on IP2.
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Let us now define the restricted date set Tn = {t ∈ T : t
n = b tnc}, i.e. the subset

of dates that are multiples of a given positive integer n. We denote with IP2Hn

the heuristic algorithm obtained by solving with a B&B the restricted model

IP2(Tn).

5. Computational experiments

This section provides the computational experiments that have been con-

ducted to evaluate the performances of the proposed formulations. Both mod-

els have been implemented with the commercial solver CPLEX 12.6 which uses

B&B.

In the following, for the sake of brevity, we will use the notation IP1 to denote

both the disjunctive formulation for the studied problem (see Section 4.1) and

the algorithm that consists in solving such formulation by B&B, and similarly

for notations IP2 and IP2Hn w.r.t the time-indexed formulation (see Section 4.2)

and its heuristic version defined on a subset of dates (see Section 4.4).

Tests have been run on an Intel Xeon E5530 with a 2.39 GHz CPU and 62.75

GB RAM. For a fair comparison, all the algorithms have had imposed the same

running time limit of one hour.

5.1. Instance generation

We generate a set of 90 instances starting from two well-known benchmark

instances, namely mt06 (taken from Fisher and Thompson [1963]) with 6 jobs

and 6 machines, and la04 (taken from Lawrence [1984]) with 10 jobs and 5

machines, and extending them by adding machine power values, overall power

consumption peak, timespan, period durations and electricity prices.

Five sets of machine power values φm are randomly generated from the uni-

form distribution U(5, 10). We denote the resulting datasets with DS1φ to

DS5φ. For each dataset, we consider 3 different value of power peak Wmax =

α ·
∑
m∈M φm, with α ∈ {0.7, 0.9, 1.0}, and 3 different values of planning hori-

zon duration Cmax = λ · C∗max, with λ ∈ {1.0, 1.1, 1.2}. C∗max is the optimal
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makespan obtained by imposing the power limitation constraint and minimiz-

ing the makespan instead of the overall energy cost (as done e.g. in Figure 3).

As shown in Figure 8, for each initial benchmark instance, we have 5 groups of

instances, each descending from a machine power values dataset and counting

9 instances which differ in the values of parameters α and λ. Conversely, each

result will be presented as the average value among the five instances which

descend from the same benchmark and have same values of α and λ, i.e. that

differ in the dataset they belong to. This allows to mitigate the effects of the

random generation of φm values.

As to electricity prices, we consider for each instance a succession of ON/OFF-

peak periods. Values are inspired by the French case (see EDF [2017]), where

the duration of ON-peak periods is 16 hours with an electricity price of 0.159

e/KWh, while the duration of OFF-peak periods is 8 hours and the electricity

price is 0.13 e/KWh. As a consequence, the generated machine power val-

ues are meant to be expressed in KW, whereas the duration of operations (as

they are taken from the literature) are considered to be expressed in hours.

These duration values for periods and operations comply with the assumption

max
j,m

qj,m≤min
p

capp required to apply formulation IP1(see Section 4.1).

Base instance (mt06, la04)

DS1φ DS2φ DS3φ

Wmax = 0.7
∑
m∈M

φm Wmax = 0.9
∑
m∈M

φm

Cmax = C∗max Cmax = 1.1 C∗max Cmax = 1.2 C∗max

Wmax =
∑
m∈M

φm

DS4φ DS5φ

Figure 8: Sketch of the instance generation scheme.

23



5.2. Computational results and detailed analysis

Table 5 shows the results of the computational session. Each line represents

the average values over five instances that descend from the same benchmark in-

stance and have the same values of parameters α and λ (see Section 5.1), shown

in columns 3 and 4. Lines 1-9 and 10-18 refer to the instances descending from

benchmark job-shop scheduling problem instances mt06 and la04, respectively.

The size of instances, i.e. |J | and |M |, is shown in column 2. For each line, and

for both IP1 and IP2, we report in columns 5-12 the number #opt of proven

optimal solutions (within time limit), the number #fea of instances for which a

feasible solution has been found (within time limit), the average relative opti-

mality gap gap and the average computational time CPU (in seconds) over the

instance set associated with the line.

The relative optimality gap is the percentage gap between the value of the best

found feasible solution and the lower bound obtained with successive linear re-

laxations of the formulation. In minimization problems like the one studied

here, the former is an upper bound on the value of the optimal solution and is

often denoted as UB, while the latter is denoted as LB. The relative optimality

gap is then computed as 100 · UB−LB
UB ; its value is first computed when the first

feasible solution is found and evolves during the execution of a B&B algorithm,

which terminates when the gap is closed, i.e. becomes null. If time limit is

reached before the optimality gap is closed, its value allows to estimate how

far we are from optimality proof. If no feasible solution is found within the

time limit, the gap cannot be computed. In Table 5, gap denotes the relative

optimality gap at time limit, hence a value larger than zero means that either

the optimum has not been found yet, or that its optimality has not been proved

yet.

The linear relaxation (LR) of an Integer Linear Program is the Linear Program

resulting from the relaxation of the integrality constraint on integer variables.

During the resolution process, the LR is used to evaluate the nodes of the search

tree and allow to prune non interesting subtrees. Therefore, the tighter is the

lower bound provided by the LR, the more efficient is the solving.
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inst |J |, |M | α λ
IP1 IP2 IP2H5

R
#opt #fea gap CPU #opt #fea gap CPU #fea gap? CPU

1 6, 6 0.7 1.0 5 5 0.00 58 5 5 0.00 10 1.21

2 6, 6 0.7 1.1 0 5 1.89 3,600 5 5 0.00 15 1.24

3 6, 6 0.7 1.2 0 5 3.71 3,600 5 5 0.00 33 1.27

4 6, 6 0.9 1.0 5 5 0.00 14 5 5 0.00 2 1.18

5 6, 6 0.9 1.1 5 5 0.00 1,462 5 5 0.00 3 1.21

6 6, 6 0.9 1.2 0 5 1.41 3,600 5 5 0.00 4 1.22

7 6, 6 1.0 1.0 5 5 0.00 15 5 5 0.00 1 1.17

8 6, 6 1.0 1.1 5 5 0.00 309 5 5 0.00 7 1.20

9 6, 6 1.0 1.2 0 5 0.94 3,600 5 5 0.00 7 1.21

10 10, 5 0.7 1.0 0 0 - 3,600 0 0 - 3,600 0 - 3,600 1.30

11 10, 5 0.7 1.1 0 3 12.05 3,600 0 2 0.21 3,600 5 0.24 2,010 1.30

12 10, 5 0.7 1.2 0 5 12.08 3,600 0 5 0.57 3,600 5 0.24 1,510 1.30

13 10, 5 0.9 1.0 0 5 10.80 3,600 0 0 - 3,600 4 0.18 3,054 1.27

14 10, 5 0.9 1.1 0 5 11.52 3,600 2 5 0.01 3,151 5 0.06 1,572 1.27

15 10, 5 0.9 1.2 0 5 11.66 3,600 3 4 0.12 2,371 5 0.06 174 1.27

16 10, 5 1.0 1.0 4 5 0.14 1,685 0 0 - 3,600 0 - 3,600 1.25

17 10, 5 1.0 1.1 0 5 8.46 3,600 4 4 0.00 1,726 5 0.13 2,024 1.26

18 10, 5 1.0 1.2 0 5 9.80 3,600 5 5 0.00 918 5 0.08 270 1.26

Table 5: Performances comparison of the disjunctive and time-indexed models.

Column 16 reports the ratio R between the value of the LR of IP2 at the root

node of the B&B tree, and the same value for IP1. Such ratio is computed

as R= LR(IP2)
LR(IP1) and provides a good indicator of the relative quality of the two

linear relaxations during the whole resolution process. For the considered in-

stances, the values of R are all greater than 1 since the LB of IP2 is always

tighter than that of IP1. Actually, the LB of IP2 is always between 25 and 30%

higher. This means that the LR of the time-indexed formulation provides better

lower bounds.

Average optimality gaps are computed w.r.t the instances for which at least one

feasible solution has been found. For example, for the instance set descending

from la04 with α = 0.7 and λ = 1.1 (line 11) IP1 was able to find a feasible solu-

tion for 3 instances out of five: the average gap over them is 12.05%. Similarly,

the average gap of 0.21% of IP2 is computed over two instances. This example
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also shows that althought IP2 has found less feasible solutions than IP1, they

are of much better quality. As we will see, this is a general trend. Average

computational times are computed over all the five instances associated with a

line.

Results show that IP1 has difficulties to find or to prove optimal solutions. For

example, in the instances descending from mt06 it only finds 25 optimal solu-

tions out of 45 instances and is clearly outperformed by IP2 which finds all the

45 optimal solutions in less than 35 seconds. More generally, the average gap of

the time-indexed model is always less than 1%, while it can go up to 12% for the

disjunctive model, which is coherent with the values of R observed. The only

advantage of IP1 lies in its ability to find feasible solutions more easily (e.g. 38

versus 25 for the instances descending from la04).

In most cases, for a given instance, the average gap increases with λ, regardless

of α, for both IP1 and IP2. In more detail, for instances derived from mt06

(lines 1-9), IP2 always finds the optimal solution, whereas IP1 either finds it or

reaches a small gap (under 2% in all cases but one) within the time limit. A

different behaviour occurs for instances descending from la04. IP2 cannot find

feasible solutions when λ = 1.0, while when λ > 1, feasible solutions are often

found (in 25 instances out of 30), and they are either optimal (14/25 cases) or

near-optimal (overall average gap under 0.16%). IP1 can find a good-quality

solution only for λ = 1.0 and α = 1.0, whereas in other cases the gap at time

limit is important. The time-indexed model tends to find optimal solutions more

easily, and in general more feasible solution with λ increasing. The disjunctive

one, on the other hand, finds more difficulties in finding the optimum when λ

grows, as the relative optimality gap becomes more relevant.

Since IP2 seems to struggle to find feasible solutions, particularly for instances

with a tight constraint on makespan (λ = 1.0), it is reasonable to consider the

idea to warmstart it, i.e. to feed it with an initial solution obtained beforehand

in order to intensify the pruning effect in the B&B tree search and ultimately to

accelerate the resolution. A good warmstart solution may be offered by the al-

gorithm IP2Hn. Columns 13-15 of Table 5 report the results obtained by IP2H5
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(i.e. obtained from model IP2 with dates that are multiples of 5) on the instances

derived from la04. The term gap? is the average (over the instance set associ-

ated with a line) of the percentage gap computed as 100 · UB(IP2H5)−LB(IP2)
UB(IP2H5)

, i.e.

the gap between the best solution of IP2H5 with the best lower bound of IP2,

so as to allow the comparison of gap? with gap of IP2. Hence, a null value for

gap? means that the solution obtained with the heuristic is actually an optimal

solution.

We run IP2H5 only on the instances derived from la04. The number of feasible

solutions generated by the heuristic is equal to 34, versus 25 when consider-

ing only the basic time-indexed model. When λ = 1.0, in most of the cases,

IP2H5 is not able to find feasible solutions within the time limit. However,

when λ ∈ {1.1, 1.2}, solutions of very good quality (gap?≤ 0.24) are found in a

reasonable time, with several cases where the solution yielded by IP2H5 at time

limit is better than the solution found by IP2 (i.e. , gap > gap?).

The complexity of the problem could also be affected by the number of vari-

ables. For the instances derived from mt06 the average number of variables is

equal to 2,792 and 2,259 for IP1 and IP2 respectively. For the instances derived

from la04, this value is equal to 5,101, 39,073 and 7,794 for IP1, IP2 and the

heuristic respectively.

5.3. Overall analysis

The computational experiments show that the time-indexed model IP2 is

more efficient than the disjunctive model IP1, as when the former succeeds in

finding feasible solutions, then it is capable in most cases of proving optimality,

or to achieve a much smaller gap within the same time limit. This is probably

due to the fact that the time-indexed model is structurally tighter, leading to a

stronger lower bound. A well-known limit of time-indexed models for job-shop

scheduling problems is that they tend to suffer from the enlargement of the time

horizon, due to the proportional increase of the number of variables. However,

in the case of the problem studied here, the size of model IP2 is very similar

to that of IP1, due to the cumulative resource constraints (17) of the latter as
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6. Conclusion and future work

Due to the increase of energy prices during the last decades, it is more and

more important to take electricity price into account when minimizing the over-

all cost of a production system. In this paper, a job-shop scheduling problem

with energy consideration is studied. The objective is to find a schedule that

respects a power limitation during the planning horizon with a variable elec-

tricity cost profile while minimizing the energy cost. Two integer programming

models, namely a disjunctive and a time-indexed formulations, are proposed

to tackle this job-shop scheduling problem variant. The computational results

have shown that the time-indexed formulation outperforms the disjunctive one.

The time-indexed model has also proven to be more generic. Indeed, extending

the disjunctive model to consider non-constant energy cost profiles and ma-

chine power consumption profiles can be a hard task. Moreover, such a model

requires making some additional assumption (namely, to have the longest oper-

ation shorter than the shortest period). The time-indexed model does not suffer

from these limitations, being in particular more adaptable to the generalization

of energy cost profiles and machine consumption profiles. As to energy cost
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explained in Section 4.3. This means that the performance of B&B algorithms

based on these two formulations will be comparable in terms of computation

burden for the solver engine. This contributes to make the overall performances

of the time-indexed model better.

The only weak point of the time-indexed model seems to be its greater difficulty

to determine feasible solutions. However, this can be tackled by coupling it with

a heuristic algorithm in order to provide warmstart solutions. Incidentally, the

model itself easily gives rise to a simple heuristic by reducing the number of

available time slots to deploy operations, as it has been explained in Section 4.4

and exploited in Section 5.2. By choosing the set and number of usable time

slots, one can tune this heuristic algorithm and either obtain very good quality

solutions or quicker solutions to warmstart the solving of the complete model.



profiles, one could for instance consider Critical Peak Pricing. As to the power

consumption of machines, non-constant profiles can be integrated, as well as dif-

ferent profiles, one per operation. A set of possible consumption profiles could

be also associated with each operation. This is for example what occurs with

machines with different processing speeds. In this case, the decisions about the

processing of an operation would concern both the starting time and the chosen

speed, which determines the machine consumption and ultimately impacts the

overall power consumption. For all of these reasons, the time-indexed model is

preferrable.

Since the proposed problem is NP-hard, a heuristic algorithm has been devel-

oped starting from the time-indexed formulation and simply reducing the num-

ber of available time slots to deploy operations, in order to provide warmstart

solutions to the Branch&Bound (B&B) algorithm and accelerate its conver-

gence. However, the development of heuristic algorithms is of interest mostly

because it allows to tackle instances of greater size. To this end, the litera-

ture of approximating methods for job-shop scheduling problems includes many

works that could help in defining an efficient heuristic approach for the proposed

variant. The most promising direction seems that of local search-based meta-

heuristics, which are known to better fit strongly constrained problems like the

proposed one with respect to for example population-based methods.

Another promising direction comes from the development of valid inequalities

that could help strengthen the lower bound of the proposed time-indexed inte-

ger linear programming model, as well as problem-specific branching strategies

that could improve the exploration of the B&B tree. Both techniques would

allow to accelerate the solving of the associated B&B method. A more general

conclusion of the present work is that researchers working on scheduling with

energy considerations should in our opinion give more attention to time-indexed

models rather than to the more usual disjunctive models, as it can be seen from

this work and as noted by Merkert et al. [2015] who worked on industrial chal-

lenges and opportunities for scheduling problem with energy considerations.

This paper tackles a deterministic version of the job-shop scheduling problem
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with energy aspects, but a future effort should be oriented to versions that in-

corporate non-deterministic features. The consideration of uncertain or variable

data could lead to the development of robust optimization algorithms, as well

as methods for the sensisivity analysis of the solution returned by the determin-

istic algorithm. At the same time, one could develop stochastic optimization

approaches so as to take into account machine failures for example.

Finally, switching to another price-driven demand response program such as

Real-Time Pricing, or to an event-driven program, could lead to Real-Time

(or Quasi Real-Time) Optimization methods, for which even finding feasible

solutions could be hard.
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