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Introduction

In a strong competitive environment and with more and more demanding customers, manufacturing and service systems must be flexible [START_REF] Johnzen | Flexibility measures for qualification management in wafer fabs[END_REF]) and able to deal with different objectives dynamically. Among the important operational decisions are scheduling decisions where several types of flexibility have been considered, and in particular operation flexibility that refers to the ability of an operation to be performed in different ways. The scheduling literature dealing with operation flexibility in the classical Job-shop Scheduling Problem (JSP) has accumulated over the last twenty five years (see the recent survey of [START_REF] Chaudhry | A research survey: review of flexible job shop scheduling techniques[END_REF]), leading to the so-called Flexible Job-shop Scheduling Problem (FJSP). The FJSP is more realistic for modeling a wide range of real-life applications, as it can capture key features of modern manufacturing and service systems.

The Flexible Job-shop Scheduling Problem (FJSP) is defined as follows. A set M of m machines are always available to process a set of n jobs J = {J 1 , . . . , J n }. Each machine can only perform one operation at a time. Each job consists of a sequence of operations, called routing, which can differ from one job to another, i.e. there is not a single pre-specified order of machines for all jobs. The preemption of operations is not allowed, i.e. an operation cannot be interrupted once started. Each job J i has a release date r i , a weight w i related to the priority of job J i , and a due date d i that specifies the date before which J i should be completed. An important feature of the FJSP is that the machine needed to perform an operation j is not given but must be selected from a subset R j ⊆ M of eligible machines. The processing time p j of an operation j depends on the selected machine in R j . Let us assume that these processing times are non-negative integer, known and include non sequence-dependent setup times between operations. The FJSP consists in both assigning a machine to each operation and sequencing operations on the selected machines, to optimize a single criterion or multiple criteria.

In single criterion optimization, the most studied criterion for the FJSP is the minimization of the makespan C max , which corresponds to the completion time of all jobs. However, minimizing other criteria that include the weight of jobs and their due dates are better suited to capture critical factors that affect the competitiveness of a firm [START_REF] Zhang | A simulated annealing algorithm based on block properties for the job shop scheduling problem with total weighted tardinessobjective[END_REF]). Regular criteria are among the most common objectives considered in the scheduling literature. A criterion is said to be regular if it is an increasing function of the completion times of the jobs (see e.g. [START_REF] Mati | A general approach for optimizing regular criteria in the job-shop scheduling problem[END_REF] for the JSP). In addition to the makespan, the following regular criteria are among the most popular ones in the scheduling literature: (1) Maximum tardiness T max = max T i , where T i = max(0, C i -d i ), C i is the completion time of job J i and d i is its due date, (2) Total tardiness i T i , (3) Total completion time i C i , and (4) Number of tardy jobs i U i , where U i = 1 if T i > 0 and 0 otherwise.

The Multi-Objective Flexible Job-shop Scheduling Problem (MOFJSP) is the optimization of the FJSP with multiple criteria that are in conflict to some extent. In this paper, we develop a general local search approach that optimizes any combination of regular criteria for the MOFJSP. The remainder of the paper is organized as follows. Section 2 reviews the related literature. Section 3 details the disjunctive graph model and the neighborhood structures that are used to solve the FJSP. Section 4 proposes a theoretical framework to evaluate the quality of the set of non-dominated solutions. Section 5 describes the proposed local search approach based on Pareto optimization with four new search strategies. Experiments that validate the efficiency of our approach are presented and discussed in Section 6. Finally, Section 7 concludes the paper and provides some directions for future research.

Literature review

The FJSP has been extensively studied in the literature to optimize a single criterion or multiple criteria. A recent survey covering the various techniques to solve the FJSP with a single objective and multiple objectives, can be found in [START_REF] Chaudhry | A research survey: review of flexible job shop scheduling techniques[END_REF]. This survey includes different comparative tables to classify the literature according to the performance measures and the types of techniques. It also gives, for each paper, the algorithm and shop details, the objective functions considered and the number of citations. Another survey can be found in [START_REF] Genova | A survey of solving approaches for multiple objective flexible job shop scheduling problems[END_REF] that only covers techniques developed to solve the MOFJSP between 2005 and 2014. A recent literature review on genetic algorithms to solve the FJSP is presented in [START_REF] Amjad | Recent research trends in genetic algorithm based flexible job shop scheduling problems[END_REF] where, for each paper, the considered objective functions, the parameters of the genetic algorithms and the benchmarks are presented.

By taking a closer look at the literature on the MOFJSP, one can observe that most papers focus on optimizing the makespan, the total workload of machines, and the workload of the critical machine. [START_REF] Chaudhry | A research survey: review of flexible job shop scheduling techniques[END_REF] report (Table 3) that the makespan is used in combination with another objective function in 39.59% of papers, and 23.35% of them use the workload of machines. Even though the list of papers in [START_REF] Chaudhry | A research survey: review of flexible job shop scheduling techniques[END_REF] is not exhaustive as they missed some papers, the observation and trend are the same. The makespan remains the most studied criterion for the FJSP, and is generally combined with the workload of machines in the MOFJSP. A similar observation can be drawn from [START_REF] Amjad | Recent research trends in genetic algorithm based flexible job shop scheduling problems[END_REF] (Table 10) where 88.88% (i.e. 32 out of 36) of papers relying on genetic algorithms to solve the MOFJSP consider the makespan and workload of machines. Since there are a very large number of papers on the MOFJSP, we only focus in this section on the recent, state-of-the-art and closely related works where multiple criteria are optimized, with special attention to papers that consider regular criteria.

The MOFJSP is usually tackled in the literature using two types of approaches. The first one consists in transforming the multi-objective problem into a mono-objective problem by assigning different weights for each objective. Various heuristics in this category were proposed in the literature. A Tabu Search algorithm is presented in [START_REF] Li | A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities[END_REF] that uses several neighborhood search rules for machine assignment and operation scheduling. A heuristic method that starts from an initial solution, and improves it using two move search algorithms, is introduced in [START_REF] Xing | An efficient search method for multi-objective flexible job shop scheduling problems[END_REF]. Several hybrid heuristics are proposed such as the hybridization of particle swarm optimization and Tabu Search in [START_REF] Zhang | An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem[END_REF], genetic algorithms and Shifting Bottleneck in [START_REF] Gao | A hybrid of genetic algorithm and bottleneck shifting for multiobjective flexible job shop scheduling problems[END_REF], and Particle Swarm Optimization and Simulated Annealing in [START_REF] Xia | An effective hybrid optimization approach for multiobjective flexible job-shop scheduling problems[END_REF].

The second type of approaches that started about fifteen years ago is based on Pareto optimization where the goal is to determine the set of nondominated solutions, i.e. the Pareto front. A hierarchical heuristic algorithm that is an adaptation of the Newton's method for continuous multi-objective unconstrained optimization problems is proposed in [START_REF] Pérez | A newton-based heuristic algorithm for multi-objective flexible job-shop scheduling problem[END_REF]. Two adapted genetic algorithms are presented in [START_REF] Rahmati | Developing two multi-objective evolutionary algorithms for the multi-objective flexible job shop scheduling problem[END_REF]. A simple and effective evolutionary algorithm that needs only two parameters is developed in [START_REF] Chiang | A simple and effective evolutionary algorithm for multiobjective flexible job shop scheduling[END_REF], and a filtered-beam-search-based heuristic in [START_REF] Shi-Jin | A filtered-beam-search-based heuristic algorithm for flexible job-shop scheduling problem[END_REF].

Many authors developed hybrid methods that combine two or more algorithms to improve the convergence while ensuring the diversity of solutions. [START_REF] Chun | A novel memetic algorithm based on decomposition for multiobjective flexible job shop scheduling problem[END_REF] combine an evolutionary algorithm with a local search heuristic. A Non-dominated Sorting Genetic Algorithm II is combined with a local search in [START_REF] Yuan | Multiobjective flexible job shop scheduling using memetic algorithms[END_REF], a Scatter Search algorithm that uses Tabu Search and Path-Relinking is proposed in [START_REF] González | Scatter search with path relinking for the flexible job shop scheduling problem[END_REF], a Path-Relinking based on a Tabu Search algorithm with back-jumping tracking is developed in [START_REF] Jia | Path-relinking tabu search for the multi-objective flexible job shop scheduling problem[END_REF], a hybrid discrete Particle Swarm Optimization and Simulated Annealing algorithm are proposed in [START_REF] Shao | Hybrid discrete particle swarm optimization for multi-objective flexible job-shop scheduling problem[END_REF], a Pareto-based estimation of distribution algorithm is combined with a local search heuristic in [START_REF] Wang | A pareto-based estimation of distribution algorithm for the multi-objective flexible job-shop scheduling problem[END_REF], a genetic algorithm and local search are combined in [START_REF] Xiong | A hybrid multiobjective evolutionary approach for flexible job-shop scheduling problems[END_REF], a genetic algorithm is combined with a Simulated Annealing in [START_REF] Li | Hybrid genetic algorithm for flexible job-shop scheduling with multi-objective[END_REF], and an approach hybridizing a discrete Artificial Bee Colony algorithm and local search approaches is proposed in [START_REF] Li | Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems[END_REF].

All the above mentioned papers focus on optimizing the makespan, the total workload of machines, and the workload of the critical machine. There are only very few papers that consider other objectives such as regular criteria. In the FJSP with mono-objective, [START_REF] García-León | Minimizing regular criteria in the flexible job job-shop scheduling problem[END_REF] propose a general approach for optimizing any regular criteria, which presents new concepts to be used in local search methods. To minimize the total tardiness, [START_REF] Türkyılmaz | A hybrid algorithm for total tardiness minimisation in flexible job shop: genetic algorithm with parallel vns execution[END_REF] combine a genetic algorithm and a Variable Neighborhood Search, and [START_REF] Mousakhani | Sequence-dependent setup time flexible job shop scheduling problem to minimise total tardiness[END_REF] presents a Mixed Integer Linear Programming model and an iterated local search. For the MOFJSP, [START_REF] Singh | Particle swarm optimization algorithm embedded with maximum deviation theory for solving multi-objective flexible job shop scheduling problem[END_REF] propose a Particle Swarm Optimization algorithm to simultaneously minimize the makespan, mean flow time, and mean tardiness. [START_REF] Gao | Discrete harmony search algorithm for flexible job shop scheduling problem with multiple objectives[END_REF] minimize a weighted combination of the makespan and the mean of earliness and tardiness, using a discrete Harmony Search algorithm that makes use of several heuristics. A Variable Neighborhood Search algorithm is proposed in [START_REF] Bagheri | Bi-criteria flexible job-shop scheduling with sequence-dependent setup times-variable neighborhood search approach[END_REF] to minimize a weighted sum of the makespan and the mean tardiness. [START_REF] Vilcot | A tabu search algorithm for solving a multicriteria flexible job shop scheduling problem[END_REF] present a version of Tabu Search that minimizes a linear combination of C max , T i and L max . [START_REF] Tay | Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems[END_REF] consider the minimization of the weighted sum of the makespan, the mean tardiness, and the mean flow time, by using priority rules and the concept of genetic programming. A heuristic inspired from Particle Swarm Optimization and Variable Neighborhood Search is proposed in [START_REF] Liu | Variable neighborhood particle swarm optimization for multi-objective flexible job-shop scheduling problems[END_REF] for minimizing a weighted linear combination of the makespan and the sum of completion times.

The MOFJSP has also been addressed under a variety of constraints, assumptions and practical issues. In [START_REF] Lei | A two-phase meta-heuristic for multiobjective flexible job shop scheduling problem with total energy consumption threshold[END_REF], the makespan and total tardiness are minimized under the constraint that the total energy consumption does not exceed a given threshold. [START_REF] Mokhtari | An energy-efficient multi-objective optimization for flexible job-shop scheduling problem[END_REF] develop an evolutionary algorithm to minimize the makespan, the total availability of the system, and the total energy cost of both production and maintenance operations. The uncertainty in processing times is addressed in [START_REF] Shen | Robustness measures and robust scheduling for multi-objective stochastic flexible job shop scheduling problems[END_REF] to simultaneously minimize makespan, maximal machine workload, and robustness to uncertainties. [START_REF] Lu | An effective multi-objective discrete virus optimization algorithm for flexible job-shop scheduling problem with controllable processing times[END_REF] investigate the problem un-der controllable processing times, i.e. the processing times of operations can be controlled by allocating additional resources, to find an efficient trade-off between the makespan and the total additional resource consumption. Fuzzy processing times and fuzzy due dates are addressed in [START_REF] Chun | A novel memetic algorithm based on decomposition for multiobjective flexible job shop scheduling problem[END_REF] using a memetic algorithm that combines genetic global optimization with a local search method. [START_REF] Ahmadi | A multi objective optimization approach for flexible job shop scheduling problem under random machine breakdown by evolutionary algorithms[END_REF] address random machine breakdowns by considering the makespan and stability measures. [START_REF] Li | A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities[END_REF] consider maintenance activities on machines and propose a discrete Artificial Bee Colony algorithm to deal with the makespan, the total workload of machines, and the workload of the critical machine. Random machine breakdowns are also considered in [START_REF] Xiong | Robust scheduling for multiobjective flexible job-shop problems with random machine breakdowns[END_REF] with the objective of minimizing the makespan and the robustness. The dynamic FJSP with job release dates is addressed in [START_REF] Nie | A gep-based reactive scheduling policies constructing approach for dynamic flexible job shop scheduling problem with job release dates[END_REF] to minimize the makespan, the mean flow time, and the mean tardiness. Sadrzadeh (2013) considers sequence-dependent setups using an Artificial Immune System and Particle Swarm Optimization to minimize an aggregate function of the makespan and the mean tardiness. Setup times are also considered in [START_REF] Bagheri | Bi-criteria flexible job-shop scheduling with sequence-dependent setup times-variable neighborhood search approach[END_REF] using a Variable Neighborhood Search approach to minimize the makespan and the mean tardiness.

To conclude, the MOFJSP has been solved in the literature using different methods that range from simple heuristics to sophisticated metaheuristics. Although the MOFJSP gained considerable attention from researchers during the last ten years, most studies consider the optimization of the makespan and two non-regular criteria (total workload and maximum workload of machines). A very limited number of papers address regular criteria even when optimizing a single criterion. Indeed, [START_REF] Chaudhry | A research survey: review of flexible job shop scheduling techniques[END_REF] report that the optimization of the makespan combined with other regular criteria has little been studied, e.g. 2.5% of the papers consider maximum tardiness and 1.5% deal with total tardiness. When regular criteria are combined with the makespan, most papers do not aim at Pareto optimization and instead aggregate the criteria in one objective using a weight for each criterion. Moreover, the concepts of disjunctive graph and estimation functions are not exploited. One of the contributions of this paper is the design of an efficient Pareto optimization approach for the MOFJSP with regular criteria by developing different strategies to efficiently determine a set of non-dominated solutions.

Problem modeling and neighborhood structures for the FJSP

This section introduces the different concepts used in this paper to model and solve the MOFJSP, and illustrates these concepts using the example in Table 1 with three jobs and four machines. Each job J i has four operations which are denoted O ij (i = 1, 2, 3 and j = 1, 2, 3, 4). For example, the first operation of job J 1 has two eligible machines M 1 and M 3 with processing times of 3 and 5, respectively. The third operation of J 2 has no flexibility, since it can only be performed on machine M 4 .

Eligible machines and processing times for operations Job 1 2 3 4 The FJSP with regular criteria can be modeled using a disjunctive graph G = (V, A, E) where V is the set of nodes and A ∪ E is the set of arcs (see [START_REF] Dauzère-Pérès | An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search[END_REF]). Let us recall some important definitions. The set V includes operations of jobs, a dummy node 0 that represents the start of each job, and n dummy nodes φ i associated to the completions of jobs (see e.g. [START_REF] Mati | A general approach for optimizing regular criteria in the job-shop scheduling problem[END_REF]). Nodes φ i are necessary since regular criteria depend on the completion times of jobs. The set A contains conjunctive arcs that connect two consecutive operations (i.e. in the routing) of a job, the node 0 and every first operation of each job, and the last operation of each job J i to its corresponding node φ i . The set E = ∪ m∈M E m contains disjunctive arcs where E m includes arcs between pairs of operations that may use machine m. The arc from 0 to the first operation of a job J i has a length which is equal to the release date r i of J i , and any remaining conjunctive or disjunctive arc has a length which is equal to the processing time of the operation from which it starts. Figure 1(a) shows the disjunctive graph for the example in Table 1.

J 1 M 1 (3)/M 3 (5) M 2 (3)/M 4 (4) M 1 (5)/M 3 (1) M 3 (1) J 2 M 1 (5)/M 3 (4) M 1 (4)/M 2 (5) M 4 (1) M 2 (2) J 3 M 1 (2) M 3 (3)/M 4 (4) M 2 (8) M 3 (2)/M 4 (2)
A feasible solution of the FJSP is obtained by assigning a machine to each operation (thus keeping only the relevant disjunctive arcs in E) and by fixing a direction to each disjunctive arc in E such that the induced graph does not contain any directed cycle. To effectively exploit the structure and properties of the graph in a local search approach, the graph must be 1 simplified by removing redundant arcs so that every node x has at most one predecessor and one successor on the machine that performs x. Figure 1(b) shows a feasible solution for the example in Table 1. For example, the first operation O 21 of job J 2 is assigned to machine M 3 . The sequences of jobs with their operations on machines are the following:

J 1 (O 11 ) → J 3 (O 31 ) → J 2 (O 22 ) → J 1 (O 13 ) on M 1 , J 1 (O 12 ) → J 3 (O 33 ) → J 2 (O 24 ) on M 2 , J 2 (O 21 ) → J 3 (O 32 ) → J 1 (O 14 ) on M 3 , and J 2 (O 23 ) → J 3 (O 34 ) on M 4 .
The starting time h x (called head ) of a node x is given by the length of a longest path from 0 to x. The level l x of node x is the maximum number of arcs from node 0 to x. The tail q i

x of x to a dummy node φ i is the maximum length from the completion of x to φ i if a path exists from x to φ i and -∞ otherwise. Tails are needed since regular criteria are considered in this paper. For example, looking at Figure 1(b), the head of operation O 23 is 9, its level is equal to 4 and its tail to φ 3 is equal to 2. However, the tail of operation O 23 to φ 1 is equal to -∞ since there is no path from O 23 to φ 1 . The longest path from node 0 to node φ i is called the critical path from 0 to φ i , and its length is equal to h φ i , which corresponds to the completion time of J i . Every node x belonging to a critical path is critical according to J i , and satisfies h x + p x + q i x = h φ i . Each arc (x, y) belonging to the critical path from 0 to φ i is critical if nodes x and y are assigned to the same machine and belong to the routing of different jobs. A block is a maximum sequence of critical nodes assigned to the same machine. Table 2 shows the critical paths of jobs and their corresponding blocks for the solution in Figure 1(b). Note that O 31 is critical for all jobs, O 24 is only critical for job J 2 , whereas operations O 12 , O 21 , and O 23 are not critical. The critical path of job J 2 contains two blocks.

Job Critical path Block J 1 0 → O 11 → O 31 → O 22 → O 13 → O 14 → φ 1 (O 11 → O 31 → O 22 → O 13 ) J 2 0 → O 11 → O 31 → O 32 → O 33 → O 24 → φ 2 (O 11 → O 31 ),(O 33 → O 24 ) J 3 0 → O 11 → O 31 → O 32 → O 33 → O 34 → φ 3 (O 11 → O 31 )
Table 2: Critical paths of jobs and their corresponding blocks for solution in Figure 1(b)

Neighborhood structures are used in local search to generate new solutions by performing small perturbations of a current solution. In the FJSP, a well-known perturbation proposed in Dauzère-Pérès and Paulli (1997) consists in moving (i.e. resequencing or reassigning) a critical operation in the graph of the current solution. In this paper, we consider two neighborhood structures (N 1 and N 2 ), which differ from one another in the selection of operations that are moved. Neighborhood structure N 1 focuses on all critical operations of jobs, while neighborhood structure N 2 ⊂ N 1 focuses on operations that belong to blocks of critical paths of the jobs that affect the value of the criterion (e.g. jobs that are late for lateness criteria). Our motivation in defining these two neighborhood structures is to analyze whether the concept of blocks is helpful to generate sets of non-dominated solutions for the MOFJSP. To understand the difference between N Moving an operation in both neighborhood structures N 1 and N 2 can generate directed cycles in the resulting graph, thus leading to unfeasible solutions of the FJSP. To check the feasibility of a move, the sufficient conditions proposed in [START_REF] García-León | Minimizing regular criteria in the flexible job job-shop scheduling problem[END_REF] are used. Without actually transforming the graph, they validate that a cycle is not created in the new graph. These conditions generalize previous conditions of the literature by using the concepts of heads, tails and levels of operations. In Table 3, feasible moves that are obtained by the sufficient conditions are denoted by the superscript ‡ , unfeasible moves by the superscript ⊗ , and moves that are feasible but cannot be validated by the sufficient conditions are denoted by the superscript † .

-O 22 ] ‡ [0 -O 21 ] ‡ O 11 [O 22 -O 13 ] ‡ M 3 [O 21 -O 32 ] ‡ [O 13 - * ] ⊗ [O 32 -O 14 ] ‡ [O 14 - * ] ⊗ [0 -O 11 ] ‡ O 31 [O 22 -O 13 ] ‡ [O 13 - * ] † O 22 [0 -O 11 ] ‡ [0 -O 12 ] ‡ [O 11 -O 31 ] ‡ M 2 [O 12 -O 33 ] ‡ [O 13 - * ] ‡ [O 33 -O 24 ] ‡ [O 24 - * ] ⊗ [0 -O 21 ] ‡ [0 -O 23 ] ‡ O 32 [O 14 - * ] ‡ M 4 [O 23 -O 34 ] ‡ [O 34 - * ] ⊗ [0 -O 11 ] ⊗ [0 -O 21 ] ‡ O 13 [O 11 -O 31 ] ‡ M 3 [O 21 -O 32 ] ‡ [O 31 -O 22 ] ‡ [O 32 -O 14 ] ‡ [O 14 - * ] ⊗ O 33 [0 -O 12 ] ‡ [O 24 - * ] ‡ [0 -O 23 ] ‡ [0 -O 21 ] ⊗ O 34 M 3 [O 21 -O 32 ] ⊗ [O 32 -O 14 ] ‡ [O 14 - * ] ‡ O 24 [0 -O 12 ] † [O 12 -O 33 ] ‡ O 14 [0 -O 21 ] ⊗ [O 21 -O 32 ] ‡
The best move in the neighborhood of a solution is generally obtained using the value of the criterion of the generated solution. Previous studies on the FJSP have shown that using estimation functions is more appropriate to evaluate the quality of moves, because significant computational times can be saved and much more iterations can be performed to reach better solutions. Since regular criteria are considered in this paper, we need to estimate the new completion times of nodes φ i after moving an operation (see [START_REF] Mati | A general approach for optimizing regular criteria in the job-shop scheduling problem[END_REF] for the classical job-shop scheduling problem). To do so, we use the estimation function proposed in [START_REF] García-León | Minimizing regular criteria in the flexible job job-shop scheduling problem[END_REF] by considering forward and backward moves. A forward (resp. backward) move of a node x, currently sequenced between nodes p and q, between two nodes u and v is defined when l x ≤ l u (resp. l x > l u ). The idea of the estimation function consists in considering the newly created paths after the move together with a suitable subset of paths that are available in the current and new graphs. This is performed by focusing not only on the operation x, but also on the operations involved in the move p, q, u and v, as well as on operations w for which l w = l x (see [START_REF] Mati | A general approach for optimizing regular criteria in the job-shop scheduling problem[END_REF]). In addition to its efficiency in estimating the value of the criterion, the estimation function is fast and guarantees whenever possible the lower bound property, i.e. the quality of a move is not overestimated (García-León et al. ( 2015)).

Evaluating sets of non-dominated solutions

An effective approach for solving the MOFJSP with regular criteria is the Pareto approach, which aims at finding a set of non-dominated solutions S, called the Pareto front. In this section, let us briefly recall the main notions related to Pareto optimization and introduce the measures to evaluate the quality of the set S.

Dominance of Pareto

Let C be the set of criteria to minimize in Pareto manner and f c (s) be the value of the criterion c of a feasible solution s. Solution s 1 dominates solution s 2 if the following two conditions are true: 1. Solution s 1 is not worse than solution s 2 for all criteria, i.e. ∀c ∈ C, f c (s 1 ) ≤ f c (s 2 ), 2. Solution s 1 is strictly better than s 2 for at least one criterion, i.e. ∃c ∈ C such that f c (s 1 ) < f c (s 2 ).

Accordingly, any two solutions of S are non-dominated with respect to each other, and any solution not in S is dominated by at least one solution in S.

Quality measures of the set of non-dominated solutions

A good set of non-dominated solutions should satisfy two goals: Convergence and diversity. Convergence ensures that the set of solutions is as close as possible to the optimal Pareto front, and diversity is related to the sparsity of solutions to ensure that the decision maker has multiple representative trade-off solutions among conflicting objectives. [START_REF] Zitzler | Performance assessment of multiobjective optimizers: An analysis and review[END_REF] state that it is difficult to define appropriate measures to approximate the optimal Pareto front when analyzing both goals, and that the discrepancies increase when considering stochastic approaches.

For the MOFJSP, most previous studies aim at improving the convergence and increasing the number of non-dominated solutions without considering diversity (see e.g. [START_REF] Jia | Path-relinking tabu search for the multi-objective flexible job shop scheduling problem[END_REF]). In this paper, we consider both the convergence and diversity to better evaluate the quality of sets of non-dominated solutions. Three measures are selected to evaluate the convergence: (1) The elite solutions, (2) The mean ideal distance and (3) The hypervolume. Elite solutions correspond to the best values of the criteria. The Mean Ideal Distance (M ID) is the average distance between non-dominated solutions and the origin point [START_REF] Singh | Particle swarm optimization algorithm embedded with maximum deviation theory for solving multi-objective flexible job shop scheduling problem[END_REF]), i.e. the point (0, 0) if two criteria are analyzed. M ID is calculated using (1), where |S| is the number of non-dominated solutions.

M ID = s∈S c∈C f 2 c (s) |S| (1)
The HyperVolume (HV ) is the volume covered by the solutions of the front. When all criteria are minimized, a reference point having as coordinates the worst values of the criteria is used to limit this coverage [START_REF] Zitzler | The hypervolume indicator revisited: On the design of pareto-compliant indicators via weighted integration[END_REF]). Thus, HV = s∈S V s , where V s is the hypercube of s with respect to the reference point. Since the hypervolume can lead to large values,( 2) is used to calculate HV, which corresponds to the ratio of the total volume V T covered by the reference point and the origin point.

HV = s∈S V s |S| × V T (2) 
The maximum spread (D) and spacing (SP ) are selected to evaluate the diversity. The metric D is the longest diagonal of the hyperbox formed by the extreme values of the criteria in S (Zitzler (1999)), and is calculated using (3), where f max c and f min c are the maximum and minimum values of criterion c for all solutions in S:

D = c∈C (f max c -f min c ) 2
(3)

The metric SP is the average distance between consecutive solutions in S [START_REF] Schott | Fault tolerant design using single and multicriteria genetic algorithm optimization[END_REF]). Let di be the distance between solution s i and its nearest solution, i.e. di = min sp∈S;p =i c∈C |f c (s i ) -f c (s p )|, and let d be the average of these distances for all solutions in S. Spacing is calculated using (4).

SP = 1 |S| |S| i=1 ( di -d) 2 (4)
To ensure the quality of S, the spacing and mean ideal distance must be minimized, the maximum spread and hypervolume must be maximized and elite solutions must be as close as possible to the optimal values of the criteria.

Solving the MOFJSP

The proposed Pareto approach for the MOFJSP with regular criteria aims at finding a set of non-dominated solutions S whose convergence and diversity are optimized. Let us first describe how S is managed, then present the framework of the approach and the initial solution, and finally propose four search strategies.

Controlling the set of non-dominated solutions

The control of the set of non-dominated solutions consists in managing solutions entering and leaving S each time a new solution s is obtained by the search process. A schedule s ∈ S is called a reference schedule for criterion c if f c (s) is the best possible value for criterion c. The reference schedule for c is denoted by s ref c , and the subset of S with the reference schedules is denoted by S ref .

To efficiently control S, we propose a fast hierarchical test in three steps to avoid performing too many evaluations to check whether s should be added to S. The test is illustrated in Figure 2. It first evaluates if the value of any criterion c of s is strictly lower than the best value for criterion c. If it is the case, then s becomes the reference schedule for criterion c, and s is added to S ref and S, maybe replacing other solutions. Otherwise, the test validates the dominance between s i ∈ S and s starting with the reference schedules. If no dominance is found, then s can be added to S, maybe replacing other solutions. Hence, the step Update S consists in adding s and removing the dominated solutions. Note that multiple solutions are not considered, i.e. if the values of all the criteria of s and of a solution s i ∈ S are equal.

Framework of the approach

The approach consists of two alternating phases, namely an improving phase and a diversification phase. The improving phase is a steepest descent that performs iterative improvements until a local optimum is reached for a given criterion or all criteria. At each iteration, a set of neighbor solutions is generated using the neighborhood structures, the feasibility test and the move evaluation described in Section 3. The diversification phase starts from the local optimum of the improving phase and performs at most b iterations. During this phase, a critical operation is randomly selected and a move is randomly chosen. If the selected move is feasible, the heuristic advances to the next iteration, otherwise the above process is repeated until a feasible After performing a move in both phases, all local values of the criteria are updated, the hierarchical test to determine whether s is added to S is performed, and S is updated if s is added as described in Figure 2. Additionally, the best values of the criteria are updated.

To deal with multiple criteria for the MOFJSP, we propose four versions of the above approach that differ mainly in the way the criterion to optimize is selected, the way the approach is alternating between the improving and diversification phases, and the way the solution is selected when each phase is resumed.

Initial solution

The initial solution is obtained using a constructive heuristic that selects an operation at each step according to an established order of the jobs. The main idea of the heuristic is to complete the selected operation as soon as possible to try to minimize the completion times of jobs. The jobs are ordered by non-decreasing weights when at least one criterion considers weights. The ties are broken using the due dates, and then the average processing times

n i j=1 1 |R j |
a∈R j p j where n i is the number of operations of job J i . For a given operation x and for each eligible machine M k ∈ R x , the time t k at which the machine completes its previous operation v on the sequence (if it exists) is calculated. Operation x is then assigned to the machine that completes x as soon as possible, i.e. the machine M k ∈ R x that minimizes t k + p x . The graph is updated by adding arc (v, x) and the heuristic continues until all operations have been selected.

Search strategy T 1

The idea of this strategy is to concentrate on optimizing a given criterion by performing an improving phase followed by a diversification phase. More precisely, a random criterion c is selected in C, and the improving phase performs iterative improvements of c until reaching a local optimum for this criterion. The diversification phase starts from this local optimum and, if the value of the criterion c is improved during this phase, the search returns to the improving phase with the same criterion c. However, if the maximum number of iterations b is reached, the search sets all local values of the criteria to ∞, randomly selects a new criterion to minimize from the set C -{c} and returns to the improving phase.

Search strategy T 2

This strategy gives more attention to the improving phase since most of the promising solutions are obtained in this phase. The strategy intensifies the search in the improving phase until reaching the local optimum of all criteria. To apply this strategy, the concept of forbidden criterion or criteria is introduced. This concept is defined and applied, for a given criterion c, only during the improving step when the local optimum of c is reached. More precisely, a criterion becomes forbidden when, in the improving phase, it is selected to create a move and it cannot generate an improving move. A criterion is authorized to be selected as soon as its local value is improved or in the finalization of the diversification phase.

More precisely, Strategy T 2 starts by setting the set of forbidden criteria C f or to ∅ to specify that initially all criteria are authorized. Then, at each iteration of the improving phase, a criterion c is randomly selected from the set C -C f or of authorized criteria. The search optimizes c whenever it is possible to generate an improving move, and any forbidden criterion becomes authorized if its local value is improved. However, if an improving move is not possible with c, this criterion becomes forbidden and the search continues with a criterion randomly selected in the set of authorized criteria. If all criteria are forbidden, i.e. C -C f or = ∅, the search goes to the diversification phase.

An important problem with the continuity of the search can be caused by criterion T max since, if it is equal to zero, criteria T i and U i will also be equal to zero, and it is not possible to create a move. In this case, the search removes all forbidden criteria from C f or and the selected criterion c is either C max or C i if the latter criterion belongs to C. The diversification phase starts from the solution generated by the neighborhood structure of the last forbidden criterion. If a local value of any criterion is improved in this phase, the criterion becomes authorized, and the search returns to the improving phase using the neighborhood of this criterion. In case of several improved criteria, a random choice is performed. If it is not possible to improve any criterion during b iterations, all criteria are authorized, all local values of the criteria are set to ∞ and the search goes to the improving phase with a random criterion.

Search strategy T 3

This strategy is a variant of T 2 , the only difference is in the improving phase in which it is possible that criterion c is changed in each iteration even if the last iteration was an improving move for c. This means that, rather than continuing with a single criterion until reaching its local optimum, T 3 can modify the optimized criterion by using a random selection from the set of non-forbidden criteria. More precisely, in each iteration, a random criterion c is selected to create a move from the set C -C f or . If this move improves the criterion, the set of forbidden criteria C f or is emptied. If it is not possible to create an improving move using c, this criterion becomes forbidden and it is added to C f or . If it is not possible to create an improving move with all criteria, the search goes to the diversification phase considering the neighborhood of the last forbidden criterion and the same guidelines than Strategy T 2 .

Search strategy T 4

Strategy T 4 operates as Strategy T 3 but uses the concept of global value of the criterion c. The only difference is in the improving phase in which, if the global value of a criterion c = c is improved, this criterion becomes the optimized criterion in the next iteration even if the search with the current criterion was improving. The motivation is that it is more suitable to shift the search to optimize c with the aim of finding new reference schedules for c , since these schedules can be lost if the search process does not focus on c at this iteration. If several global values are improved, a random choice is performed. Further, in the diversification phase, the search can return to the improving phase with a criterion that improves its global value.

Computational results

This section analyzes the efficiency of the general approach proposed in the previous section, which was developed in Java. In the remainder of the paper, this approach is denoted GMD. The experiments were conducted on a PC with 3.40 GHz and 8GB RAM. The computational time for each search strategy and each neighborhood structure was set to 300 seconds. Hence, the computational time for an instance is 2,400 seconds for a set of criteria to optimize in Pareto manner, i.e. 300 seconds multiplied by four search strategies and two neighborhood structures. Three sets of criteria to optimize are considered: C A , C B and C C . C A includes three criteria: C max , T max and T i . C B adds criterion U i to the criteria in C A , and C C adds criterion C i to the criteria in C B . The analysis was conducted in six phases that are described in the following sections. Sections 6.1 to 6.5 use the problem instances from [START_REF] Brandimarte | Routing and scheduling in a flexible job shop by tabu search[END_REF] by setting the due date of each job J i to 1.3
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where n i is the number of operations of job J i . Section 6.1 analyzes the Net Front Contribution (NFC) and the Weak OutPerformance (WOP) of the two neighborhood structures to check if one is dominating the other. Then, the same analysis is performed for the search strategies. The impact of adding criteria in the set of criteria to optimize on the number of non-dominated solutions is studied in Section 6.2. Elite solutions for five regular criteria are analyzed in Section 6.3. The diversity is studied in Section 6.4. The analysis of the hypervolume and the mean ideal distance is presented in Section 6.5. Finally, Section 6.6 compares our approach to previous approaches to optimize the makespan and the total tardiness.

Analysis of the Net Front Contribution (NFC) and Weak OutPerformance (WOP)

The Net Front Contribution (NFC) is the percentage of solutions of the reference front that are included in a specified set of non-dominated solutions [START_REF] Deb | Multi-objective optimization using evolutionary algorithms[END_REF]). For example, if the NFC of Strategy T 1 is 25%, then 25% of the solutions of the reference front belong to T 1 . The Weak Out-Performance metric (WOP x,o ) evaluates the dominance between two sets of non-dominated solutions s x and s o (see [START_REF] Vilcot | A tabu search algorithm for solving a multicriteria flexible job shop scheduling problem[END_REF]). The set s x weakly outperforms s o if no solution in s x is dominated by a solution in s o and at least one solution in s x dominates a solution in s o . Hence, WOP x,o takes value 1 if s x weakly outperforms s o and 0 otherwise. To further improve the analysis of dominance between s x and s o , we extend the numerical scale to three values -1, 0 and 1: WOP x,o is equal to 1 (resp. -1) if s x (resp. s o ) weakly outperforms s o (resp. s x ) and 0 otherwise. Table 4 presents, over ten runs of the algorithm, the average NFC and the average percentage for WOP N 1 ,N 2 (WOP) when it is equal to 1 or -1 for each set of criteria and for each neighborhood structure. As an example, mk01 has six machines (m), 10 jobs (n) and a flexibility level (f lex) of 2.09, i.e. one operation has on average 2.09 eligible machines. For C A , the average NFC for neighborhood N 1 is 50% and 53.3% for N 2 . N 1 weakly outperforms N 2 (1 in column WOP) in 33.3% of cases and N 2 weakly outperforms N 1 (-1 in column WOP) in 60% of cases. Additionally, the neighborhood structure with the average largest NFC and WOP are written in bold. Table 4 shows that there is not a dominant neighborhood structure, even though N 2 is slightly better, which confirms the benefit of using the concept of blocks to solve the flexible job-shop scheduling problem. Using the NFC metric, neighborhood structure N 2 generates larger contributions for 17 instances over 30 instances: mk01, mk03, mk07, mk08 and mk10 for C A ; mk02, mk03, mk04, mk05, mk08 and mk09 for C B , and mk03, mk04, mk05, mk06, mk07 and mk08 for C C . N 1 generates larger contributions for the remaining 13 instances. Concerning the metric WOP, N 2 weakly outperforms N 1 in 11 instances: mk01, mk03, mk04, mk07 and mk08 for C A ; mk02, mk03 and mk08 for C B and mk03, mk06 and mk08 for C C , and N 1 weakly outperforms N 2 in 13 instances (4 for C A , 5 for C B and 4 for C C ). Additionally, no neighborhood structure weakly outperforms the other in five instances: mk04 and mk05 for C B and C C , and mk07 for C C .

C A C B C C Inst Size f lex NFC(%) WOP(%) NFC(%) WOP(%) NFC(%) WOP(%) (m × n) N 1 N 2 1 -1 N 1 N 2 1 -1 N 1 N 2 1 -1 mk01 6 ×
Table 5 helps us to analyze the contribution of each search strategy to the reference front by considering only neighborhood structure N 2 for each set of criteria. Note that the values in this table are average values over ten runs of the algorithm. The results of Table 5 reveals that the contribution of T 1 is equal to zero except for mk09 with C A , mk02 with C B , and mk06 for C A and C B . When using T 2 , the entire solutions of the reference front is obtained in 5 instances for C A (mk01, mk02, mk03, mk04 and mk08 ) and 2 instances for C C (mk02 and mk06 ). However, the NFC of T 2 is equal to zero in 11 instances (3 for C A , 3 for C B and 5 for C C ). Besides, T 2 has the largest number of non-dominated solutions in 2 instances (mk05 and mk09 for C A ), and 2 instances (mk03 and mk08 ) for C B . The contribution of T 2 for the C C is really low, which implies that this search strategy is not adequate for minimizing C i . Further, T 3 and T 4 seem to be the best search strategies and their results are comparable with a slight advantage to the former for the three sets of criteria. Indeed, T 3 generates the highest contribution in 9 instances (1 for C A , 4 for C B , and 4 for C C ) whereas T 4 obtains the highest contribution in 7 instances (3 for C B and 4 for C C ). Both T 3 and T 4 reach all the solutions of the reference front in 6 instances (4 for C A and 2 for C C ). The largest number of non-dominated solutions is obtained by T 3 or T 4 in 73.33% of instances.

Inst C A C B C C T 1 T 2 T 3 T 4 T 1 T 2 T 3 T 4 T 1 T 2 T 3 T 4 mk01 0 
To extend the analysis of the four search strategies, Table 6 shows the WOP by considering again neighborhood structure N 2 . It can be seen from WOP 1-2 (column 1-2), WOP 1-3 (column 1-3) and WOP 1-4 (column 1-4) that T 1 is dominated by the other search strategies except for instance mk06 for C A . Strategy T 2 dominates Strategies T 3 and T 4 in only two instances (mk03 and mk09 ) for C A , although T 2 is better for C A regarding the metric NFC. The comparison between T 3 and T 4 does not show any obvious dominance since WOP 3-4 is equal to zero in the largest number of instances (90% of instances for C A , 50% of instances for C B , and 70% of instances for C C ). T 3 is better than T 4 in 4 instances and worst in 5 instances.

Inst CA CB CC 1 -2 1 -3 1 -4 2 -3 2 -4 3 -4 1 -2 1 -3 1 -4 2 -3 2 -4 3 -4 1 -2 1 -3 1 -4 2 -3 2 -4 3 -4 mk01 -1 -1 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 mk02 -1 -1 -1 0 0 0 1 0 0 -1 -1 0 -1 -1 -1 0 0 0 mk03 -1 -1 -1 1 1 0 -1 -1 -1 -1 0 1 -1 -1 -1 -1 -1 0 mk04 -1 -1 -1 0 0 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 mk05 -1 0 0 -1 1 1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 mk06 1 1 1 0 0 0 -1 -1 -1 -1 -1 0 -1 -1 -1 0 0 0 mk07 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 mk08 -1 -1 -1 0 0 0 -1 -1 -1 0 -1 1 -1 -1 -1 -1 -1 -1 mk09 -1 -1 -1 1 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 mk10 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Table 6: Analysis of WOP for N 2

It can be concluded from the analysis in this section that Strategy T 1 is not suitable to optimize the three sets of criteria, T 2 is effective for solving C A regarding the NFC but does not appear interesting when considering the WOP, and Strategies T 3 and T 4 are the most efficient when considering both NFC and WOP, in particular for sets C B and C C .

Analysis of the number of non-dominated solutions

Table 7 is used to analyze the number of non-dominated solutions considering three outputs: The minimum (M in), average (Av), and maximum (M ax) numbers of non-dominated solutions when running ten times each set of criteria. For example, after executing the approach ten times with set C A for instance mk01, the minimum number of non-dominated solutions was 1, the maximum was 2 and on average 1.3 solutions were obtained. In an ideal situation, it is desired that the three outputs are equal. The addition of criteria and the flexibility level affects the number of non-dominated solutions, but there is not a clear behavior in function of the flexibility level since different trends can be identified. More precisely, in instances with a large flexibility level (f lex > 3), one or two solutions solve the problem, i.e. in instance mk06 (flex = 3.27) only one solution is generated for the three sets of criteria. In instance mk02 (flex = 4.10), no more than two non-dominated solutions for the three sets of criteria were obtained, and this is also the case for instance mk03 when optimizing sets C A and C B . In instances with a small flexibility level (f lex < 2), the average number of non-dominated solutions increases when adding criteria, such as the case of instances mk04 and mk05. However, in instance mk08 (flex = 1.43), this average number increases from set C A to set C B (1.3 to 16.8) and decreases when C i is added (6.0). The same observation can be drawn for the maximum number of non-dominated solutions. The addition of criterion U i to C A increases the number of non-dominated solutions, and adding C i to C B increases the number of non-dominated solutions in 50% of instances, i.e. instances mk01, mk03, mk04, mk05 and mk09.

Inst Size flex C A C B C C m × n M in Av M ax M in Av M ax M in Av M ax mk01 6 × 10 2.

Analysis of elite solutions

In the previous analysis of the number of non-dominated solutions, the values of the criteria were not considered. Now, let us evaluate elite solutions to determine which set of criteria effectively leads to improving the convergence of the front. The first criterion considered is the makespan since it is the most studied in the literature and its quality can strongly explain the efficiency of our approach. Then the other criteria are analyzed. Only neighborhood structure N 2 is considered in the analysis.

Elite solutions for the makespan

The results for the makespan for each set of criteria are illustrated in Table 8, which details the minimum value M in, the average value Av and the percentage of error P er(%) generated by the average value with respect to the best known value BKV [START_REF] González | Scatter search with path relinking for the flexible job shop scheduling problem[END_REF]) after running ten times our approach. The value of the makespan is underlined for instances where the best known value is obtained, and the minimum value is written in bold for the remaining instances. Minimizing the makespan performs better when the approach optimizes Set C B since, in 6 instances, the best known value is obtained (mk01, mk03, mk04, mk07, mk08 and mk09 ). Figure 3 shows the sequences of operations on machines for instance mk01 when the makespan is minimized. Besides, Set C B has the best performance compared to Sets C A and C C in instances mk05 with an error of 1.6% and mk10 in spite of the large error (9.9%). In the instances mk02 and mk06, the best known value is not obtained for any set and the error is quite large, e.g. 11.5% and 21.9% with Set C A . As illustrated in Section 6.2, few solutions are determined for these two instances that have large flexibility levels. This means that, to improve the convergence of the makespan, new strategies might be needed, in particular for instances with large flexibility levels. 

Inst BKV C A C B C C M

Elite solutions for maximum tardiness and total tardiness

The performances of the approach with criteria T max and T i are shown in Table 9 andTable 10. The meaning of columns is similar to Table 8, except for Column P er(%) that corresponds to the percentage of error generated by the average and the minimum value. This is due to the fact that there is a lack of results in the literature on instances from [START_REF] Brandimarte | Routing and scheduling in a flexible job shop by tabu search[END_REF]. However, P er(%) gives insights on the homogeneity of our approach in generating good solutions in all ten runs. It can be observed from Table 9 that optimizing Set C B provides the best results for T max in all instances. This means that the addition of U i improves the convergence not only for the makespan but also for T max . Besides, including C i does not affect the quality of T max , since the minimum value is obtained in 7 instances. For the remaining 3 instances, the obtained T max is very close to the best value in instance mk05 (99 for set C C against 98 for set C B ), and the only bad result is obtained for instance mk10 where the gap is really large (30 for C B and 50 for C C ). This table also shows that the approach is quite stable for T max as the average value is always close to the minimum value for the three sets C A , C B and C C . For T i , optimizing Set C B provides much better results than when optimizing the two other sets, since not only the best solutions are always obtained for C B , but there is also a large gap between the value obtained with C B and the ones obtained with the two other sets (e.g. in instance mk08 where 2932 is obtained with C B whereas 4786 and 3387 are obtained with C A and C C , respectively). Contrary to the case with T max , the value of P er(%) is sometimes large such as in instance mk10 for the three sets. This can be explained by the fact that the criterion T i is more difficult to solve than T max , which implies that additional strategies might be needed to make the approach more stable for T i .

Inst C A C B C C M
Inst C B C C M
6.3.3. Elite solutions for total number of tardy jobs and total completion times U i is one of the most difficult criteria to minimize, since it is nonlinear. This is because U i is equal to 1 as soon as the completion time of job J i is strictly larger than its due date. The results obtained wih sets C B and C C are illustrated in Table 11. Note that C B still leads to the best results for all instances. Further, adding criterion C i to C C has a small effect on the value of U i , in particular for instances with 15 and 20 jobs, i.e. mk03, mk04, mk08, mk09 and mk10. P er(%) is sometimes large for C B , which can be explained by the small values of U i such as in in which M in = 5 and Av = 5.8 leading to P er = 15.0. For criterion C i , the only observation that can be drawn is that P er(%) is quite small, which confirms the homogeneity of our approach for this criterion. 

Inst U i C i C B C C C C M

Analysis of the diversity

This section aims at validating that the front of Pareto is diverse in solutions, so that the decision maker can choose among representative solutions in different regions of the front. The evaluation of the diversity is only presented for set C B , because this is the set of criteria for which our approach found the best results. Table 12 includes the minimum value (M in), the average value (Av), the maximum value (M ax) and the standard deviation (σ) for each instance. Column AvNDS recalls the average number of nondominated solutions of Table 7. For example, for instance mk01, on average 4.8 non-dominated solutions are generated (Column AvNDS ) and, when considering the maximum spread D, the minimum (resp. maximum) distance between extreme solutions is 7.9 (resp. 10.2), the average distance is 9.4 and σ = 1.0. Besides, for the average distance between nearest solutions (spacing SP ), the minimum (resp. maximum) distance is 1.2 (resp. 2.6) with an average of 2.0 and σ = 0.6. If an ideal situation is taken as reference, the tendency of σ is to be equal to zero. When analyzing the spacing SP , the ideal performance corresponds to small values of SP and σ. Looking at Table 12, it is possible to infer that, in the instances with high flexibility mk02, mk03 and mk06 (i.e. f lex > 3), the spacing values are very close to zero, which is mainly explained by the results of Table 7 in which only there are very few solutions in the set of non-dominated solutions. Further, it is possible to infer two other trends. The first trend is that spacing seems to increase with the size of the problem, in particular for instances mk07, mk09 and mk10 with 20 jobs. The second trend is that the number of non-dominated solutions does not affect the spacing since, even though there are large values for AvNDS in instances mk04, mk05 and mk08, the spacing is small (3.8, 5.3 and 0.5). Moreover, for instance mk04, AvNDS = 35.0 and the average spacing is 6.3 while, in instance mk10 with a lower number of non-dominated solutions (AvNDS = 23.8), the average spacing is 23.7.

Inst

Concerning the maximum spread D, an efficient value corresponds to a large average and a low σ. When looking at Table 12, it is possible to infer that the maximum spread is large for instances with medium flexibility (2 < f lex < 3) such as instances mk07, mk09 and mk10. However, the size of the problem, especially the number of jobs, seems to not influence the maximum spread as the values (i.e. M in, Av, M ax) obtained in instance mk05 with 15 jobs are larger than the corresponding values in instances mk07, mk08 and mk10. It is also possible to infer, by observing for example instances mk07 and mk10, that there is no trend between the number of non-dominated solutions and the maximum spread. These observed trends of diversity can be considered as additional arguments to confirm the performance of our approach.

Analysis of HyperVolume (HV ) and Mean Ideal Distance (M ID)

In this section, we expand the analysis for C B using the HV and M ID measures, which must be maximized and minimized, respectively. Table 13 gives the minimum value (M in), the average value (Av) and the maximum value (M ax) of these measures for each instance after running ten times our approach. The value P er(%) = (Av -M in)/M in for M ID and P er(%) = (M ax-Av)/M ax for HV . To calculate HV , the coordinates of the reference point is fixed to 10,000 for C max and T max , to 100,000 for T i and to two times the number of jobs for U i . For example, the coordinates of the reference point are (10, 000; 10, 000; 100, 000; 20) for instances with 10 jobs. To improve the scale of distance when calculating M ID, the criterion T i of each solution has been divided by the number of jobs.

It is very difficult to assess the quality of our approach due to the lack of previous values for HV and M ID for the regular criteria studied in this paper. However, we can observe that the values of HV tend to 100% for instances mk02 and mk06 with few solutions and large flexibility. Our approach is stable since σ is closer to zero for all instances and P er(%) is lower than 3.4%. The analysis of M ID also reveals uniformity in the results, which is explained by small values of σ and P er(%) except for two instances: mk08 (σ = 6.27) and mk09 (σ = 5.35), which could be explained by the number of jobs.

Comparison with previous approaches

The performance of our approach is compared against the Multi-Objective Differential Evolution algorithm (M ODE) proposed in [START_REF] Wisittipanich | A pareto-archived differential evolution algorithm for multi-objective flexible job shop scheduling problems[END_REF] to minimize the makespan and the total tardiness. In M ODE, the Pareto front was obtained by evaluating five search strategies (MODE-ms1, MODE-ms2, MODE-ms3, MODE-ms4 and MODE-ms5) and the MOPSO algorithm proposed in [START_REF] Nguyen | Movement strategies for multiobjective particle swarm optimization[END_REF]. and three problem instances from Brandimarte (1993) (mk04, mk07 and mk09 ). The due dates of jobs were determined using the expression provided in [START_REF] He | A multiple-pass heuristic rule for job shop scheduling with due dates[END_REF]. Figure 4 shows the non-dominated solutions obtained by N 1 and N 2 for instance dpp02a with set C A .

2,200 2,300 2,400 2,500 1,400 1,500 1,700 1,800 1,900 To compare the results of GM D with M ODE, the Weak OutPerformance metric (WOP x,o ) and the set coverage metric (SCM x,o ) are analyzed. WOP x,o evaluates the dominance between two sets of non-dominated solutions s x and s o . SCM x,o is the ratio of solutions of s o weakly dominated by solutions of s x [START_REF] Zitzler | Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications[END_REF].

C max T i n T max N 1 N 2
Table 14 provides for both GM D and M ODE the number of non-dominated solutions in column N DS, the Pareto set in column Solutions, the set coverage metric in column SCM 1 and SCM 2 , and the Weak OutPerformance metric in column W OP . For example in instance dpp09a, our approach finds 12 non-dominated solutions when M ODE finds 14 non-dominated solutions, and 71% (10 of 14) of the solutions of M ODE are weakly by at least one solution of GM D, and W OP = 0 means that there are weakly dominated solutions in both sets of non-dominated solutions. Table 14 also shows that the performance of GM D and M ODE are comparable. Our approach is better for three instances (dpp02a, dpp11a and dpp16a, since W OP and SCM 1 are equal to 1 and SCM 2 is equal to 0), and M ODE is better for three instances (dpp18a, mk07 and mk09). 

Conclusions

In this paper, we proposed a general local search approach to determine Pareto fronts for the Multi-Objective Flexible Job-shop Scheduling Problem (MOFJSP) for any combination of regular scheduling criteria. Regular criteria correspond to various customer service objectives, which are important in a competitive environment. The local search approach is based on two neighborhood structures (N 1 and N 2 ), that consist in a critical operation in the conjunctive graph, sufficient conditions to determine the feasibility of a move without transforming the graph, and an estimation function to select the best move. A hierarchical test is proposed to quickly update the set of non-dominated solutions during the search, and four search strategies (T 1 , T 2 , T 3 and T 4 ) have been proposed.

Three sets of criteria to optimize are considered in our experiments. The experiments showed that N 2 is the dominant neighborhood structure and generates the largest number of non-dominated solutions. Besides, a combination of Strategies T 3 and T 4 is sufficient to solve the MOFJSP with all sets of criteria.

In future research, we would like to study how our approach can be improved for specific regular criteria. New dedicated properties could be used to accelerate the search or avoid being stuck in local optima for criteria such as T i or U i , that are more complex to handle. Another research avenue is the use of sophisticated metaheuristics that could help to better diversify the search process to reach promising regions. We also intend to work on extending our approach to search for more diverse solutions by better considering different types of criteria.
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 1 Figure 1: Disjunctive graph model and a feasible solution for the example in Table 1

  1 and N 2 , let us consider the minimization of C i in the solution of Figure 1(b). According to the critical paths and blocks of
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  Table 2, neighborhood structure N 1 considers the critical operations O 11 , O 13 , O 14 , O 22 , O 24 , O 31 , O 32 , O 33 and O 34 , whereas neighborhood structure N 2 "only" focuses on O 11 , O 13 , O 22 ,O 24 , O 31 and O 33 . Table 3 gives the possible resequencing and reassignment moves for each critical operation in both neighborhood structures. For a given critical operation O ij , the notation [a -b] means that O ij is moved between operations a and b. If a = 0 (resp. b = * ), O ij is moved in the first (resp. last) position of the sequence of the machine on which it is resequenced or reassigned. For example, O 11 can be resequenced between O 22 and O 13 , and reassigned on machine M 3 between O 32 and O 14 .
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		10 2.09	50.0	53.3	33.3	60.0	85.2	20.8	26.7	0.0	71.0	29.6	6.7	0.0
	mk02	6 × 10	4.1	66.7	56.7	33.3	26.7	53.3	80.0	13.3	40.0	67.8	33.3	53.3	26.7
	mk03	8 × 15 3.01	43.3	63.3	40.0	53.3	39.2	60.8	6.7	53.3	32.4	67.6	20.0	53.3
	mk04	8 × 15 1.91 55.7	44.3	33.3	53.3	47.6	52.9	0.0	0.0	31.8	68.2	0.0	0.0
	mk05	4 × 15 1.71 61.8	38.2	66.7	26.7	48.4	51.8	0.0	0.0	49.5	50.5	0.0	0.0
	mk06	15 × 10 3.27 93.3	46.7	53.3	6.7	100.0	93.3	6.7	0.0	40.0	60.0	33.3	53.3
	mk07	6 × 10 2.83	41.6	58.4	26.7	53.3	60.9	39.3	6.7	0.0	47.7	52.3	0.0	0.0
	mk08	5 × 20 1.43	46.7	53.3	46.7	53.3	6.5	93.5	0.0	80.0	8.3	91.7	0.0	80.0
	mk09	10 × 20 2.53 63.9	36.1	46.7	26.7	49.6	52.2	20.0	0.0	64.2	35.8	20.0	0.0
	mk10	15 × 20 2.98	46.6	53.4	40.0	40.0	53.0	47.4	6.7	0.0	55.2	44.8	13.3	0.0

Table 5 :

 5 Analysis of NFC for the different strategies and N 2

Table 7 :

 7 Analysis of the number of non-dominated solutions

	09	1	1.3	2	4	4.8	5	10 15.8	28
	mk02 6 × 10 4.10	1	1.5	2	1	1.5	2	1	1.5	2
	mk03 8 × 15 3.01	1	1.3	2	1	1.8	2	2	7.3	17
	mk04 8 × 15 1.91	1	2.3	4	22 35.0	51	30 36.0	41
	mk05 4 × 15 1.71	4	6.8	11	17 26.0	30	27 30.3	32
	mk06 15 × 10 3.27	1	1	1	1	1	1	1	1	1
	mk07 5 × 20 2.83	4	6.0	10	20 27.8	32	12 20.8	26
	mk08 10 × 20 1.43	1	1.3	2	2	16.8	27	3	6.0	9
	mk09 10 × 20 2.53	1	2.8	4	19 33.0	51	22 27.8	38
	mk10 15 × 20 2.98	4	6.8	10	16 23.8	30	14 17.0	24

Table 8 :

 8 Elite solutions for makespan

			in Av	P er(%) M in Av	P er(%) M in Av	P er(%)
	mk01	40	42	42.0	5.0	40	40.0	0.0	40	40.0	0.0
	mk02	26	28	29.0	11.5	29	30.0	15.4	28	29.0	11.5
	mk03	204	204 204.8	0.4	204 204.0	0.0	204 204.0	0.0
	mk04	60	67	68.8	14.6	60	61.5	2.5	62	63.8	6.3
	mk05	172	176 176.3	2.5	174 174.8	1.6	175 175.5	2.0
	mk06	57	67	69.5	21.9	69	71.3	25	70	70.5	23.7
	mk07	139	144 146.3	5.3	142 143.0	2.9	148 148.3	6.7
	mk08	523	523 523.0	0.0	523 523.0	0.0	523 523.0	0.0
	mk09	307	320 327.5	6.7	307 308.0	0.3	307 309.3	0.7
	mk10	196	221 223.0	13.8	216 216.5	10.5	228 231.3	18.0

Table 9 :

 9 Elite solutions for T max

Table 10 :

 10 Elite solutions for T i

		in	Av	P er(%) M in	Av	P er(%) M in	Av	P er(%)
	mk01	39	44.8	14.7	18	18.2	1.1	19	20.5	7.9
	mk02	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
	mk03 523 576.3	10.2	275	278.0	1.1	321 325.8	1.5
	mk04 170 198.0	16.5	108	112.4	4.1	125 130.5	4.4
	mk05 1102 1179.3	7.0	788	811.2	2.9	854 916.0	7.3
	mk06	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
	mk07 895 995.3	11.2	808	840.0	4.0	845 887.5	5.0
	mk08 4786 4832.0	1.0	2932 3102.4	5.8	3387 3496.5	3.2
	mk09 2060 2292.5	11.3	1048 1144.0	9.2	1270 1321.8	4.1
	mk10 496 566.8	14.3	340	395.2	16.2	482 548.0	13.7

Table 11 :

 11 Elite solutions for U i and C i

Table 12 :

 12 Results for maximum spread D and spacing SP for C B

		AvNDS		D				SP		
			Min	Av	Max	σ	Min Av Max	σ
	mk01	4.8	7.9	9.4	10.2	1.0	1.2	2.0	2.6	0.6
	mk02	1.5	0.0	1.3	3.2	1.6	0.0	0.1	0.5	0.2
	mk03	1.8	0.0	17.6 30.7 13.5	0.0	0.3	0.8	0.3
	mk04	35.0	74.7 79.9 84.2	4.3	3.8	6.3 11.4 3.5
	mk05	26.0	293.9 341.6 396.7 43.7	5.3	8.7 10.0 2.3
	mk06	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	mk07	27.8	154.1 243.9 311.1 65.9	8.3 13.1 16.0 3.6
	mk08	16.8	98.1 482.5 728.9 289.0 0.5 18.0 29.8 12.4
	mk09	33.0	410.5 567.4 710.8 136.1 13.7 18.5 21.7 3.4
	mk10	23.8	251.1 321.6 384.1 60.6 19.3 23.7 32.2 5.9

Table 13 :

 13 Analysis of HV and M ID for C B Note that the solutions of the Pareto front are mainly obtained from those determined by MODE-ms1, MODE-ms2, MODE-ms3 and MODE-ms5. The comparison is based on a set of eight problem instances used in Wisittipanich and Kachitvichyanukul (2014), which includes five problem instances from Dauzère-Pérès et al. (1998) (dpp02a, dpp09a, dpp11a, dpp16a and dpp18a)

	Inst	Size	flex	HyperVolume (HV )			Mean Ideal Distance (M ID)
		m × n		Min Av Max P er(%)	σ	Min	Av	Max	P er(%)	σ
	mk01	6 × 10 2.09 0.80 0.82 0.85	3.4	0.01 43.22 43.95 45.29	1.69	0.49
	mk02	6 × 10 4.10 0.95 0.98 1.00	1.3	0.02 29.00 30.21 31.00	4.19	0.65
	mk03	8 × 15 3.01 0.75 0.77 0.80	3.7	0.01 219.02 224.34 231.47	2.43	4.60
	mk04	8 × 15 1.91 0.65 0.67 0.69	3.2	0.01 73.86 75.41 77.68	2.10	1.15
	mk05	4 × 15 1.71 0.50 0.51 0.52	2.3	0.00 218.26 221.08 227.37	1.29	2.38
	mk06 15 × 10 3.27 0.99 0.99 0.99	0.0	0.00 69.00 71.33 73.00	3.38	1.50
	mk07	5 × 20 2.83 0.53 0.54 0.55	2.0	0.01 173.05 176.19 182.29	1.82	3.01
	mk08 10 × 20 1.43 0.47 0.48 0.49	2.2	0.01 640.25 652.11 662.71	1.85	6.27
	mk09 10 × 20 2.53 0.54 0.55 0.57	2.8	0.01 364.68 376.42 384.45	3.22	5.35
	mk10 15 × 20 2.98 0.55 0.58 0.60	3.4	0.01 230.97 238.25 246.64	3.15	4.72
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