
HAL Id: emse-02163171
https://hal-emse.ccsd.cnrs.fr/emse-02163171

Submitted on 24 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A heuristic branch-cut-and-price algorithm for the
ROADEF/EURO challenge on Inventory Routing

Nabil Absi, Diego Cattaruzza, Dominique Feillet, Maxime Ogier, Frédéric
Semet

To cite this version:
Nabil Absi, Diego Cattaruzza, Dominique Feillet, Maxime Ogier, Frédéric Semet. A heuristic branch-
cut-and-price algorithm for the ROADEF/EURO challenge on Inventory Routing. Transportation
Science, 2020, 54 (2), pp.299-564. �10.1287/trsc.2019.0961�. �emse-02163171�

https://hal-emse.ccsd.cnrs.fr/emse-02163171
https://hal.archives-ouvertes.fr

September 21, 2017

A heuristic branch-cut-and-price algorithm for the

ROADEF/EURO challenge on Inventory Routing

Nabil Absi1, Diego Cattaruzza2, Dominique Feillet1, Maxime Ogier2, Frédéric Semet2

1: Mines Saint-Etienne and LIMOS UMR CNRS 6158, CMP Georges Charpak, F-13541
Gardanne, France.
absi,feillet@emse.fr

2: Univ. Lille, CNRS, Centrale Lille, Inria
UMR 9189 - CRIStAL
Centre de Recherche en Informatique Signal et Automatique de Lille
F-59000 Lille, France
cattaruzza,ogier,semet@centralelille.fr

Abstract

This paper is part of the special section devoted to the ROADEF/EURO challenge
on Inventory Routing. We propose an extended formulation that we address with
a heuristic branch-price-and-cut method. Among the difficulties, that we had to
face, are : a fractional objective function, the simultaneous generation of constraints
and columns, and a complex pricing problem. We evaluate our approach on the
benchmark instances proposed for the challenge.

1 Introduction

In this paper, we propose a heuristic solution method for the Inventory Routing Prob-
lem introduced during the 2016 ROADEF/EURO challenge, which we coin as REC-IRP.
Inventory routing has attracted researchers for many years due to both its practical and
theoretical issues (Coelho et al.; 2013). Many different variants have been investigated in
the literature. The REC-IRP proposed for the challenge is original and particularly com-
plex for several reasons. Among them, we can cite the logistic ratio optimization objective,
the hourly time-granularity for inventory constraints or the driver/trailer allocation man-
agement. Designing an exact solution approach is out of reach for large size instances as
those proposed during the challenge. However, we decided to address the REC-IRP with
a branch-cut-and-price framework: a cut-and-column generation procedure is developed,

1

along with a heuristic pricing algorithm to generate new columns and a heuristic fixing
procedure to generate integer solutions.

Several modeling opportunities were opened when deciding what should be a column
in our approach. We decided that a column would be what we call a td-shift, namely, a
trailer-driver-shift. A td-shift is an elementary piece of work for a driver (the driver is
known), that starts with a specific trailer from the base (the trailer is known), visits a
subset of customers and returns at the base, with possibly intermediate stops at one or
several sources to refill the trailer. The td-shift is time-stamped, meaning that the timing of
all operations is fixed. Conversely, the quantities delivered to the customers are unknown.

Let us define a trip as a sequence of customers starting from and ending at the base or a
source. Because of the multi-trip dimension of shifts, one could have decomposed shifts in
trips and defined columns as trips. These two options (shifts or trips) have been compared
in Hernandez et al. (2016) for the Multi-trip Vehicle Routing Problem with Time Windows.
The theoretical advantage of a column generation approach based on trips is to limit the
combinatorial explosion at the pricing problem level (a trip contains fewer customers than a
shift). The counterpart is a complex master problem where one has to select trips but also
to combine them into shifts, and eventually a more complex implementation of the branch-
and-price framework. Experimental results in Hernandez et al. (2016) do not permit to
conclude definitely on the relative efficiency of the two approaches. For this reason, and
given the challenging problem in hand, we decided for the easiest one.

A key feature of the problem concerns the quantities delivered during the shifts. In
this respect, the problem is very similar to the Split Delivery Vehicle Routing Problem
(SDVRP), where partial deliveries to customers are feasible. An important decision here is
to decide whether the quantities delivered should be fixed in the column definition (pricing
problem level) or decided at the master problem level. The two alternatives have been
considered in Feillet et al. (2006) and Desaulniers (2010), respectively. The clear conclusion
in the context of the SDVRP with Time Windows is that deciding on the quantities at the
pricing problem level is better. However, the interaction between quantities delivered in
different routes and for different customers seems stronger in inventory routing, and it is
not clear whether such a conclusion can be generalized to this context. In the inventory
routing literature, both options have been analyzed. Desaulniers et al. (2015) extends the
approach developed in Desaulniers (2010). Bard and Nananukul (2010) follows a similar
approach while solving the pricing problem as an integer program. Le et al. (2013) or André
et al. (2016) decide of the quantities at the master problem level. We decided to follow
this latest scheme. Note also that some authors address easier cases where the delivered
quantities are limited to a few possible discrete values (Christiansen and Nygreen; 2005;
Michel and Vanderbeck; 2012). This could also have been an option for us in a heuristic
approach.

A last important characteristic of the problem, that may a priori significantly influence
the solution scheme is the logistic ratio objective. This objective is naturally written as
a fractional function of the decision variables. We are only aware of a few implementa-

2

tions of the branch-and-price methodology for mathematical formulations with fractional
objectives. Garaix et al. (2011) implemented and compared two approaches, adapting
to the column generation framework algorithms presented in Charnes and Cooper (1962)
and Dinkelbach (1967). Initially they developed their research works in the context of
mathematical programming with fractional objective functions. In short, Charnes and
Cooper’s approach relies on changes of variables. Dinkelbach’s algorithm expresses the ob-
jective as a weighted linear combination of the numerator and the denominator, and solves
the resulting program repeatedly while updating the weights (see more details in Section
3.4). Computational experiments in Garaix et al. (2011) show a similar efficiency for both
methods. The authors concluded that having a fractional objective is not particularly
detrimental to the solution of the problem. In this paper, we decided to use Dinkelbach’s
approach.

Recently, in Archetti et al. (2016) and André et al. (2016), the first column generation
approaches for inventory routing problems with logistic ratio objectives were proposed. In
both cases, the authors tackled a standard Inventory Routing Problem (apart from the
objective) with the aim to develop an exact solution method. In particular, the additional
difficulties described above are not present (even if André et al. (2016) progressively in-
cludes features of the REC-IRP). Archetti et al. (2016) apply a Dinkelbach’s scheme. At
each step, the linear program is solved using the method developed in Desaulniers et al.
(2015). As mentioned above, delivered quantities are fixed in column definitions. Only
small instances, including at most 15 customers and defined on a time horizon limited to
at most 5 periods, are solved to optimality. Contrary to what could be observed in Garaix
et al. (2011), the fractional objective highly complicates the problem. The reason identified
by the authors is that the value of the objective function tends to be flat around the opti-
mal solution. As a consequence, there exist many solutions with objective function values
close to the optimal one. This creates difficulties in the solution algorithm as it is much
harder to prune branch-and-bound nodes. Paradoxically, this might rather be helpful for a
heuristic solution of the problem. André et al. (2016) use Charnes and Cooper’s method.
The column definition is very similar to ours. Their method allows finding good lower and
upper bounds on the same instances as those used in Desaulniers et al. (2015) and on a
new instance set including simplified Air Liquide instances of the same size.

The paper is organized as follows. Section 2 introduces the notation. In section 3, we
present our mixed integer linear programming formulation. Section 4 explains why a simul-
taneous cut-and-column generation strategy is needed and how it is carried out. In Section
5, we propose what we call an implicit-relaxation based dynamic programming algorithm,
that constructs a dual vector from an implicit linear relaxation of the master problem, and
price columns according to this vector. Section 6 describes the increasing horizon heuris-
tic, that we developed, based on the formulation we proposed. Computational results are
presented in Section 7, before concluding with Section 8.

3

2 Problem description and notation

This paper being part of a special issue devoted to the REC-IRP, we omit the complete
description of the problem. Readers are referred to the first paper of the special issue to
find this description. However, the paper is organized so that it should be possible to read
and understand it independently. In particular, the notation is entirely reintroduced, and
all constraints are progressively introduced and explained.

Tables 1 and 2 provide a first round of notation. Note that (contrary to the convention
taken in the problem description) we introduce a customer in V2 for each order placed by
a call-in customer. In the following, we, however, call these orders customers. Especially,
we call customer set the set V = V1 ∪ V2. Note also that the time horizon is discretized
in one-hour periods, that starts at period 0 and ends at period H: H = {0, . . . , H}. The
term period in the paper will always refer to this time granularity of one hour. When data
or variables are expressed in minutes, it will be emphasized.

H set of one hour periods in the time horizon
V1 set of VMI customers
V2 set of call-in customer orders
V set of customers
D set of drivers
T set of trailers
Td set of trailers that can be driven by driver d ∈ D
Dt set of drivers that can drive trailer t ∈ T
T Wd set of allowed time windows for driver d ∈ D

Table 1: Notation (sets)

H last period in set H
restd minimal resting time between two shifts for driver d ∈ D
Qt vehicle capacity for trailer t ∈ T
qmini minimal quantity delivered to customer i ∈ V1 each time it is visited
qmini accumulated minimal quantity delivered to customer i ∈ V2

qmaxi accumulated maximal quantity delivered to customer i ∈ V2

stocki0 initial stock for customer i ∈ V1

stockimax maximal stock for customer i ∈ V1

qinitt initial load in trailer t ∈ T
dih demand of customer i ∈ V1 at period h ∈ H

Table 2: Notation (additional data)

4

3 Mathematical formulation

We propose to formulate the REC-IRP with an extended formulation based on the selection
of td-shifts. We introduce R, the set of time-stamped shifts. By time-stamped shift,
we mean that the physical itinerary followed during the shift and the time of all the
events of the shift are known. Conversely, the quantities delivered to customers, the trailer
used or the driver assigned to the trailer are not known. Note that the concept of td-
shift, introduced in Section 1, will only be useful when describing the column generation
procedure (see Section 4). However, it is noteworthy that a td-shift is obtained by assigning
a trailer and a driver to a time-stamped shift. From now on, time-stamped shifts will be
called shifts for short.

To limit the complexity of the model, we make some assumptions on set R:

1. each customer is visited at most once in a shift;

2. a shift lasts at least the duration of a period, i.e., it cannot start and end at the same
period;

3. a trailer cannot have more than one visit to a source at a given period;

4. a shift is carried out at most once.

Assumption 1 makes sense in practice: it is certainly not desirable that a trailer would
visit twice a customer in the same shift. This assumption should have a very small impact
with respect to optimality on real-life instances. Assumption 2 and 3 are also expected
to hold for most shifts, since a period is one-hour long. Actually, in the testbed used
for the experiments, these assumptions are almost always satisfied (only three instances
contain customers that can be delivered directly from the base within 54 minutes shift).
Assumption 4 excludes the assignment of the same time-stamped shift to different drivers.
This could be of interest in some specific situations, but, again, one can expect a very
limited loss of optimality due to this assumption on real-life instances. We have to stress
that Assumption 4 does not prevent from repeating the same tour at different times since
a shift is time-stamped.

In the next two subsections, we introduce the notation associated with the shifts and
the mathematical formulation.

3.1 Notation for shifts

Let us noteRd ⊆ R the subset of shifts compatible with driver d ∈ D. Shift r is compatible
with driver d if: (1) shift r is included in one of the time windows associated with driver d;
(2) the driving duration of shift r does not exceed the maximal driving duration allowed

5

for driver d; (3) if r is a layover shift, r respects the maximum layover duration associated
with driver d.

We note Rt ⊆ R the subset of shifts compatible with trailer t ∈ T . A shift r is
compatible with trailer t if: (1) all customers visited in shift r are compatible with trailer
t; (2) all sources visited in shift r are compatible with trailer t; (3) for each trip in r, the
sum of the minimal delivery quantities of the VMI customers served in the trip does not
exceed the capacity of trailer t.

We note Rdt the subset of shifts that are simultaneously compatible with driver d ∈ D
and with trailer t ∈ T , i.e., Rdt = Rd ∩Rt.

We note crdt the cost of shift r ∈ Rdt when operated by driver d and trailer t. We
note str the starting time of shift r, and etr its ending time (in minutes). str and etr are
included in the time interval covered by the trip.

Notation i ∈ r indicates that customer i ∈ V is visited by shift r. Given i ∈ r, we note
stri the one-hour period during which the delivery of the commodity to customer i starts.
Last, we define δihr = 1 if i ∈ r and stri = h, 0 otherwise.

We introduce T ripr the set of trips performed during in shift r. Recall that a trip is
defined as a sequence of customer visits starting from/ending at a source and/or the base.
We note i ∈ s if customer i ∈ V is visited in trip s. We note Vs the subset of customers
visited in trip s.

Notation introduced for shifts are reported in Table 3. To ease notation, we introduce
additional subset notation reported in Table 4.

Rd subset of shifts compatible with driver d
Rt subset of shifts compatible with trailer t
crdt cost of shift r when operated by driver d and trailer t
str starting time of shift r (in minutes)
etr ending time of shift r (in minutes)
Vr subset of customers visited in shift r
stri starting time of service for customer i in shift r (in hours)
δihr 1 if i ∈ r and stri = h, 0 otherwise
T ripr set of trips in shift r
Vs subset of customers visited in trip s

Table 3: Notation introduced for shifts (part 1)

6

Rdt subset of shifts compatible with driver d and trailer t
Dr subset of drivers compatible with shift r
Tr subset of trailers compatible with shift r
Drt subset of drivers compatible with shift r and trailer t
Trd subset of trailers compatible with shift r and driver d
V1
r subset of customer set V1 visited in shift r
V2
r subset of customer set V2 visited in shift r
V1
s subset of customer set V1 visited in trip s
V2
s subset of customer set V2 visited in trip s
Ri subset of shifts that visit customer i

Table 4: Notation introduced for shifts (part 2)

3.2 Mathematical model

The REC-IRPcan be formulated as an integer linear program as follows. Let us first
introduce four sets of decision variables:

xrdt ∈ {0, 1} (d ∈ D, t ∈ T , r ∈ Rdt)
qirt ≥ 0 (r ∈ R, t ∈ Tr, i ∈ Vr)
qth ≥ 0 (t ∈ T , h ∈ H)
Sih ≥ 0 (i ∈ V1, h ∈ H)

xrdt is a binary variable equal to 1 if shift r is assigned to driver d and trailer t, 0 otherwise.
Variable qirt indicates the quantity delivered to customer i in shift r using trailer t. Variable
qth is the load in trailer t at the end of period h. Variable Sih represents the inventory level
at VMI customer i ∈ V1 at the end of period h.

We propose formulation (1)-(20), with new notation detailed next:

minimize

∑
d∈D

∑
t∈T
∑

r∈Rdt crdtxrdt∑
r∈R

∑
t∈Tr

∑
i∈Vr qirt

(1)

subject to compatibility constraints:∑
r∈Kd

m

∑
t∈Trd

xrdt ≤ 1 (d ∈ D,m ∈ St(Rd)), πdm (2)

∑
r∈Kt

m

∑
d∈Drt

xrdt ≤ 1 (t ∈ T ,m ∈ St(Rt)), πtm (3)

∑
d∈Dr

∑
t∈Trd

xrdt ≤ 1 (r ∈ R), πr (4)

7

trailer capacity constraints:

qth ≤ qt,h−1 −
∑
r∈R

∑
i∈Vr

δihrqirt +Qt

∑
d∈D

∑
r∈Rdt

δsrchr xrdt (t ∈ T , h ∈ H \ {0}), γth (5)

qt0 ≤ qinitt −
∑
r∈R

∑
i∈Vr

δi0rqirt +Qt

∑
d∈D

∑
r∈Rdt

δsrc0r xrdt (t ∈ T), γt0 (6)

qth ≤ Qt −
∑
r∈R

∑
i∈Vr

δsrc+ihr qirt −
∑
r∈R

∑
i∈Vr

δstarthr (1− δsrchr)δihrqirt (t ∈ T , h ∈ H), γupth (7)

qt,h−1 ≥
∑
r∈R

∑
i∈Vr

δsrc−ihr qirt +
∑
r∈R

∑
i∈Vr

δendhr (1− δsrchr)δihrqirt (t ∈ T , h ∈ H \ {0}), γdownth (8)

qinitt ≥
∑
r∈R

∑
i∈Vr

δsrc−i0r qirt +
∑
r∈R

∑
i∈Vr

δend0r (1− δsrc0r)δi0rqirt (t ∈ T), γdownt0 (9)

∑
i∈Vs

qirt ≤ Qt

∑
d∈Drt

xrdt (t ∈ T , r ∈ Rt, s ∈ T ripr), γtrs (10)

delivery constraints:∑
t∈Tr

qirt ≥ qmini

∑
d∈Dr

∑
t∈Trd

xrdt (r ∈ R, i ∈ V1
r), βri (11)∑

r∈Ri

∑
t∈Tr

qirt ≥ qmini (i ∈ V2), βmini (12)∑
r∈Ri

∑
t∈Tr

qirt ≤ qmaxi (i ∈ V2), βmaxi (13)

customer inventory constraints:

Sih−1 +
∑
r∈Ri

∑
t∈Tr

δihrqirt − dih = Sih (i ∈ V1, h ∈ H \ {0}), σih (14)

stocki0 +
∑
r∈Ri

∑
t∈Tr

δi0rqirt − di0 = Si0 (i ∈ V1), σi0 (15)

Sih ≤ stockimax (i ∈ V1, h ∈ H), σmaxih (16)

and with decision variable definitions:

xrdt ∈ {0, 1} (d ∈ D, t ∈ T , r ∈ Rdt), (17)

qirt ≥ 0 (r ∈ R, t ∈ Tr, i ∈ Vr), (18)

qth ≥ 0 (t ∈ T , h ∈ H), (19)

Sih ≥ 0 (i ∈ V1, h ∈ H). (20)

We first describe equations that can quickly be explained. Other constraints are ex-
plained in details after, as well as new notation introduced for the model. On the extreme

8

right of the equations, we introduce, in red, notation for dual variables. These will be used
later in the branch-cut-and-price algorithm.

Fractional objective function (1) is the logistics ratio. Constraints (4) state that every
shift is selected at most once in a solution. These constraints stem from Assumption 4
and are useful for inventory constraints (11) below. Constraints (11) ensure that minimal
quantities are delivered to VMI customers at each visit. Constraints (12) and (13) respec-
tively impose a minimal and a maximal accumulated quantities delivered to each call-in
customer. Constraints (14) and (15) avoid stockouts at VMI customers. These constraints
remain easy to formulate thanks to Assumption 1. Constraints (16) limit the stock level
at VMI customers. In these three sets of constraints, the inventory level is checked at the
end of the period, once the deliveries have been made and the demand is satisfied.

In Constraints (2) we introduce notation St(Rd) and Kdm. Given a time instant (minute)
m and a driver d, Kdm = {r ∈ Rd : str ≤ m, etr + restd ≥ m}. Kdm represents a set of
shifts that are not compatible at time m either because they overlap or because they would
not satisfy the minimal duration restd imposed between two shifts assigned to the same
driver. Constraints (2) impose these incompatibilities. They are only needed at time
instants (minutes) where a new shift comes into play, i.e., at the starting times of the
shifts. St(Rd) is the set of these starting times: St(Rd) = {str, r ∈ Rd}. Note that the
time scale for these constraints is the minute. Notation introduced in these constraints, as
well as in the next constraints, are recalled in Table 5.

St(Rd) set of starting times of shifts in Rd

Kdm set of shifts incompatible at time m for driver d
St(Rt) set of starting times of shifts in Rt

Ktm set of shifts incompatible at time m for trailer t

Table 5: Additional notation introduced for shift compatibility management

Constraints (3) are equivalent for trailers. We note St(Rt) the set of starting times of
shifts in Rt. We construct a set Ktm for each m ∈ St(Rt) such that Ktm = {r ∈ Rt : str ≤
m, etr ≥ m}. Then constraints (3) enforce that two shifts requiring the same trailer cannot
overlap. Again, the time scale for these constraints is the minute.

Constraints (5)-(10) are by far the less easily readable. They are introduced to manage
trailer capacity. One important aspect of the REC-IRP is that the remaining load in a
trailer at the end of a trip is available for the next trip. Due to this specific feature, we can-
not model the trailer capacity constraint by simply bounding the quantity delivered on each
trip. We proposed to trace the trailer loading levels with variables qth. These constraints
also imply introducing notation given in Table 6 and are at the origin of assumptions 2
and 3.

Constraints (5) are active when no source is attained by trailer t during period h.
Then, the loading level of the trailer at the end of the period cannot exceed its level at

9

δsrchr 1 if shift r reaches a source at period h, 0 otherwise
δsrc+ihr 1 if, during period h, shift r both visits, in this order, a source and

customer i, 0 otherwise
δsrc−ihr 1 if, during period h, shift r both visits, in this order, customer i and a

source, 0 otherwise
δstarthr 1 if shift r starts at period h, 0 otherwise
δendhr 1 if shift r ends at period h, 0 otherwise

Table 6: Additional notation introduced for the trailer capacity management

the beginning of the period minus the quantity delivered during the period. Note that
when the source is visited, Constraints (5) are equivalent to the sum of Constraints (7)
and Constraints (8). Constraints (6) consider the initial period h = 0.

When a source is reached by a trailer during period h, Constraints (7) limit the load of
the trailer at the end of the period. The value subtracted to Qt on the right-hand side of
the constraint evaluates the quantity of the commodity delivered after the source in period
h, both by the shift that visits the source and possibly successive shifts. We emphasize
that a shift is assumed to last more than one period and that the source is assumed to
be visited at most once in a given period. Therefore, at most two shifts can be associated
with trailer t at a given period. In such a case, the first shift may include a visit to the
source while the second shift includes visits to customers only. The latter starts in this
period. If no source is reached, these constraints are dominated by Constraints (5).

When a source is reached by a trailer during period h, Constraints (8) guarantee that
the total quantity delivered does not exceed the quantity available before reaching a source.
More precisely, the two terms on the right-hand side evaluate the quantity delivered before
the source in period h, either by the shift that visits the source or by a shift scheduled
before, i.e., that ends at period h. If no source is visited, these constraints are dominated
by Constraints (5). Constraints (9) play the same role for the initial period (h = 0).

Constraints (10) are only active when shift r is not assigned to a trailer and a driver.
It prevents from delivering commodities with shift r in this case. Otherwise, the maximal
amount of commodity delivered is restricted by the previous constraints. Note that these
constraints are tight.

3.3 Modified objective function

In the algorithm presented in Section 6, the objective function is actually slightly modified
to favor early deliveries and identify feasible solutions more rapidly. We proceed as follows.
We introduce a delivery profit vector ch that indicates the profit raised when delivering a
commodity unit to a customer at a specified time h ∈ H (see Section 6.2 for details on the
values given to ch). Note that the actual objective function of the REC-IRP is retrieved if

10

ch = 1.

Objective function (1) then becomes:

minimize

∑
d∈D

∑
t∈T
∑

r∈Rdt crdtxrdt∑
r∈R

∑
t∈Tr

∑
i∈Vr(

∑
h∈H δihrch)qirt

3.4 Linearized objective function

In the algorithm presented in Section 6, the objective function is linearized by following the
principle of Dinkelbach’s algorithm. Dinkelbach’s method solves nonlinear problems with
a fractional objective function, a concave numerator and a (non-zero) convex denominator.
Since the linear relaxation of our model fits these conditions, its application to our problem
is justified.

To briefly explain how Dinkelbach’s algorithm works, let us consider a linear program
with a linear fractional objective:

(P) min
x∈X

N(x)

D(x)
,

with N(x) and D(x) linear and positive functions for all x ∈ X. We note f(Z) the value
of the optimal solution of the parametric linear program:

min
x∈X

(N(x)− Z ×D(x)).

One can easily prove that f has a unique root Z∗ (i.e., f(Z∗) = 0) and that Z∗ =

minx∈X
N(x)
D(x)

.

To solve the problem (P), Dinkelbach’s algorithm computes Z∗ applying Newton’s
algorithm: it starts from a reasonable value Z0, and it iterates as follows:

Zk+1 = Zk −
f(Zk)

f ′(Zk)
=
N(x∗k)

D(x∗k)
,

where x∗k is the optimal solution of the parametric linear program for parameter value Zk.

In our case, the objective function of the parametric linear program, for a given param-
eter value Z, is then:

minimize
∑
d∈D

∑
t∈T

∑
r∈Rdt

crdtxrdt − Z
∑
r∈R

∑
t∈Tr

∑
i∈Vr

(
∑
h∈H

δihrch)qirt,

To simplify notation, we introduce Zir = Z
∑

h∈H δihrch. Then, the objective function
becomes:

minimize
∑
d∈D

∑
t∈T

∑
r∈Rdt

crdtxrdt −
∑
r∈R

∑
t∈Tr

∑
i∈Vr

Zirqirt,

In Section 6.2, we precise how parameter Z varies in the course of the algorithm.

11

3.5 Valid inequalities

The linear relaxation of the model can be enriched by the introduction of the following
three classes of valid inequalities related to visits to customers.

For call-in customers, at least one visit is needed:∑
r∈Ri

∑
d∈Dr

∑
t∈Trd

xrdt ≥ 1 (i ∈ V2). αi (21)

For VMI customers, the minimal number of visits can be deduced from the accumulated
demand of the customer on the horizon, the inventory capacity of the customer and the
maximal capacity of a trailer. Let call ni this value. For h, h′ ∈ H with h ≤ h′, we introduce
Di
hh′ =

∑h′

l=h d
i
l the cumulated demand of customer i ∈ V1 between the beginning of period

h and the end of period h′. Then,

ni =

⌈
Di

0H − stocki0
min{stockmaxi ,maxr∈Ri,t∈Tr Qt}

⌉
.

and the following constraints can be imposed:∑
r∈Ri

∑
d∈Dr

∑
t∈Trd

xrdt ≥ ni (i ∈ V1). αi (22)

Additional valid inequalities can be added to better manage the visit times at VMI
customers. For these inequalities, we introduce functions πi : H → H ∪ {−1}, i ∈ V1

defined as follows:

• if Di
hH > stockmaxi , πi(h) is the smallest period h′ ≥ h with Di

hh′ > stockmaxi ;

• if Di
hH ≤ stockmaxi , πi(h) = −1.

Then, the valid inequalities are as follows:

∑
r∈Ri

∑
d∈Dr

∑
t∈Trd

l=πi(h)∑
l=h

δilrxrdt ≥ 1 (i ∈ V1, h ∈ H : πi(h) > 0). αih (23)

3.6 Artificial variables

In a branch-cut-and-price algorithm, the model presented in Section 3.2 will be solved over
a restricted number of td-shifts. As a drawback, the restricted model may not admit a
feasible solution even if the problem does. To prevent this situation we introduce some
so-called artificial variables. In the following we detail the modifications on the objective
function and on some constraints of the model due to the inclusion of these variables. We
introduce four types of non-negative artificial variables. Basically, all these variables enable
some deliveries to be skipped:

12

(1) yi, to deactivate Valid Inequalities (21) or (22) for customers i ∈ V ;

(2) wi, to deactivate Valid Inequalities (23) for customers i ∈ V1;

(3) oosih, to allow customer i ∈ V1 to get out of stock at period h;

(4) dropi, to allow not to visit customer i ∈ V2.

Artificial variables are included in the objective function multiplied by large values Mi

(i ∈ V).

The objective function becomes:

minimize
∑
d∈D

∑
t∈T

∑
r∈Rdt

crdtxrdt −
∑
r∈R

∑
t∈Tr

∑
i∈Vr

Zirqirt +
∑
i∈V

Miyi +
∑
i∈V1

Miwi

+
∑
i∈V1

∑
h∈H

Mioosih +
∑
i∈V2

Midropi.

Constraints (12), (14), (21), (22), (23) become:∑
r∈Ri

∑
t∈Tr

qirt ≥ qmini − dropi (i ∈ V2),

Sih−1 +
∑
r∈Ri

∑
t∈Tr

δihrqirt − dih = Sih − oosih (i ∈ V1, h ∈ H),∑
r∈Ri

∑
d∈Dr

∑
t∈Trd

xrdt ≥ 1− yi (i ∈ V2),∑
r∈Ri

∑
d∈Dr

∑
t∈Trd

xrdt ≥ ni(1− yi) (i ∈ V1),

∑
r∈Ri

∑
d∈Dr

∑
t∈Trd

πi(h)∑
l=h

δilrxrdt ≥ 1− wi (i ∈ V1, h ∈ H : πi(h) > 0).

In the following of the paper, we will say that a mathematical program is feasible when
it admits a solution with all artificial variables equal to zero. Otherwise we will say that
the mathematical program is infeasible.

3.7 Master problem

In the rest of the paper we will call Master Problem the linear relaxation of the mathemati-
cal model defined by (1)–(20) with the modifications described in the preceding subsections:
modified and linearized objective function, valid inequalities and artificial variables added.
The Master Problem will be denoted MP .

13

4 Column generation framework

Because of its number of variables, MP cannot be solved directly with a linear program-
ming solver. In this section we describe how a column generation mechanism can be applied
to progressively enrich a restricted version of MP .

Let us introduce some notation that will be used in this section. We note T DR the
complete set of triplets (r, d, t), with r ∈ R, d ∈ Dr and t ∈ Trd. T DR is the set of all the
td-shifts. A variable xrdt is present in MP for each triplet in T DR. Similarly, we note T R
the set of pairs (r, t), with r ∈ R and t ∈ Tr, and DR the set of pairs (r, d), with r ∈ R
and d ∈ Dr.

We call RMPk the restricted MP at a step k of the algorithm and we explain how
RMPk is constructed from a subset T DRk ⊆ T DR of td-shifts. Together, we explain how
sets T Rk ⊆ T R, DRk ⊆ DR and Rk ⊆ R are constructed. To this aim, we equivalently
explain how we proceed when a td-shift is added to T DRk.

When a new td-shift (r, d, t) is added to T DRk:

• variable xrdt is added to the model;

• if (r, t) is not in T Rk, (r, t) is added to T Rk, variables qirt are added to the model
for all i ∈ r, and Constraints (10) are added for pair (r, t) for every trip s ∈ T ripr.
Furthermore, if the starting time of r is not in St(Rt

k), Constraint (3) is added for
pair (t, str);

• if (r, d) is not in DRk, (r, d) is added to DRk and, if the starting time of r is not in
St(Rd

k), Constraint (2) is added for pair (d, str);

• if r is not in Rk, r is added to Rk, Constraint (4) is added to the model for r, as well
as Constraint (11) for every i ∈ V1

r .

In our algorithm, see Section 6, we start with an initial set of promising td-shifts T DR0

and regularly insert new td-shifts to drive the search towards feasible/better solutions.
Since the modifications described above impact RMPk when new td-shifts are added,
standard column generation cannot be applied. We recall in the next subsection how to
adapt column generation for the simultaneous generation of columns and cuts. Then, we
explain how it is applied to the REC-IRP.

4.1 About simultaneous cut and column generation

We note D the dual of MP and Dk the dual of RMPk. When the addition of columns to
a restricted master problem also implies the addition of cuts, it raises new difficulties that
invalidate the standard column generation procedure (see Feillet et al. (2010)). Indeed, the

14

usual optimality criterion used in column generation relies on the fact that when no column
of negative reduced cost exists, the current dual solution (obtained from the solution of
the restricted master problem) is feasible for the dual of the master problem. In case of
simultaneous cut and column generation it does not hold, since the cuts, that are missing in
the restricted master problem, translate into missing variables into the dual of the master
problem. Then, no guarantee of feasibility for the current dual solution with regards to the
dual of the master problem is possible, without defining a value for these missing variables.

Feillet et al. (2010) propose to tackle this difficulty with a 3-step methodology:

1. from optimal solution X∗k of RMPk, construct a feasible solution X of MP , with cost
zMP = z∗RMPk

;

2. from optimal solution Π∗k of Dk, construct a (not necessarily feasible) solution Π of
D, with cost zD = z∗Dk

, i.e., zD = zMP ;

3. if Π is feasible, the optimality criterion is met: stop the algorithm; otherwise, at least
one constraint of D is violated; add to T DRk one td-shift from T DR \ T DRk for
which a constraint is violated and pass to the next iteration.

Unfortunately, no simple general rule seems to exist to construct solutions X and Π.
In the next section, we see how this scheme can be applied to the REC-IRP.

4.2 Application to the REC-IRP

Let us start with a solution X∗k of RMPk and the associated dual solution Π∗k of Dk. The
first step of the methodology consists in constructing a feasible solution X of MP , having
the same cost as X∗k . We simply fix to 0 all variables xrdt for (r, d, t) ∈ T DR \ T DRk and
qirt for (r, t) ∈ T R \ T Rk, and keep other variables to their value in X∗k . X is feasible for
MP and zMP = z∗RMPk

.

The next step is then to construct a not necessarily feasible solution Π for the dual D,
having the same cost as Π∗k. For this step, we need to consider D carefully. D is composed
of eight series of constraints, one for each type of primal variables (xrdt, qirt, qth, S

i
h), plus

one for each type of artificial variables (yi, wi, oosih, dropi). The differences between Dk

and D are the followings:

• the constraints derived from primal variables xrdt with (r, d, t) ∈ T DR \ T DRk and
primal variables qirt with (r, t) ∈ T R \ T Rk are missing in Dk

• some variables πdm, πtm, πr, γtrs and βri, respectively derived from primal constraints
(2), (3), (4), (10) and (11) are missing in Dk.

We define Π as follows. First, all variables already defined in Dk keep the same value as in
Π∗k. Then, variables πdm, πtm and πr not in Dk are set to 0. The remaining variables to be

15

fixed are variables γtrs for (r, t) ∈ T R \ T Rk and s ∈ T ripr, and βri for r ∈ R \ Rk and
i ∈ V1

r .

Before defining these variables, let us underline that, independently of the values to be
assigned, several important conditions already hold. First, zD = z∗Dk

. Indeed, variables
γtrs and βri derive from primal Constraints (10) and (11) that have no fixed term, and thus
do not appear in the dual objective function. Second, Π satisfy all the dual constraints
already present in Dk. Indeed, none of the remaining variables appear in these constraints.
Thus, we now have to focus on finding values for the remaining variables and evaluating
the feasibility of the missing constraints.

We write the missing constraints below. In order to facilitate the understanding of the
constraints, we define by convention all dual variables nonnegative, except variables σih
(i ∈ V1, h ∈ H) associated with Constraints (14) and (15) that are unsigned.

For (r, d, t) ∈ T DR\T DRk, the dual constraint in D derived from primal variable xrdt
is:

crdt +
∑
i∈V1

r

qmini βri +
∑

{m∈St(Rd):r∈Kd
m}

πdm +
∑

{m∈St(Rt):r∈Kt
m}

πtm + πr −
∑
i∈Vr

αi

−
∑
i∈V1

r

∑
{h∈H:h≤stri≤πi(h)}

αih −Qt

∑
h∈H

δsrchr γth −Qt

∑
s∈T ripr

γtrs ≥ 0. (24)

For (r, t) ∈ T R \ T Rk, i ∈ V1
r , and s the trip of customer i in td-shift r, the dual

constraint derived from primal variable qirt is:∑
h∈H

(δsrc+ihr + δstarthr (1− δsrchr)δihr)γ
up
th +

∑
h∈H

(δsrc−ihr + δendhr (1− δsrchr)δihr)γ
down
th

+
∑
h∈H

δihrγth + γtrs − βri −
∑
h∈H

δihrσih ≥ Zir.

Last, for (r, t) ∈ T R \ T Rk, i ∈ V2
r , and s the trip of customer i in td-shift r, the dual

constraint derived from primal variable qirt is:∑
h∈H

(δsrc+ihr + δstarthr (1− δsrchr)δihr)γ
up
th +

∑
h∈H

(δsrc−ihr + δendhr (1− δsrchr)δihr)γ
down
th

+
∑
h∈H

δihrγth + γtrs + βmaxi − βmini ≥ Zir.

For the sake of simplifying these constraints, we introduce :

δupihr = δsrc+ihr + δstarthr (1− δsrchr)δihr,

and
δdownihr = δsrc−ihr + δendhr (1− δsrchr)δihr.

16

Note that δupihr = 1 in two special cases: a source and customer i are visited in this order
at period h in shift r, or shift r starts at period h and visits customer i at the same period
but does not visit a source. Similarly, δdownihr = 1 if customer i and a source are visited in
this order at period h in shift r, or shift r ends at period h and visits customer i at the
same period but does not visit a source.

Given (r, t) ∈ T R \ T Rk, i ∈ V1
r , and s the trip of customer i in td-shift r, the dual

constraint derived from primal variable qirt is then:∑
h∈H

δupihrγ
up
th +

∑
h∈H

δdownihr γdownth +
∑
h∈H

δihrγth + γtrs − βri −
∑
h∈H

δihrσih ≥ Zir, (25)

and given (r, t) ∈ T R \ T Rk, i ∈ V2
r , and s the trip of customer i in td-shift r, the dual

constraint derived from primal variable qirt is:∑
h∈H

δupihrγ
up
th +

∑
h∈H

δdownihr γdownth +
∑
h∈H

δihrγth + γtrs + βmaxi − βmini ≥ Zir. (26)

When defining the remaining dual variables in Π, we thus only have to consider the
feasibility of Constraints (24), (25) and (26). Before providing a formal proof, we give
some intuition on how we proceed. Focusing on Constraints (25) and (26), it is easy to
see that choosing large values for variables γtrs and small values for variables βri allows
satisfying these constraints. However, having large values for variables γtrs and small values
for variables βri decreases the chances that Constraints (24) are satisfied. We propose to
select values that ensure the feasibility of Constraints (25) and (26), but with variables
γtrs as small as possible and variables βri as large as possible, so that the chances, that
Constraints (24) are feasible, are increased. However, clearly, looking at Constraints (25)
a compromise has to be done between the values of variables γtrs and βri. We state and
solve this compromise with Property 1.

Property 1. Let consider r ∈ R \ Rk, and assume that variables γtrs are set for all
t ∈ Tr, s ∈ T ripr and that variables βri are set for all i ∈ V1

r . Let γ1 be the minimal
value of all these variables. Let γ2 be the minimal gap between the left-hand side and
the right-hand side for all Constraints (26) associated with r. Let finally assume that
γ = min(γ1, γ2) > 0. Then, subtracting γ to all the variables mentioned above increases
the chances that dual solution Π is feasible.

Proof. First, the only constraints impacted by the values of the variables mentioned in the
property are the constraints (24), (25) and (26) associated with r. It is easy to see that
the subtraction of γ does not impact Constraints (25) and that Constraints (26) remain
feasible. Given a td-shift (r, d, t), the impact on Constraint (24) is the addition to the
left-hand side of term −(

∑
i∈V1

r
qmini)γ + |T ripr|Qtγ.

∑
i∈V1

r
qmini is a lower bound on the

quantities delivered on shift r, while |T ripr|Qt is an upper bound. It proves that the term
added to Constraint (24) is nonnegative, which concludes the proof.

17

We now detail how values are fixed for γtrs for (r, t) ∈ T R \ T Rk and s ∈ T ripr, and
βri for r ∈ R \ Rk and i ∈ V1

r . Two cases are considered.

First, r ∈ Rk. In this case, variables βri are already fixed and we need to define γtrs
for all t such that (r, t) ∈ T R\T Rk and for all s ∈ T ripr. Clearly, the smallest γtrs is the
best choice with respect to Constraint (24). So, we fix γtrs to the minimal value leaving
Constraints (25) and (26) feasible:

γ1 = max
i∈V1

s

Zir −
∑
h∈H

δupihrγ
up
th −

∑
h∈H

δdownihr γdownth −
∑
h∈H

δihrγth + βri +
∑
h∈H

δihrσih,

γ2 = max
i∈V2

s

Zir −
∑
h∈H

δupihrγ
up
th −

∑
h∈H

δdownihr γdownth −
∑
h∈H

δihrγth − βmaxi + βmini ,

γtrs = max(γ1, γ2, 0).

Second, r /∈ Rk. In this case, none of the variables γtrs for t ∈ Tr and qirt for i ∈ V1
r are

fixed. In view of Property 1, we favor small values for these variables:

γ1 = max
i∈V1

s

Zir −
∑
h∈H

δupihrγ
up
th −

∑
h∈H

δdownihr γdownth −
∑
h∈H

δihrγth +
∑
h∈H

δihrσih,

γ2 = max
i∈V2

s

Zir −
∑
h∈H

δupihrγ
up
th −

∑
h∈H

δdownihr γdownth −
∑
h∈H

δihrγth − βmaxi + βmini ,

γtrs = max(γ1, γ2, 0).

Note that γtrs is computed assuming βri variables set to 0.

βri = min
t∈T

∑
h∈H

δupihrγ
up
th +

∑
h∈H

δdownihr γdownth +
∑
h∈H

δihrγth + γtrs −
∑
h∈H

δihrσih − Zir.

Note that with variables γtrs fixed, variables βri are as large as possible.

With this definition, the dual solution Π has the same cost as the dual solution Π∗k
of the restricted dual program and all constraints are feasible except possibly Constraints
(24) for some td-shifts (r, t, d) ∈ T DR \ T DRk. The goal of the pricing problem is to
search for td-shifts (r, d, t) such that this constraint is not satisfied, i.e.:

crdt +
∑
i∈V1

r

qmini βri +
∑

{m∈St(Rd
k):r∈Kd

m}

πdm +
∑

{m∈St(Rt
k):r∈Kt

m}

πtm −
∑
i∈Vr

αi

−
∑
i∈V1

r

∑
{h∈H:h≤stri≤πi(h)}

αih −Qt

∑
h∈H

δsrchr γth −Qt

∑
s∈T ripr

γtrs < 0. (27)

In the following, we will call the left-hand side of (27) the reduced cost of the td-shift.

In our algorithm, presented in Section 6, we developed two procedures to insert new
td-shifts with negative reduced cost in RMPk. The first procedure considers existing td-
shifts and tries to generate new td-shifts by changing the trailer, the driver and/or the

18

time-stamp of these td-shifts. In this first procedure, the reduced cost is evaluated exactly.
This procedure is detailed in Section 6.3.3.

The second procedure aims at generating completely new td-shifts. It is classically
based on the solution of a shortest path problem with resource constraints by dynamic
programming. However, because of the difficulty of the pricing, reduced costs are only
evaluated heuristically in what we call an implicit-relaxation-based dynamic programming
procedure. This procedure is described in the next section.

5 Implicit-relaxation-based dynamic programming pro-

cedure

The implicit-relaxation-based dynamic programming procedure is called with a few pa-
rameters that define the subset of td-shifts that is explored: the td-shifts start at time m0

(in minutes), have to be finished at time m1 (in minutes), use driver d0 and trailer t0. For
short, the notation introduced below is not indexed by these parameters. In Section 6, we
detail how these parameters are fixed and when the procedure is called.

The dynamic programming procedure is named implicit-relaxation-based because it is
implicitly applied on a relaxation of MP . By implicitly, we mean that this relaxation
is not implemented. Instead, when RMPk is solved, a dual vector consistent with the
dual space of this relaxation is constructed. Using this dual information, we derive a
(heuristic) reduced-cost condition that is checked for the generation of new td-shifts. We
call pricing problem, the problem of identifying td-shifts that do not satisfy this condition.
This condition presents the advantage to be easier to consider in a dynamic programming
scheme than condition (27). In particular, as it will be seen, the relaxation is constructed so
that waiting is of no interest when td-shifts are generated in the pricing problem. However,
contrary to standard column generation, there is no guarantee that the actual reduced cost
of the td-shift in MP is negative. Hence, this reduced cost has to be computed exactly
after the pricing problem is solved, which is done using the formula presented in Section 4.

We now describe the relaxation, the construction of the dual vector, the reduced-cost
condition and the dynamic programming algorithm developed to identify td-shifts that do
not satisfy this condition.

5.1 Implicit relaxation and dual vector

In this section, we consider the different families of constraints that are relaxed and explain
how they are relaxed and with which consequences for the dual vector.

19

Constraints (23):
These constraints enforce visiting at least once a customer during a given period if its
consumption during this period is greater than its inventory capacity. Let consider i ∈ V1.
These valid inequalities are initially written:

∑
r∈Ri

∑
d∈Dr

∑
t∈Trd

l=πi(h)∑
l=h

δilrxrdt ≥ 1− wi (h ∈ H : πi(h) > 0)

We introduce set Hi = {h ∈ H : [m0,m1] ∩ [h, πi(h)] 6= ∅1} and we focus on the
constraints associated with periods h ∈ Hi. In these constraints, we change the term∑l=πi(h)

l=h δilrxrdt to
∑

l∈[m0,m1]∪[h,πi(h)] δilrxrdt for all triplets (r, d, t) such that d = d0, t = t0.

This new formulation is a relaxation because [h, πi(h)] ⊆ [m0,m1] ∪ [h, πi(h)].

Formally, the constraints become:

∑
r∈Ri

∑
d∈Dr

∑
t∈Trd

l=πi(h)∑
l=h

δilrxrdt ≥ 1− wi (h ∈ H \ Hi : πi(h) > 0)

∑
r∈Ri

∑
(d,t)∈Dr×Trd\{(d0,t0)}

l=πi(h)∑
l=h

δilrxrdt

+
∑
r∈Ri

∑
l∈[m0,m1]∪[h,πi(h)]

δilrxrd0t0 ≥ 1− wi (h ∈ Hi : πi(h) > 0)

In the pricing problem, the contribution of these constraints to the reduced cost of
td-shifts that visit i is

∑
h∈Hi

αih. The interest of this relaxation relies on the fact that this
term does not depend on the visiting time of i. For short, we note:

∑
h∈Hi

αih = α̂i.

Constraints (5) and (6):

These constraints are related to the trailer capacities. For these constraints, we apply
a surrogate relaxation. We call h0 and h1 the periods (in hour) that contain m0 and m1,
respectively. For t = t0, we replace the constraints defined for h ∈ {h0, . . . , h1} with their
sum:

qt0h1 ≤ qt0,h0−1 −
∑

h∈{h0,...,h1}

∑
r∈R

∑
i∈Vr

δihrqirt0 +Qt0

∑
d∈D

∑
r∈Rdt0

nsrcr xrdt0

with nsrcr equal to the number of visits to a source in r on interval [h0, h1]. If h0 = 0, qt,h0−1

is replaced by qinitt in the above expression.

1note that these two intervals are not expressed with the same time unit: one has to understand that
the two time intervals overlap

20

We note γ̂t0 the dual variable associated with this constraint. In the pricing problem,
the contribution of this constraint to the reduced cost of a td-shift is γ̂t0 each time the
td-shift visits a source. As the constraint is not in MP , we need to define a value for γ̂t0 .
We arbitrarily set:

γ̂t0 =
1

h1 + 1− h0

h=h1∑
h=h0

γt0h.

The rationale is that every time the source is visited, the td-shift will receive a dual price
equal to the average value of dual variables γt0h instead of the value of the γt0h variable
associated with the specific period of the visit. Again, the main advantage is that the new
dual variable γ̂t0 is not indexed by time.

Constraints (7) to (9):

These constraints also concern trailer capacities. In these constraints, we set to 0
the coefficient of all qirt0 variables. It defines a relaxation because the coefficients where
initially all nonnegative on the left-hand side and nonpositive on the right-hand side of the
constraints. The interest here is to get rid of the burden of carrying dual variables γupt0h
and γdownt0h

, that we suspect not being very influential.

Constraints (14) and (15):

These constraints prevent from stockouts at VMI customers. Again, these constraints
are simplified using a surrogate relaxation. We reuse notation h0 and h1. Given i ∈ V1,
we replace the constraints defined for h ∈ {h0, . . . , h1} with their sum:

Sih0−1 +
∑
r∈Ri

∑
t∈Tr

qirt −
∑

h∈{h0,...,h1}

dih = Sih1 −
∑

h∈{h0,...,h1}

oosih

If h0 = 0, Sih0−1 is replaced by stocki0 in the above expression.

We note σ̂i the dual variable associated with this constraint. As the constraint is not in
MP , we need to define a value for this variable. Again, we define σ̂i as the average value
of variables σih on the interval:

σ̂i =
1

h1 + 1− h0

h=h1∑
h=h0

σih.

Intuitively, the dual price associated with a visit of customer i is averaged on the different
periods of interval {h0, . . . , h1}.

5.2 Evaluation of the reduced cost

We now explain how we evaluate the reduced cost of the td-shifts r searched in the pricing
problem. Given i ∈ V1 visited by r and s ∈ T ripr the trip of r in which i is visited, the

21

dual constraint derived from primal variable qirt0 in the relaxed formulation is:

γ̂t0 + γt0rs − βri − σ̂i ≥ Zir

and given i ∈ V2 visited by r, the dual constraint derived from primal variable qirt0 is:

γ̂t0 + γt0rs + βmaxi − βmini ≥ Zir

Because we are only interested in finding td-shifts not in Rk, we assume that variable γt0rs
is not known. Following the approach presented in Section 4.2, we set:

γ1 = max
i∈V1

r

Zir − γ̂t0 + σ̂i

γ2 = max
i∈V2

r

Zir − γ̂t0 − βmaxi + βmini

γt0rs = max(γ1, γ2, 0)

Then, to avoid managing values γtrs for t 6= t0, we set:

βri = 0

Note that following the scheme developed in Section 4.2, we would have set βri = mint∈T γ̂t+
γtrs−σ̂i−Z, but 0 also ensures the validity of dual constraints associated with dual variables
qirt0 .

The goal of the pricing problem is to find td-shifts (r, d0, t0), starting at time m0 and
ending not after time m1, such that:

crd0t0 +
∑

{m∈St(Rd0
k):r∈Kd0

m }

πd0m +
∑

{m∈St(Rt0
k):r∈Kt0

m}

πt0m −
∑
i∈Vr

αi

−
∑
i∈V1

r

α̂i −Qt0n
src
r γ̂t0 −Qt0

∑
s∈T ripr

γt0rs < 0 (28)

It is noteworthy that this implicit relaxation can also be interpreted as a stabilization
method. Indeed, when solving RMPk with the simplex method, dual variables receive
extreme values. An important drawback with dual variables indexed by time is that a
dual variable can receive a large value while the dual variables in adjacent periods receive
zero. Then, with the column generation mechanism, the dual value can be restricted for
the specific period that received a large value, but this value can (repeatedly) be moved to
a close period. Then many iterations are potentially required to attain a good evaluation
of the dual prices. One advantage of our implicit relaxation scheme is to average the value
of these dual variables.

22

5.3 Dynamic programming algorithm

The pricing problem is addressed through dynamic programming as an elementary shortest
path problem with resource constraints. The algorithm follows the approach described
in Feillet et al. (2004), except for the label definition, resource extension functions and
dominance rule. Before detailing these features of the algorithm, we introduce additional
notation (see Table 7) that completes the notation already reported in Tables 1 and 2.

dcd working cost (per working time unit) for driver d ∈ D
tct distance cost (per distance unit) for trailer t ∈ T
si setup time for location i (0 if i is the base)
tij travel time from location i to location j
dij distance from location i to location j

tlayoverd duration of a layover for driver d ∈ D
clayoverd cost of a layover for driver d ∈ D
Td maximum driving duration for driver d ∈ D
twi number of time windows for customer i ∈ V
[aik, bik] kth time window for customer i ∈ V (1 ≤ k ≤ twi)

Table 7: Notation (other data)

Labels are defined with ten attributes plus a vector of size |V|, L = (ending vertex,
cost, time, driving time, minimal quantity, gamma, sources, trips, layover, layover cus-
tomer,visited[]), that can be interpreted as shown in Table 8. Denoting base the index of
the base in the location set, the algorithm is initialized with label:

L = (base,

m0+restd0−1∑
m=m0

πd0m ,m0, Td0 , 0, 0, 0, 0, 0, 0, [0, . . . , 0])

.

Resource extension functions are defined in Tables 9 and 10. In these tables, label
L = (i, c, t, dt,minq, gamma, nbs, nbt, lay, laycust, visited[]) is extended to vertex j ∈ V
to form label L′ = (i′, c′, t′, dt′,minq′, gamma′, nbs′, nbt′, lay′, laycust′, visited′[]). The last
column in Table 9 indicates if the formula applies to the source (s), the base (b) or both
(s+b). The last column in Table 10 is empty when the formula always applies. (lay.)
indicates that it applies when a layover is carried out, and (no lay.) stands for the case
with no layover.

The inclusion of a layover is somewhat complex. Three cases are considered. When
the waiting time before the opening of a time window exceeds the layover duration, a
layover is imposed (formally when t + si + tij + tlayoverd0

≤ ajk with k = min{l : 1 ≤ l ≤
twj and t+ si + tij ≤ bjl}, that is, k indicates the earliest time window allowing to reach j
from L). Inserting a layover in this case is imposed by the REC-IRP definition. The two

23

ending vertex last visited vertex
cost evaluation of the reduced cost
time starting time of the service at ending vertex if it is a source or a

customer, arrival time otherwise (base), expressed in minutes
driving time remaining allowed driving time, expressed in minutes
minimal quantity minimal quantity to be delivered in the current trip, according to

values qmini

gamma current value for dual variable γt0rs, accordingly with the vertices
already visited in the current trip

sources number of visits to a source
trips number of trips (started or finished)
layover boolean value indicating if a layover has been planned
layover customer boolean indicating if a layover customer has been visited
visited[u] boolean indicating if customer u ∈ V has been visited or not

Table 8: Label definition

other cases result from a simplification. When j is a layover customer and L contains no
layover (lay = false), we decided to insert a layover before (second case) or after (third
case) j. First, the earliest time window k = min{l : 1 ≤ l ≤ twj and t + si + tij ≤ bjl} in
j is computed. If the layover can be inserted before the closing time of the time window
(t + si + tij + tlayoverd0

≤ bjk), it is inserted before, otherwise it will be inserted when L′ is
extended, after j.

The extension of label L to j is also subject to some few feasibility tests: i) If j is a
customer, the extension is not allowed if visited[j] = 1; ii) the extension with a layover
is not allowed when lay = 1 (note that only the first case above is concerned); iii) a time
window k computed as explained in Table 10 must exist (t+si+tij ≤ bjtwj

). If j is the base
or a source, condition t′ ≤ m2 is required. If j is the base the combination lay = 1 and
laycust = 0 is not allowed. In all cases (customer, source or base), the remaining driving
time should be nonnegative: dt′ ≥ 0, and the minimal delivered quantity mq′ should not
exceed Qt0 .

Regarding the dominance rule, we propose very simplified (non-exact) conditions. Given
two labels L1 and L2, L1 = (i1, c1, t1, dt1,minq1, gamma1, nbs1, nbt1, lay1, laycust1, visited1[])
dominates L2 = (i2, c2, t2, dt2,minq2, gamma2, nbs2, nbt2, lay2, laycust2, visited2[]) if:

1. i1 = i2

2. c1 ≤ c2

3. t1 ≤ t2

4. dt1 ≥ dt2

24

end. ver. i′ = j (s+b)

cost c′ = c+dcd0×(si+tij)+tct0×dij+
∑t′−1

m=t π
t0
m+
∑t′+restd0−1

m=t+restd0
πd0m−

Qt0 γ̂t0

(s)

c′ = c+dcd0×(si+tij)+tct0×dij+
∑t′

m=t π
t0
m+

∑t′+restd0
m=t+restd0

πd0m (b)

time t′ = t+ si + tij (s+b)
dr. time dt′ = dt− tij (s+b)
min. qtty mq′ = 0 (s+b)
gamma gamma′ = 0 (s+b)
sources nbs′ = nbs+ 1 (s)

nbs′ = nbs (b)
trips nbt′ = nbt (s+b)
layover lay′ = lay (s+b)
lay. cust. laycust′ = laycust (s+b)
visited[] visited′[u] = visited[u] for all u ∈ V

Table 9: Resource extension functions to a source or to the base

end. ver. i′ = j

cost c′ = c+dcd0×(t′−t)+tct0×dij+
∑t′−1

m=t π
t0
m+

∑t′+restd0−1

m=t+restd0
πd0m −

αj − α̂j + gamma×Qt0 − gamma′ ×Qt0

(no lay.)

c′ = c+dcd0×(t′−t)+tct0×dij+
∑t′−1

m=t π
t0
m+

∑t′+restd0−1

m=t+restd0
πd0m −

αj−α̂j+gamma×Qt0−gamma′×Qt0−dcd0×t
layover
d0

+clayoverd0

(lay.)

time t′ = max(t+si+tij, ajk) with k = min{l : 1 ≤ l ≤ twj and t+
si + tij ≤ bjl}

(no lay.)

t′ = max(t + si + tij + tlayoverd0
, ajk) with k = min{l : 1 ≤ l ≤

twj and t+ si + tij + tlayoverd0
≤ bjl}

(lay.)

dr. time dt′ = dt− tij (no lay.)
dt′ = min(Td0 , Td0 + dt− tij) (lay.)

min. qtty mq′ = mq + qminj

gamma gamma′ = max(gamma,Z − γ̂t0 + σ̂j) if j ∈ V1, gamma′ =
max(gamma,Z − γ̂t0 − βmaxj + βminj) if j ∈ V2

sources nbs′ = nbs
trips nbt′ = nbt+ 1 if i /∈ V , nbt′ = nbt otherwise
layover lay′ = lay (no lay.)

lay′ = 1 (lay.)
lay. cust. laycust′ = laycust if j is not a layover customer, laycust′ = 1

otherwise
visited[] visited′[u] = visited[u] for all u ∈ V \ {j}, visited′[j] = 1

Table 10: Resource extension functions to a customer j ∈ V

25

5. c1 + (gamma1 − gamma2)×Qt0 ≤ c2

The last condition can be explained as follows. When gamma1 ≤ gamma2, the condition
is necessary satisfied from the second one. When gamma1 > gamma2 the reduced cost
c1 benefits from this difference compared to c2. Indeed, the term Qt0

∑
s∈T ripr γt0rs is

subtracted in the reduced cost evaluation. The maximum future benefit that could be
obtained from this term for label L2 and not be obtained to L1 is (gamma1−gamma2)×Qt0 .

6 Increasing horizon heuristic

In order to deal with the large time horizon of the instances provided for the ROADEF/EURO
challenge, we designed an iterative increasing horizon heuristic. The principle of this heuris-
tic is to progressively construct a solution from the beginning to the end of the planning
horizon.

We divide the time horizon in three parts. The first part goes from the beginning of the
horizon to, let say, period H1. This is the active part where the algorithm takes decisions,
i.e., determines the td-shifts that will be part of the solution. In order not to make blind
choices, constraints (consumption of VMI customers, call-in orders, time windows, etc.)
are taken into account until period H2 > H1. Finally, to reduce the complexity of the
problem, consumption of customers from H2 + 1 to H is not considered.

When the algorithm has computed the solution in [0, H1], the values of H1 and H2 are
increased and the procedure is repeated. The active part of the horizon is still [0, H1], but
now it is wider. That is why we call this approach a increasing horizon heuristic instead
of a more classic but misleading rolling horizon algorithm.

The column generation framework presented in the previous section should be inte-
grated in a branching scheme in order to be able to solve the REC-IRP. However, the large
size of instances proposed for the ROADEF/EURO challenge makes this option irrelevant.
As a consequence, we select td-shifts,that will be part of the solution, using a variable
fixing procedure. This heuristic will be described in Section 6.4.

In order to reduce the computation times, we introduced in our procedure what we
called the catalog CAT . CAT is a long-term memory which stores promising templates
identified so far by the algorithm. Templates are sequences of loading and delivery oper-
ations such that the time between each pair of operations is determined, but the starting
time has not been set yet. More precisely, when we assign a starting time to a template it
becomes a shift, while assigning a driver and a trailer to a shift makes it a td-shift.

The determination of a td-shift from a template and the exact evaluation of its reduced
cost can be done very efficiently and in a much quicker way than calling the implicit-
relaxation-based dynamic programming procedure presented in Section 5. As soon as
a td-shift is generated (with constructive heuristics explained in Section 6.3.1, or with

26

the dynamic programming pricing procedure presented in Section 4), the corresponding
template is added to CAT . It will be considered to generate new td-shifts by assigning to
the template an effective starting time, a trailer and a driver. Note than we can obtain
different shifts from the same template considering different starting times. Similarly, we
can obtain different td-shifts from the same shift taking into account different trailer-driver
pairs.

Algorithm 1 Increasing horizon heuristic

1: Initialize catalog CAT
2: H1 ← P rh

short, H2 ← P rh
long

3: Initialize RMP with parameters (CAT , H1, H2)
4: while H1 ≤ H do
5: Solve RMP and apply dynamic programming (Section 5) to add new templates to

CAT
6: Solve RMP and, if needed, recover feasibility (Section 6.5)
7: repeat
8: Solve RMP and add new td-shifts to RMP from CAT (Section 6.3.4)
9: until P cat

nbSearch repetitions has been performed
10: Over the horizon [0, H1] fix xrdt variables to 1 in RMP (Section 6.4)
11: Solve RMP and, if needed, recover feasibility (Section 6.5)
12: Reduce RMP if it contains too many variables (Section 6.6)
13: Increment H1 and H2

14: Repopulate CAT
15: end while
16: Improve solution

The framework of the solution procedure is presented in Algorithm 1. First, CAT is
initialized with a constructive heuristic presented in Section 6.3.1 (Line 1) and the values
of H1 and H2 are set to P rh

short and P rh
long respectively (Line 2). The first RMP is initialized

with a set of td-shifts (Line 3). Modifications generated to RMP in order to deal with the
increasing horizon are described in Section 6.1.

The goal of the main loop of Algorithm 1 (Lines 4 to 15) is to generate td-shifts
over horizon [0, H2] and to fix td-shifts during the current active part of the horizon,
namely [0, H1]. New templates are added to CAT with the dynamic programming pricing
procedure presented in Section 5 (Line 5). This is detailed in Section 6.3.2.

Whenever RMP is not feasible (i.e., based on definition introduced in Section 3.6,
the optimal solution of RMP has non-zero artificial variables), the procedure presented
in Section 6.5, is applied to recover feasibility, namely an attempt is made to obtain a
solution with all artificial variables set to zero. Then, RMP is solved P cat

nbSearch times. At
each step, new td-shifts are generated from CAT using the procedure presented in Section
6.3.4 to improve the quality of the td-shifts considered in RMP .

To generate integer solutions we apply the variable-fixing procedure presented in Section

27

6.4. It sets xrdt variables to 1 and determine the td-shifts that are included the solution.
More precisely, xrdt variables of the current RMP associated with td-shifts starting in
[0, H1] are considered as binary. A mixed integer version of RMP is then solved. Then,
variables xrdt that equal to 1 are fixed and the corresponding td-shifts are part of the final
solution.

It may happen that once variables have been fixed, RMP becomes infeasible. In such
a case, the procedure described in Section 6.5 is applied again to recover feasibility.

Then, the horizon is increased and values H1 and H2 are incremented by a value P rh
+

(or set to H if the increment would exceed H). At this point we evaluate the size of RMP ,
i.e., the td-shifts considered by the current RMP . If it is too large, some variables are
excluded, as detailed in Section 6.6. Finally, the catalog CAT is repopulated calling the
implicit-relaxation-based dynamic programming procedure.

Once the whole horizon has been considered, the algorithm provides with a solution for
the REC-IRP. A final step, presented in Section 6.7, is then applied to try to improve its
quality.

6.1 Restricted master problem on a limited time horizon

Since we consider a restricted time horizon, the RMP has to be defined only on a part of
the whole horizon. Here we present the modifications we apply to RMP .

• for all i ∈ V1, for all periods h > H2:

– variable Sih is unbounded;

– Constraint (16) is relaxed;

– if πi(h) ≥ H2, the corresponding Valid inequality (23) is relaxed;

• for all i ∈ V1:

– the value of ni involved in Valid inequalities (22), is computed over [0, H2];

• for all i ∈ V2 such that earliest time for delivery is in [H2 + 1, H]:

– Constraints (12) and (13) are relaxed;

– Valid inequality (21) is relaxed.

6.2 Management of the objective function

One of the specific feature of the REC-IRP is the fractional objective function that we
manage using the Dinkelbach’s algorithm (Section 3.4). In this section we explain the
implementation details related to our procedure and how we modify the objective function
to help find feasible solutions.

28

6.2.1 Application to the increasing horizon heuristic

During the resolution of the REC-IRP with the increasing horizon heuristic we initially set
the value of Z, the parameter used to linearize the objective function, to Z0 = 0.01.

Then, the value of Z is updated at each iteration of the algorithm, before calling the
fixing procedure described in Section 6.4. The ratio of the objective function is updated
P ratio
iterMax times according to the Dinkelbach’s rule (3.4) and, after each update, the RMP

is solved again. Whenever the current value of Z − N(x)
D(x)

is lower than a parameter P ratio
eps ,

the procedure stops.

Note that this approach is consistent with the implementation proposed in Garaix et al.
(2011), while Archetti et al. (2016) only update Z when the parametric linear program is
completely solved (by column generation).

6.2.2 Early delivery

During our preliminary experiments, we noticed that, on some instances, the algorithm
worked correctly until a certain time period in the horizon. Then it encounters difficulties
to find td-shifts to be part of the solution and to build a solution over the whole horizon.
We guessed that this problem was due to a lack of anticipation in serving customers that
would eventually run out of stock. Once such a problem appears, the procedure tries to
insert a particular td-shift in the horizon unsuccessfully since it is blocked by other already
fixed td-shifts.

To circumvent this difficulty, we slightly modify the objective function introducing the
delivery profits ch. ch indicates the profit raised when delivering a unit of goods to a
customer at a specified time h ∈ H. The expected benefit was to favor early delivery, and
so, help finding feasible solutions. The values of ch are as follows:

• ch = 1 for h ≤ H1;

• ch = 0 for h ≥ H2;

• ch decreases linearly between H1 and H2.

6.3 Management of the catalog CAT

6.3.1 Initialization of the catalog CAT

CAT is first initialized with basic templates, i.e., templates including a visit to a source
and a visit to only one customer. Obviously, only feasible template are kept into CAT . By
feasible, we mean a template from which feasible td-shifts can be obtained.

29

Successively, two templates generation procedures, one based on driver’s time windows
and one based on customer requirements are executed. These procedures are detailed
thereafter. The procedure based on customer requirements is first executed once, then the
one based on driver’s time windows is executed at most P initCat

nbIter times, and stops when
CAT contains more than P initCat

sizeMax templates.

Initialization procedure based on driver’s time windows

This procedure is based on the exploration of the set of driver time windows. It may
happen that a driver time window is as wide as the whole horizon. This represents the
availability of the driver during the entire planning horizon. Since two shifts assigned to
the same driver d must be separated by at least restd units of time, the driver time window
is divided into smaller time windows in order to: (1) allow to deliver a reasonable number
of customers together with a layover (more precisely the time window length is set to the
average maximum driving time, plus the layover duration, plus 10 times the setup time);
(2) satisfy the minimal time that has to take place between two consecutive time windows.

For each time window, considered in chronological order, and all trailers compatible
with the driver, the following steps are carried out:

1. identify critical customers, i.e., a set of customers compatible with the trailer that
must be visited in the time window in order to avoid stockouts;

2. estimate delivery quantities for these customers based on their consumption;

3. generate a set of td-shifts that cover all the selected customers, by means of a best-
insertion-like procedure as follows:

• first, the customer is tried to be inserted into a trip of an existing shift;

• if this is not possible, a new trip with a visit to the source and then to the
customer is created;

4. update inventory levels accordingly. As a consequence, the set of critical customers
may change;

5. for each td-shift the corresponding template is obtained by removing the association
to the driver and to the trailer and by unfixing the starting time. The template is
then inserted into CAT .

In order to generate several templates with the same procedure, the following steps are
randomized:

• for each time window, the order of the trailers compatible with the driver is shuffled;

30

• the order of the customers in the best-insertion-like procedure is shuffled;

• in the selection of the customers, it is possible to randomly add customers that do
not need to be visited to avoid stockouts;

• when the set of shifts has been generated, it is possible to try to add other customers
using the best-insertion-like procedure.

Initialization based on customer requirements

The procedure described here considers only the customers that must be delivered
during the horizon in order to avoid stockouts. For each of them, we consider a delivery-
time window. It starts when the minimal quantity can be delivered and ends when the
customer runs out of stock. The customers are then sorted based on the closing date of
the delivery time windows.

The best-insertion-like procedure is applied on this set of customers in order to obtain
a set of td-shifts. Among all td-shifts that have been produced by the procedure, only
one is kept. Delivery time windows are then re-computed for the customers served by
this td-shift. If some customers do not require additional deliveries, they are not anymore
considered. The procedure is repeated until sufficient quantities have been delivered to
all customers to avoid stockouts over the time horizon. For each of the td-shifts that are
obtained the corresponding template is inserted into CAT .

6.3.2 Insertion of new templates with the impicit-relaxation-based dynamic
programming procedure

In order to populate CAT with new templates, the dynamic programming pricing procedure
is called. This procedure depends on a few parameters that define the subset of td-shifts
that is explored: a driver d0, a trailer t0, a starting time m0 and a maximum ending time
m1. To diversify the templates generated, the procedure is applied for all the feasible
trailer-driver pairs. For each pair, several values of m0 and m1 are considered in order to
cover the horizon [0, H2]. We consider values of m0 and m1 such that m1 − m0 is large
enough to make a layover shift. As a consequence, we set m1 −m0 to twice the maximum
driving time, plus the layover duration, plus 10 times the setup time to allow enough time
for the operation. Moreover, we take into account the td-shifts that have already been
fixed. For each trailer-driver pair, we compute the availability time windows, i.e., where
they do not operate fixed td-shifts. Then, we ensure that m0 and m1 values are inside
these time windows. Algorithm 2 details the search for negative reduced-cost shifts using
the implicit-relaxation-based dynamic programming procedure.

31

Algorithm 2 Generate shifts with negative RC

1: S ← ∅
2: for all d ∈ D do
3: for all t ∈ Td do
4: maxDuration ← Twice the maximum driving time, plus the layover duration,

plus 10 setup times
5: T W ← time windows where d and t are available (based on the current td-shifts

fixed into the RMP)
6: for all tw ∈ T W do
7: m0 ← st(tw)
8: m1 ← min {m0 +maxDuration, end(tw)}
9: while m0 < H2 and m0 < m1 do

10: SDYN ← td-shifts from dynamic programming (m0,m1, d, t)
11: S ← S ∪ SDYN
12: end← max(r,d,t)∈SDY N

{etr}
13: m0 ← end+ gap(d)
14: m1 ← min {m0 +maxDuration; end(tw)}
15: end while
16: end for
17: end for
18: end for
19: return S

32

6.3.3 Pricing of the columns in the catalog CAT

For each template r̃ stored in CAT , we evaluate the potential benefit of including it into the
model, namely, to create a td-shift r based on template r̃. We proceed as follows. A shift r̄
is obtained by postponing by an integer number of periods over [0, H2], the template r̃. The
scheduling of the operations is not modified. The procedure considers all time-shiftings
that satisfy time constraints, i.e., for every customer the delivery occurs during one of its
time window).

Then, for each of these shifts r̄, compatible trailer-driver pairs are determined in order
to generate a td-shift r. To this aim, we take into account the current partial solution.
When a variable xr′dt is fixed to 1, it means that trailer t is no longer available between
str′ and etr′ . Similarly, driver d is no longer available between str′ − restd and etr′ + restd.
Hence, driver d and trailer t are compatible with shift r̄ if:

• d and t are compatible (t ∈ Td);

• t can operate shift r̄;

• d can operate shift r̄;

• t is available during [str̄, etr̄];

• d is available during [str̄, etr̄].

Then, for each feasible td-shift r derived from template r̃, the corresponding exact
reduced cost is computed using Expression (27). Only the td-shift with the lowest reduced
cost is considered for inclusion into RMP . Note that certain terms of Expression (27)
depend only on the sequence of the customers and need to be computed only once.

A parameter P eval
impr is used to determine how much improvement in the reduced cost is

needed to consider updating the best td-shift generated from template r̃ (the td-shift con-
sidered for inclusion into RMP). Since starting times are ordered, this avoid to postpone
the starting time of a shift when the impact on the reduced cost is limited.

6.3.4 Selection of td-shifts to enter RMP

To construct shifts from templates in CAT , initially a template is randomly selected.
The reduced cost of associated td-shifts is calculated as explained in Section 6.3.3. If the
resulting reduced cost is lower than a negative value P eval

rc , the td-shift is memorized and
will be considered to enter RMP . The procedure terminates when P cat

nbTemplates have been
memorized or CAT has been completely scanned. Finally, the P cat

nbAddBySearch td-shifts with
the lowest reduced cost are inserted into RMP .

33

6.4 Variable-fixing heuristic

The solution of the current RMP is by nature fractional. In order to obtain a solution for
the REC-IRP, we need to retrieve an integer solution with respect to variables xrdt. To
this aim, we propose a variable-fixing heuristic. The purpose of this procedure is to select
the td-shifts included in the REC-IRP solution by fixing the corresponding xrdt variables
to 1.

This variable-fixing heuristic solves a mixed integer programming problem MIX-RMP
derived from the current RMP . To do so, all the xrdt associated with td-shifts that start
before H1 are considered as binary variables. The other variables remains continuous.
After solving MIX-RMP , binary variables xrdt with value 1 are fixed to 1 in RM . Note
that the mixed integer program is solved with a time limit of PMIP

tl seconds, and a relative
gap of PMIP

gap .

It is noteworthy that each time the variable-fixing heuristic is called, the previous fixing
decisions can be updated. Hence a variable previously fixed can be unfixed. Moreover,
the reduction of the size of RMP presented in Section 6.6 permits to remove the xrdt with
value 0. This allows to maintain a reasonable size of xrdt variables over the horizon [0, H1],
hence to maintain a reasonable number of integer variables when solving the mixed integer
program.

After fixing the xrdt variables over the horizon [0, H1], it could happen, even after
applying the recovery procedure presented in Section 6.5, that RMP does not admit a
solution without non-zero artificial variables. In this case we detect an incorrect fixing
strategy and another mixed integer program MIX-RMP ′ obtained is solved. MIX-RMP ′

is obtained from RMP by considering as binary variables all variables in Xfixed, where
Xfixed contains all the xrdt variables currently fixed. Then, the two following constraints
are added: ∑

x∈Xfixed

x ≤ |Xfixed| − 1; (29)

∑
x∈Xfixed

x ≥ |Xfixed| − PMIP
uf . (30)

Constraint (29) forces to unfix at least one variable while Constraint (30) limits the number
of unfixed variables. Note that if RMP turns to be still unfeasible, the horizon is increased
by incrementing the values of H1 and H2.

6.5 Recovery procedure

It may occur that the current RMP only admits a feasible solution where at least one
artificial variable is non-zero. That means that the td-shifts together with the variables
that have been fixed (see Section 6.4) in the current RMP cannot provide a feasible solution
for the REC-IRP. In this case, we propose the following recovery procedure.

34

The procedure detects the source of infeasibility by generating the set U of customers
associated with a non-zero artificial variable (we recall from Section 3.6 that all the artificial
variables are indexed by a customer).

Then CAT is first scanned focusing only on templates that contain at least a customer
in U . The associated P cat

nbAddBySearch td-shifts with the most negative reduced cost are then
added to RMP .

A second set of P cat
nbAddBySearch td-shifts is added to RMP using the procedure detailed

in Section 6.3.4.

Those two searches into CAT are repeated until RMP is feasible or it has been executed
P recover
nbIter times. In case RMP is still unfeasible after the P recover

nbIter iterations:

• CAT is repopulated calling the implicit-relaxation-based dynamic programming pro-
cedure;

• the whole procedure is applied using the updated catalog.

If RMP is still unfeasible after P recover
nbUpdateCat updates of the CAT , at most PMIP

uf xrdt vari-
ables are unfixed as described in Section 6.4.

6.6 Reduction of the size of the RMP

Each time the current values of H1 and H2 are incremented we check if it is possible to
reduce the size of RMP . The procedure simply checks if the current solution of RMP ad-
mits more than P reduc

maxNul variables xrdt set to zero or more than P reduc
maxUnfix unfixed variables.

In this case, the procedure removes from RMP all variables xrdt set to zero. For each
variable xrdt removed from RMP the associated variables qirt and the constraints related
to td-shift r are also removed.

6.7 Solution improvement

Once a feasible solution has been found, we try to improve the current best solution. We
create a set S containing each td-shift included in the current solution. Then, for each
td-shift in S, we add to S additional td-shifts built as follows:

(1) customers receiving less than 1% of the total quantity delivered in the td-shifts are
removed;

(2) visits, for which only the minimal quantities are delivered, are removed from the
td-shift;

(3) the possible initial stop at the source is removed;

35

P rh
short 24
P rh
long 120
P rh

+ 12 or 24
P initCat
sizeMax 5000
P initCat
nbIter 50
P cat
nbSearch 3
P cat
nbAddBySearch 10
P recover
nbUpdateCat 2
P recover
nbIter 10
P cat
nbTemplates 1000
P reduc
maxNul max

{
100; 1

2
nb of xrdtvariables

}
P reduc
maxUnfix 10

P improve
maxSize 250
P ratio
iterMax 10
P ratio
eps 10−6

P eval
impr 1.01
PMIP
tl 300 if |V| ≤ 100 and H ≥ 35

1200 if |V| ≥ 300 and H ≥ 20
600 otherwise

PMIP
gap 0.1
PMIP
uf 5

Table 11: Parameters.

(4) a final stop at the source is added (before going back to the base);

(5) new visits are considered by applying a best-insertion like procedure (this step is
applied as well to td-shifts generated in previous points).

When S contains more than P improve
maxSize td-shifts, the process is stopped. The formulation

proposed in Section 3 restricted to S is then solved in the hope of improving the solution
quality. In case of improvement, the procedure is repeated.

7 Computational experiments

The algorithm presented in Section 6 was run on a Intel(R) Core(TM) i7-5600U CPU @
2.60GHz. Cplex 12.6 was used to solve the (mix-integer) linear programs considered in the
procedure and described in the previous sections. The parameters used in the algorithm
are set as presented in Table 11.

A maximum time is allocated to solve each instance. We distinguish two sets of in-
stances based on their size. Mid-size instances include less than 100 customers, or less

36

Best known
Instance |V| |H| (in days) |D| |T | P rh

+ Ratio (×100) ratio (×100)

V2.13 53 10 5 5 12 3.4803 2.8875
V2.14 53 35 5 5 24 4.7637 3.4971
V2.15 134 10 4 3 12 3.4528 2.4993
V2.16 184 10 7 4 24 1.6826 1.1783
V2.19 53 35 5 5 12 4.1487 3.4022
V2.24 32 10 5 6 24 1.4175 1.1219
V2.25 32 35 5 6 12 1.3194 1.1451
V2.26 32 35 5 6 12 1.3580 1.1281
X.2 184 10 7 4 12 1.6886 1.1799

Table 12: Results on mid-size instances.

than 200 customers with a planning horizon of 10 days. Namely these are instances 13,
14, 15, 16, 19, 24, 25, 26 and X2. The remaining instances are large instances, namely 12,
17, 18, 20, 21, 22, 23, X1, X3, X4 and X5. The CPU time limits were 3 hours for mid-size
instances, 6 hours for large instances with less than 20 periods or with less than 10 drivers,
and 12 hours for instances with more than 20 periods and more than 10 drivers. In Ta-
bles 12 and 13, we report the results obtained with our algorithm. The column Instance
contains the name of the instance, while the column Ratio contains the corresponding value
of the logistic ratio (multiplied by 100). Since tests were performed with two different val-
ues of P rh

+ , the column P rh
+ gives the value of this parameter that allows to obtain the

corresponding ratio.

The branch-cut-and-price heuristic provides solutions on all small and medium-size
instances, and on 9 out of 11 large instances. The solution quality is reasonable for most
instances with respect to the best known solution values. However, this is at the expense
of large computation times.

8 Conclusions and perspectives

This paper deals with the problem proposed in the context of the ROADEF/EURO chal-
lenge. The problem is a rich variant of the so-called Inventory Routing Problem encoun-
tered by Air-Liquide.

Even if the designing of exact solution approaches would not be suitable for large
size instances as those proposed by the organizers of the ROADEF/EURO challenge, we
proposed a branch-cut-and-price framework to tackle the REC-IRP. To deal with real-life
instances the cut-and-column generation procedure is developed along with a heuristic
pricing algorithm. To produce new columns, the pricing procedure relies on a surrogate
relaxation of the constraints. Moreover, a heuristic fixing procedure has been integrated

37

Best known
Instance |V| |H| (in days) |D| |T | P rh

+ Ratio (×100) ratio (×100)

V2.12 324 10 13 15 24 1.6290 1.0024
V2.17 134 35 4 3 24 4.9813 3.2130
V2.18 134 35 4 3 24 4.7547 3.1882
V2.20 184 35 7 4 24 2.6095 1.7486
V2.21 184 35 7 4 24 2.5374 1.6806
V2.22 324 21 13 15 12 1.8819 1.2667
V2.23 324 21 13 15 - - 1.2603
X.1 324 10 13 15 12 1.5974 1.0042
X.3 134 35 4 3 - - 3.0760
X.4 324 21 13 15 24 1.8325 1.2633
X.5 324 21 13 15 12 1.8101 1.2965

Table 13: Results on large instances.

into the framework to generate feasible solutions.

The proposed method provides solutions of reasonable quality on all but two instances.
However, this is at the expense of large computation times.

References

André, J., Baldacci, R., Fokouop, R., Létocart, L., Traversi, E. and Wolfler-Calvo, R.
(2016). An approach based on column generation for solving routing problems with
fractional objective function, ROUTE workshop, Rambouillet, June 1–4.

Archetti, C., Desaulniers, G. and Speranza, M. G. (2016). Minimizing the logistic ratio
in the inventory routing problem, EURO Journal on Transportation and Logistics p. to
appear.

Bard, J. F. and Nananukul, N. (2010). A branch-and-price algorithm for an integrated pro-
duction and inventory routing problem, Computers & Operations Research 37(12): 2202–
2217.

Charnes, A. and Cooper, W. W. (1962). Programming with linear fractional functionals,
Naval Research logistics quarterly 9(3-4): 181–186.

Christiansen, M. and Nygreen, B. (2005). Robust inventory ship routing by column gen-
eration, Column generation, Springer, pp. 197–224.

Coelho, L. C., Cordeau, J.-F. and Laporte, G. (2013). Thirty years of inventory routing,
Transportation Science 48(1): 1–19.

38

Desaulniers, G. (2010). Branch-and-price-and-cut for the split-delivery vehicle routing
problem with time windows, Operations research 58(1): 179–192.

Desaulniers, G., Rakke, J. G. and Coelho, L. C. (2015). A branch-price-and-cut algorithm
for the inventory-routing problem, Transportation Science .

Dinkelbach, W. (1967). On nonlinear fractional programming, Management Science
13(7): 492–498.

Feillet, D., Dejax, P., Gendreau, M. and Gueguen, C. (2004). An exact algorithm for the
elementary shortest path problem with resource constraints: Application to some vehicle
routing problems, Networks 44(3): 216–229.

Feillet, D., Dejax, P., Gendreau, M. and Gueguen, C. (2006). Vehicle routing with time
windows and split deliveries, Technical Paper 851.

Feillet, D., Gendreau, M., Medaglia, A. L. and Walteros, J. L. (2010). A note on branch-
and-cut-and-price, Operations Research Letters 38(5): 346–353.

Garaix, T., Artigues, C., Feillet, D. and Josselin, D. (2011). Optimization of occupancy rate
in dial-a-ride problems via linear fractional column generation, Computers & Operations
Research 38(10): 1435–1442.

Hernandez, F., Feillet, D., Giroudeau, R. and Naud, O. (2016). Branch-and-price algo-
rithms for the solution of the multi-trip vehicle routing problem with time windows,
European Journal of Operational Research 249(2): 551–559.

Le, T., Diabat, A., Richard, J.-P. and Yih, Y. (2013). A column generation-based heuristic
algorithm for an inventory routing problem with perishable goods, Optimization Letters
7(7): 1481–1502.

Michel, S. and Vanderbeck, F. (2012). A column-generation based tactical planning method
for inventory routing, Operations research 60(2): 382–397.

39

