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Abstract

In this paper, a general local search approach for the Multi-Objective Flex-
ible Job-shop Scheduling Problem (MOFJSP) is proposed to determine a
Pareto front for any combination of regular criteria. The approach is based
on a disjunctive graph, a fast estimation function to evaluate moves and a hi-
erarchical test to efficiently control the set of non-dominated solutions. Four
search strategies using two neighborhood structures are developed. Numeri-
cal experiments are conducted on test instances of the literature with three
sets of criteria to minimize and using metrics to evaluate and compare Pareto
fronts. The results show that our approach provides sets of non-dominated
solutions of good quality.

Keywords: Flexible job-shop scheduling, Multi-objective, Regular criteria,
Pareto optimization, Local search

1. Introduction

In a strong competitive environment and with more and more demand-
ing customers, manufacturing and service systems must be flexible (Johnzen
et al. (2011)) and able to deal with different objectives dynamically. Among
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the important operational decisions are scheduling decisions where several
types of flexibility have been considered, and in particular operation flexibil-
ity that refers to the ability of an operation to be performed in different ways.
The scheduling literature dealing with operation flexibility in the classical
Job-shop Scheduling Problem (JSP) has accumulated over the last twenty
five years (see the recent survey of Chaudhry and Khan (2016)), leading to
the so-called Flexible Job-shop Scheduling Problem (FJSP). The FJSP is
more realistic for modeling a wide range of real-life applications, as it can
capture key features of modern manufacturing and service systems.

The Flexible Job-shop Scheduling Problem (FJSP) is defined as follows.
A set M of m machines are always available to process a set of n jobs
J = {J1, . . . , Jn}. Each machine can only perform one operation at a time.
Each job consists of a sequence of operations, called routing, which can differ
from one job to another, i.e. there is not a single pre-specified order of
machines for all jobs. The preemption of operations is not allowed, i.e. an
operation cannot be interrupted once started. Each job Ji has a release date
ri, a weight wi related to the priority of job Ji, and a due date di that specifies
the date before which Ji should be completed. An important feature of the
FJSP is that the machine needed to perform an operation j is not given
but must be selected from a subset Rj ⊆ M of eligible machines. The
processing time pj of an operation j depends on the selected machine in Rj.
Let us assume that these processing times are non-negative integer, known
and include non sequence-dependent setup times between operations. The
FJSP consists in both assigning a machine to each operation and sequencing
operations on the selected machines, to optimize a single criterion or multiple
criteria.

In single criterion optimization, the most studied criterion for the FJSP is
the minimization of the makespan Cmax, which corresponds to the completion
time of all jobs. However, minimizing other criteria that include the weight of
jobs and their due dates are better suited to capture critical factors that affect
the competitiveness of a firm (Zhang and Wu (2011)). Regular criteria are
among the most common objectives considered in the scheduling literature.
A criterion is said to be regular if it is an increasing function of the completion
times of the jobs (see e.g. Mati et al. (2011) for the JSP). In addition to the
makespan, the following regular criteria are among the most popular ones
in the scheduling literature: (1) Maximum tardiness Tmax = maxTi, where
Ti = max(0, Ci − di), Ci is the completion time of job Ji and di is its due
date, (2) Total tardiness

∑
i Ti, (3) Total completion time

∑
iCi, and (4)
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Number of tardy jobs
∑

i Ui, where Ui = 1 if Ti > 0 and 0 otherwise.
The Multi-Objective Flexible Job-shop Scheduling Problem (MOFJSP)

is the optimization of the FJSP with multiple criteria that are in conflict
to some extent. In this paper, we develop a general local search approach
that optimizes any combination of regular criteria for the MOFJSP. The
remainder of the paper is organized as follows. Section 2 reviews the re-
lated literature. Section 3 details the disjunctive graph model and the neigh-
borhood structures that are used to solve the FJSP. Section 4 proposes a
theoretical framework to evaluate the quality of the set of non-dominated
solutions. Section 5 describes the proposed local search approach based on
Pareto optimization with four new search strategies. Experiments that val-
idate the efficiency of our approach are presented and discussed in Section
6. Finally, Section 7 concludes the paper and provides some directions for
future research.

2. Literature review

The FJSP has been extensively studied in the literature to optimize a
single criterion or multiple criteria. A recent survey covering the various
techniques to solve the FJSP with a single objective and multiple objectives,
can be found in Chaudhry and Khan (2016). This survey includes different
comparative tables to classify the literature according to the performance
measures and the types of techniques. It also gives, for each paper, the algo-
rithm and shop details, the objective functions considered and the number
of citations. Another survey can be found in Genova et al. (2015) that only
covers techniques developed to solve the MOFJSP between 2005 and 2014.
A recent literature review on genetic algorithms to solve the FJSP is pre-
sented in Amjad et al. (2018) where, for each paper, the considered objective
functions, the parameters of the genetic algorithms and the benchmarks are
presented.

By taking a closer look at the literature on the MOFJSP, one can observe
that most papers focus on optimizing the makespan, the total workload of
machines, and the workload of the critical machine. Chaudhry and Khan
(2016) report (Table 3) that the makespan is used in combination with an-
other objective function in 39.59% of papers, and 23.35% of them use the
workload of machines. Even though the list of papers in Chaudhry and
Khan (2016) is not exhaustive as they missed some papers, the observation
and trend are the same. The makespan remains the most studied criterion
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for the FJSP, and is generally combined with the workload of machines in
the MOFJSP. A similar observation can be drawn from Amjad et al. (2018)
(Table 10) where 88.88% (i.e. 32 out of 36) of papers relying on genetic
algorithms to solve the MOFJSP consider the makespan and workload of
machines. Since there are a very large number of papers on the MOFJSP, we
only focus in this section on the recent, state-of-the-art and closely related
works where multiple criteria are optimized, with special attention to papers
that consider regular criteria.

The MOFJSP is usually tackled in the literature using two types of ap-
proaches. The first one consists in transforming the multi-objective problem
into a mono-objective problem by assigning different weights for each ob-
jective. Various heuristics in this category were proposed in the literature.
A Tabu Search algorithm is presented in Li et al. (2014) that uses several
neighborhood search rules for machine assignment and operation scheduling.
A heuristic method that starts from an initial solution, and improves it us-
ing two move search algorithms, is introduced in Xing et al. (2009). Several
hybrid heuristics are proposed such as the hybridization of particle swarm
optimization and Tabu Search in Zhang et al. (2009), genetic algorithms and
Shifting Bottleneck in Gao et al. (2007), and Particle Swarm Optimization
and Simulated Annealing in Xia and Wu (2005).

The second type of approaches that started about fifteen years ago is
based on Pareto optimization where the goal is to determine the set of non-
dominated solutions, i.e. the Pareto front. A hierarchical heuristic algorithm
that is an adaptation of the Newton’s method for continuous multi-objective
unconstrained optimization problems is proposed in Pérez and Raupp (2016).
Two adapted genetic algorithms are presented in Rahmati et al. (2013). A
simple and effective evolutionary algorithm that needs only two parameters
is developed in Chiang and Lin (2013), and a filtered-beam-search-based
heuristic in Shi-Jin et al. (2008).

Many authors developed hybrid methods that combine two or more algo-
rithms to improve the convergence while ensuring the diversity of solutions.
Chun et al. (2013) combine an evolutionary algorithm with a local search
heuristic. A Non-dominated Sorting Genetic Algorithm II is combined with
a local search in Yuan and Xu (2015), a Scatter Search algorithm that uses
Tabu Search and Path-Relinking is proposed in González et al. (2015), a
Path-Relinking based on a Tabu Search algorithm with back-jumping track-
ing is developed in Jia and Hu (2014), a hybrid discrete Particle Swarm Op-
timization and Simulated Annealing algorithm are proposed in Shao et al.
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(2013), a Pareto-based estimation of distribution algorithm is combined with
a local search heuristic in Wang et al. (2013), a genetic algorithm and local
search are combined in Xiong et al. (2012), a genetic algorithm is combined
with a Simulated Annealing in Li (2011), and an approach hybridizing a dis-
crete Artificial Bee Colony algorithm and local search approaches is proposed
in Li et al. (2011).

All the above mentioned papers focus on optimizing the makespan, the
total workload of machines, and the workload of the critical machine. There
are only very few papers that consider other objectives such as regular cri-
teria. In the FJSP with mono-objective, Garćıa-León et al. (2015) propose
a general approach for optimizing any regular criteria, which presents new
concepts to be used in local search methods. To minimize the total tardiness,
Türkyılmaz and Bulkan (2015) combine a genetic algorithm and a Variable
Neighborhood Search, and Mousakhani (2013) presents a Mixed Integer Lin-
ear Programming model and an iterated local search. For the MOFJSP,
Singh et al. (2016) propose a Particle Swarm Optimization algorithm to si-
multaneously minimize the makespan, mean flow time, and mean tardiness.
Gao et al. (2014) minimize a weighted combination of the makespan and the
mean of earliness and tardiness, using a discrete Harmony Search algorithm
that makes use of several heuristics. A Variable Neighborhood Search algo-
rithm is proposed in Bagheri and Zandieh (2011) to minimize a weighted sum
of the makespan and the mean tardiness. Vilcot and Billaut (2011) present
a version of Tabu Search that minimizes a linear combination of Cmax,

∑
Ti

and Lmax. Tay and Ho (2008) consider the minimization of the weighted
sum of the makespan, the mean tardiness, and the mean flow time, by using
priority rules and the concept of genetic programming. A heuristic inspired
from Particle Swarm Optimization and Variable Neighborhood Search is pro-
posed in Liu et al. (2006) for minimizing a weighted linear combination of
the makespan and the sum of completion times.

The MOFJSP has also been addressed under a variety of constraints, as-
sumptions and practical issues. In Lei et al. (2018), the makespan and total
tardiness are minimized under the constraint that the total energy consump-
tion does not exceed a given threshold. Mokhtari and Hasani (2017) develop
an evolutionary algorithm to minimize the makespan, the total availability
of the system, and the total energy cost of both production and maintenance
operations. The uncertainty in processing times is addressed in Shen et al.
(2017) to simultaneously minimize makespan, maximal machine workload,
and robustness to uncertainties. Lu et al. (2017) investigate the problem un-
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der controllable processing times, i.e. the processing times of operations can
be controlled by allocating additional resources, to find an efficient trade-off
between the makespan and the total additional resource consumption. Fuzzy
processing times and fuzzy due dates are addressed in Chun et al. (2013) us-
ing a memetic algorithm that combines genetic global optimization with a
local search method. Ahmadi et al. (2016) address random machine break-
downs by considering the makespan and stability measures. Li et al. (2014)
consider maintenance activities on machines and propose a discrete Artifi-
cial Bee Colony algorithm to deal with the makespan, the total workload
of machines, and the workload of the critical machine. Random machine
breakdowns are also considered in Xiong et al. (2013) with the objective of
minimizing the makespan and the robustness. The dynamic FJSP with job
release dates is addressed in Nie et al. (2013) to minimize the makespan,
the mean flow time, and the mean tardiness. Sadrzadeh (2013) considers
sequence-dependent setups using an Artificial Immune System and Particle
Swarm Optimization to minimize an aggregate function of the makespan
and the mean tardiness. Setup times are also considered in Bagheri and
Zandieh (2011) using a Variable Neighborhood Search approach to minimize
the makespan and the mean tardiness.

To conclude, the MOFJSP has been solved in the literature using different
methods that range from simple heuristics to sophisticated metaheuristics.
Although the MOFJSP gained considerable attention from researchers dur-
ing the last ten years, most studies consider the optimization of the makespan
and two non-regular criteria (total workload and maximum workload of ma-
chines). A very limited number of papers address regular criteria even when
optimizing a single criterion. Indeed, Chaudhry and Khan (2016) report that
the optimization of the makespan combined with other regular criteria has
little been studied, e.g. 2.5% of the papers consider maximum tardiness and
1.5% deal with total tardiness. When regular criteria are combined with the
makespan, most papers do not aim at Pareto optimization and instead aggre-
gate the criteria in one objective using a weight for each criterion. Moreover,
the concepts of disjunctive graph and estimation functions are not exploited.
One of the contributions of this paper is the design of an efficient Pareto
optimization approach for the MOFJSP with regular criteria by developing
different strategies to efficiently determine a set of non-dominated solutions.
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3. Problem modeling and neighborhood structures for the FJSP

This section introduces the different concepts used in this paper to model
and solve the MOFJSP, and illustrates these concepts using the example in
Table 1 with three jobs and four machines. Each job Ji has four operations
which are denoted Oij (i = 1, 2, 3 and j = 1, 2, 3, 4). For example, the first
operation of job J1 has two eligible machines M1 and M3 with processing
times of 3 and 5, respectively. The third operation of J2 has no flexibility,
since it can only be performed on machine M4.

Eligible machines and processing times for operations
Job 1 2 3 4
J1 M1(3)/M3(5) M2(3)/M4(4) M1(5)/M3(1) M3(1)

J2 M1(5)/M3(4) M1(4)/M2(5) M4(1) M2(2)

J3 M1(2) M3(3)/M4(4) M2(8) M3(2)/M4(2)

Table 1: An illustrative example of the FJSP

The FJSP with regular criteria can be modeled using a disjunctive graph
G = (V ,A, E) where V is the set of nodes and A ∪ E is the set of arcs (see
Dauzère-Pérès and Paulli (1997)). Let us recall some important definitions.
The set V includes operations of jobs, a dummy node 0 that represents the
start of each job, and n dummy nodes φi associated to the completions of jobs
(see e.g. Mati et al. (2011)). Nodes φi are necessary since regular criteria
depend on the completion times of jobs. The set A contains conjunctive
arcs that connect two consecutive operations (i.e. in the routing) of a job,
the node 0 and every first operation of each job, and the last operation of
each job Ji to its corresponding node φi. The set E = ∪m∈MEm contains
disjunctive arcs where Em includes arcs between pairs of operations that may
use machine m. The arc from 0 to the first operation of a job Ji has a length
which is equal to the release date ri of Ji, and any remaining conjunctive
or disjunctive arc has a length which is equal to the processing time of the
operation from which it starts. Figure 1(a) shows the disjunctive graph for
the example in Table 1.

A feasible solution of the FJSP is obtained by assigning a machine to
each operation (thus keeping only the relevant disjunctive arcs in E) and by
fixing a direction to each disjunctive arc in E such that the induced graph
does not contain any directed cycle. To effectively exploit the structure
and properties of the graph in a local search approach, the graph must be
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Figure 1: Disjunctive graph model and a feasible solution for the example in Table 1

simplified by removing redundant arcs so that every node x has at most one
predecessor and one successor on the machine that performs x. Figure 1(b)
shows a feasible solution for the example in Table 1. For example, the first
operation O21 of job J2 is assigned to machine M3. The sequences of jobs
with their operations on machines are the following: J1(O11) → J3(O31) →
J2(O22)→ J1(O13) on M1, J1(O12)→ J3(O33)→ J2(O24) on M2, J2(O21)→
J3(O32)→ J1(O14) on M3, and J2(O23)→ J3(O34) on M4.

The starting time hx (called head) of a node x is given by the length of a
longest path from 0 to x. The level lx of node x is the maximum number of
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arcs from node 0 to x. The tail qix of x to a dummy node φi is the maximum
length from the completion of x to φi if a path exists from x to φi and −∞
otherwise. Tails are needed since regular criteria are considered in this paper.
For example, looking at Figure 1(b), the head of operation O23 is 9, its level
is equal to 4 and its tail to φ3 is equal to 2. However, the tail of operation
O23 to φ1 is equal to −∞ since there is no path from O23 to φ1. The longest
path from node 0 to node φi is called the critical path from 0 to φi, and its
length is equal to hφi , which corresponds to the completion time of Ji. Every
node x belonging to a critical path is critical according to Ji, and satisfies
hx + px + qix = hφi . Each arc (x, y) belonging to the critical path from 0 to
φi is critical if nodes x and y are assigned to the same machine and belong
to the routing of different jobs. A block is a maximum sequence of critical
nodes assigned to the same machine. Table 2 shows the critical paths of jobs
and their corresponding blocks for the solution in Figure 1(b). Note that O31

is critical for all jobs, O24 is only critical for job J2, whereas operations O12,
O21, and O23 are not critical. The critical path of job J2 contains two blocks.

Job Critical path Block

J1 0→ O11 → O31 → O22 → O13 → O14 → φ1 (O11 → O31 → O22 → O13)

J2 0→ O11 → O31 → O32 → O33 → O24 → φ2 (O11 → O31),(O33 → O24)

J3 0→ O11 → O31 → O32 → O33 → O34 → φ3 (O11 → O31)

Table 2: Critical paths of jobs and their corresponding blocks for solution in Figure 1(b)

Neighborhood structures are used in local search to generate new solu-
tions by performing small perturbations of a current solution. In the FJSP,
a well-known perturbation proposed in Dauzère-Pérès and Paulli (1997) con-
sists in moving (i.e. resequencing or reassigning) a critical operation in the
graph of the current solution. In this paper, we consider two neighborhood
structures (N1 and N2), which differ from one another in the selection of
operations that are moved. Neighborhood structure N1 focuses on all critical
operations of jobs, while neighborhood structure N2 ⊂ N1 focuses on opera-
tions that belong to blocks of critical paths of the jobs that affect the value
of the criterion (e.g. jobs that are late for lateness criteria). Our motivation
in defining these two neighborhood structures is to analyze whether the con-
cept of blocks is helpful to generate sets of non-dominated solutions for the
MOFJSP. To understand the difference between N1 and N2, let us consider
the minimization of

∑
Ci in the solution of Figure 1(b). According to the
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critical paths and blocks of Table 2, neighborhood structure N1 considers the
critical operations O11, O13, O14, O22, O24, O31, O32, O33 and O34, whereas
neighborhood structure N2 “only” focuses on O11, O13, O22 ,O24, O31 and
O33. Table 3 gives the possible resequencing and reassignment moves for
each critical operation in both neighborhood structures. For a given crit-
ical operation Oij, the notation [a − b] means that Oij is moved between
operations a and b. If a = 0 (resp. b = ∗), Oij is moved in the first (resp.
last) position of the sequence of the machine on which it is resequenced or
reassigned. For example, O11 can be resequenced between O22 and O13, and
reassigned on machine M3 between O32 and O14.

Critical Resequencing Reassignment
operation Move Machine Move

[O31 −O22]
‡ [0−O21]

‡

O11 [O22 −O13]
‡ M3 [O21 −O32]

‡

[O13 − ∗]⊗ [O32 −O14]
‡

[O14 − ∗]⊗
[0−O11]

‡

O31 [O22 −O13]
‡

[O13 − ∗]†
O22 [0−O11]

‡ [0−O12]
‡

[O11 −O31]
‡ M2 [O12 −O33]

‡

[O13 − ∗]‡ [O33 −O24]
‡

[O24 − ∗]⊗
[0−O21]

‡ [0−O23]
‡

O32 [O14 − ∗]‡ M4 [O23 −O34]
‡

[O34 − ∗]⊗
[0−O11]

⊗ [0−O21]
‡

O13 [O11 −O31]
‡ M3 [O21 −O32]

‡

[O31 −O22]
‡ [O32 −O14]

‡

[O14 − ∗]⊗
O33 [0−O12]

‡

[O24 − ∗]‡
[0−O23]

‡ [0−O21]
⊗

O34 M3 [O21 −O32]
⊗

[O32 −O14]
‡

[O14 − ∗]‡
O24 [0−O12]

†

[O12 −O33]
‡

O14 [0−O21]
⊗

[O21 −O32]
‡

Table 3: Possible resequencing and reassignment moves in Figure 1(b)
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Moving an operation in both neighborhood structures N1 and N2 can
generate directed cycles in the resulting graph, thus leading to unfeasible
solutions of the FJSP. To check the feasibility of a move, the sufficient con-
ditions proposed in Garćıa-León et al. (2015) are used. Without actually
transforming the graph, they validate that a cycle is not created in the new
graph. These conditions generalize previous conditions of the literature by
using the concepts of heads, tails and levels of operations. In Table 3, feasi-
ble moves that are obtained by the sufficient conditions are denoted by the
superscript ‡, unfeasible moves by the superscript ⊗, and moves that are fea-
sible but cannot be validated by the sufficient conditions are denoted by the
superscript †.

The best move in the neighborhood of a solution is generally obtained
using the value of the criterion of the generated solution. Previous studies
on the FJSP have shown that using estimation functions is more appropriate
to evaluate the quality of moves, because significant computational times
can be saved and much more iterations can be performed to reach better
solutions. Since regular criteria are considered in this paper, we need to
estimate the new completion times of nodes φi after moving an operation
(see Mati et al. (2011) for the classical job-shop scheduling problem). To
do so, we use the estimation function proposed in Garćıa-León et al. (2015)
by considering forward and backward moves. A forward (resp. backward)
move of a node x, currently sequenced between nodes p and q, between two
nodes u and v is defined when lx ≤ lu (resp. lx > lu). The idea of the
estimation function consists in considering the newly created paths after the
move together with a suitable subset of paths that are available in the current
and new graphs. This is performed by focusing not only on the operation
x, but also on the operations involved in the move p, q, u and v, as well as
on operations w for which lw = lx (see Mati et al. (2011)). In addition to
its efficiency in estimating the value of the criterion, the estimation function
is fast and guarantees whenever possible the lower bound property, i.e. the
quality of a move is not overestimated (Garćıa-León et al. (2015)).

4. Evaluating sets of non-dominated solutions

An effective approach for solving the MOFJSP with regular criteria is the
Pareto approach, which aims at finding a set of non-dominated solutions S,
called the Pareto front. In this section, let us briefly recall the main notions
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related to Pareto optimization and introduce the measures to evaluate the
quality of the set S.

4.1. Dominance of Pareto

Let C be the set of criteria to minimize in Pareto manner and fc(s) be
the value of the criterion c of a feasible solution s. Solution s1 dominates
solution s2 if the following two conditions are true:

1. Solution s1 is not worse than solution s2 for all criteria, i.e. ∀c ∈ C,
fc(s1) ≤ fc(s2),

2. Solution s1 is strictly better than s2 for at least one criterion, i.e. ∃c ∈ C
such that fc(s1) < fc(s2).

Accordingly, any two solutions of S are non-dominated with respect to
each other, and any solution not in S is dominated by at least one solution
in S.

4.2. Quality measures of the set of non-dominated solutions

A good set of non-dominated solutions should satisfy two goals: Con-
vergence and diversity. Convergence ensures that the set of solutions is as
close as possible to the optimal Pareto front, and diversity is related to the
sparsity of solutions to ensure that the decision maker has multiple represen-
tative trade-off solutions among conflicting objectives. Zitzler et al. (2003)
state that it is difficult to define appropriate measures to approximate the
optimal Pareto front when analyzing both goals, and that the discrepancies
increase when considering stochastic approaches.

For the MOFJSP, most previous studies aim at improving the conver-
gence and increasing the number of non-dominated solutions without con-
sidering diversity (see e.g. Jia and Hu (2014)). In this paper, we consider
both the convergence and diversity to better evaluate the quality of sets
of non-dominated solutions. Three measures are selected to evaluate the
convergence: (1) The elite solutions, (2) The mean ideal distance and (3)
The hypervolume. Elite solutions correspond to the best values of the cri-
teria. The Mean Ideal Distance (MID) is the average distance between
non-dominated solutions and the origin point (Singh et al. (2016)), i.e. the
point (0, 0) if two criteria are analyzed. MID is calculated using (1), where
|S| is the number of non-dominated solutions.
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MID =

∑
s∈S

√∑
c∈C

f 2
c (s)

|S|
(1)

The HyperVolume (HV ) is the volume covered by the solutions of the
front. When all criteria are minimized, a reference point having as coordi-
nates the worst values of the criteria is used to limit this coverage (Zitzler
et al. (2007)). Thus, HV =

∑
s∈S Vs, where Vs is the hypercube of s with

respect to the reference point. Since the hypervolume can lead to large val-
ues,(2) is used to calculate HV, which corresponds to the ratio of the total
volume VT covered by the reference point and the origin point.

HV =

∑
s∈S

Vs

|S| × VT
(2)

The maximum spread (D) and spacing (SP ) are selected to evaluate the
diversity. The metric D is the longest diagonal of the hyperbox formed by the
extreme values of the criteria in S (Zitzler (1999)), and is calculated using
(3), where fmax

c and fmin
c are the maximum and minimum values of criterion

c for all solutions in S:

D =

√∑
c∈C

(fmax
c − fmin

c )2 (3)

The metric SP is the average distance between consecutive solutions in
S (Schott (1995)). Let d̂i be the distance between solution si and its nearest

solution, i.e. d̂i = min
sp∈S;p 6=i

∑
c∈C

|fc(si) − fc(sp)|, and let d̄ be the average of

these distances for all solutions in S. Spacing is calculated using (4).

SP =

√√√√ 1

|S|

|S|∑
i=1

(d̂i − d̄)2 (4)

To ensure the quality of S, the spacing and mean ideal distance must
be minimized, the maximum spread and hypervolume must be maximized
and elite solutions must be as close as possible to the optimal values of the
criteria.
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5. Solving the MOFJSP

The proposed Pareto approach for the MOFJSP with regular criteria
aims at finding a set of non-dominated solutions S whose convergence and
diversity are optimized. Let us first describe how S is managed, then present
the framework of the approach and the initial solution, and finally propose
four search strategies.

5.1. Controlling the set of non-dominated solutions

The control of the set of non-dominated solutions consists in managing
solutions entering and leaving S each time a new solution s is obtained by the
search process. A schedule s ∈ S is called a reference schedule for criterion
c if fc(s) is the best possible value for criterion c. The reference schedule
for c is denoted by srefc , and the subset of S with the reference schedules is
denoted by Sref .

To efficiently control S, we propose a fast hierarchical test in three steps
to avoid performing too many evaluations to check whether s should be added
to S. The test is illustrated in Figure 2. It first evaluates if the value of any
criterion c of s is strictly lower than the best value for criterion c. If it is the
case, then s becomes the reference schedule for criterion c, and s is added to
Sref and S, maybe replacing other solutions. Otherwise, the test validates
the dominance between si ∈ S and s starting with the reference schedules.
If no dominance is found, then s can be added to S, maybe replacing other
solutions. Hence, the step Update S consists in adding s and removing the
dominated solutions. Note that multiple solutions are not considered, i.e. if
the values of all the criteria of s and of a solution si ∈ S are equal.

5.2. Framework of the approach

The approach consists of two alternating phases, namely an improving
phase and a diversification phase. The improving phase is a steepest descent
that performs iterative improvements until a local optimum is reached for a
given criterion or all criteria. At each iteration, a set of neighbor solutions
is generated using the neighborhood structures, the feasibility test and the
move evaluation described in Section 3. The diversification phase starts from
the local optimum of the improving phase and performs at most b iterations.
During this phase, a critical operation is randomly selected and a move is
randomly chosen. If the selected move is feasible, the heuristic advances to
the next iteration, otherwise the above process is repeated until a feasible
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Figure 2: Test to check whether s is added to S

move is obtained. If a new best solution is obtained in the diversification
phase for a given criterion, the search returns to the improving phase, other-
wise it continues until b iterations are performed. The value of b is randomly
selected in [4, 10] which is fixed experimentally.

After performing a move in both phases, all local values of the criteria are
updated, the hierarchical test to determine whether s is added to S is per-
formed, and S is updated if s is added as described in Figure 2. Additionally,
the best values of the criteria are updated.

To deal with multiple criteria for the MOFJSP, we propose four versions
of the above approach that differ mainly in the way the criterion to optimize
is selected, the way the approach is alternating between the improving and
diversification phases, and the way the solution is selected when each phase
is resumed.

5.3. Initial solution

The initial solution is obtained using a constructive heuristic that selects
an operation at each step according to an established order of the jobs. The
main idea of the heuristic is to complete the selected operation as soon as
possible to try to minimize the completion times of jobs. The jobs are ordered
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by non-decreasing weights when at least one criterion considers weights. The
ties are broken using the due dates, and then the average processing times∑ni

j=1
1
|Rj |

∑
a∈Rj

pj where ni is the number of operations of job Ji. For a given

operation x and for each eligible machine Mk ∈ Rx, the time tk at which the
machine completes its previous operation v on the sequence (if it exists) is
calculated. Operation x is then assigned to the machine that completes x
as soon as possible, i.e. the machine Mk ∈ Rx that minimizes tk + px. The
graph is updated by adding arc (v, x) and the heuristic continues until all
operations have been selected.

5.4. Search strategy T1

The idea of this strategy is to concentrate on optimizing a given criterion
by performing an improving phase followed by a diversification phase. More
precisely, a random criterion c is selected in C, and the improving phase
performs iterative improvements of c until reaching a local optimum for this
criterion. The diversification phase starts from this local optimum and, if
the value of the criterion c is improved during this phase, the search returns
to the improving phase with the same criterion c. However, if the maximum
number of iterations b is reached, the search sets all local values of the criteria
to∞, randomly selects a new criterion to minimize from the set C −{c} and
returns to the improving phase.

5.5. Search strategy T2

This strategy gives more attention to the improving phase since most of
the promising solutions are obtained in this phase. The strategy intensifies
the search in the improving phase until reaching the local optimum of all
criteria. To apply this strategy, the concept of forbidden criterion or criteria
is introduced. This concept is defined and applied, for a given criterion c,
only during the improving step when the local optimum of c is reached. More
precisely, a criterion becomes forbidden when, in the improving phase, it is
selected to create a move and it cannot generate an improving move. A
criterion is authorized to be selected as soon as its local value is improved or
in the finalization of the diversification phase.

More precisely, Strategy T2 starts by setting the set of forbidden criteria
Cfor to ∅ to specify that initially all criteria are authorized. Then, at each
iteration of the improving phase, a criterion c is randomly selected from
the set C − Cfor of authorized criteria. The search optimizes c whenever it is
possible to generate an improving move, and any forbidden criterion becomes
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authorized if its local value is improved. However, if an improving move is
not possible with c, this criterion becomes forbidden and the search continues
with a criterion randomly selected in the set of authorized criteria. If all
criteria are forbidden, i.e. C −Cfor = ∅, the search goes to the diversification
phase.

An important problem with the continuity of the search can be caused
by criterion Tmax since, if it is equal to zero, criteria

∑
Ti and

∑
Ui will also

be equal to zero, and it is not possible to create a move. In this case, the
search removes all forbidden criteria from Cfor and the selected criterion c is
either Cmax or

∑
Ci if the latter criterion belongs to C.

The diversification phase starts from the solution generated by the neigh-
borhood structure of the last forbidden criterion. If a local value of any
criterion is improved in this phase, the criterion becomes authorized, and
the search returns to the improving phase using the neighborhood of this
criterion. In case of several improved criteria, a random choice is performed.
If it is not possible to improve any criterion during b iterations, all criteria
are authorized, all local values of the criteria are set to ∞ and the search
goes to the improving phase with a random criterion.

5.6. Search strategy T3

This strategy is a variant of T2, the only difference is in the improving
phase in which it is possible that criterion c is changed in each iteration even
if the last iteration was an improving move for c. This means that, rather
than continuing with a single criterion until reaching its local optimum, T3

can modify the optimized criterion by using a random selection from the
set of non-forbidden criteria. More precisely, in each iteration, a random
criterion c is selected to create a move from the set C − Cfor. If this move
improves the criterion, the set of forbidden criteria Cfor is emptied. If it
is not possible to create an improving move using c, this criterion becomes
forbidden and it is added to Cfor. If it is not possible to create an improving
move with all criteria, the search goes to the diversification phase considering
the neighborhood of the last forbidden criterion and the same guidelines than
Strategy T2.

5.7. Search strategy T4

Strategy T4 operates as Strategy T3 but uses the concept of global value
of the criterion c. The only difference is in the improving phase in which, if
the global value of a criterion c′ 6= c is improved, this criterion becomes the
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optimized criterion in the next iteration even if the search with the current
criterion was improving. The motivation is that it is more suitable to shift
the search to optimize c′ with the aim of finding new reference schedules for
c′, since these schedules can be lost if the search process does not focus on
c′ at this iteration. If several global values are improved, a random choice
is performed. Further, in the diversification phase, the search can return to
the improving phase with a criterion that improves its global value.

6. Computational results

This section analyzes the efficiency of the general approach proposed in
the previous section, which was developed in Java. In the remainder of
the paper, this approach is denoted GMD. The experiments were conducted
on a PC with 3.40 GHz and 8GB RAM. The computational time for each
search strategy and each neighborhood structure was set to 300 seconds.
Hence, the computational time for an instance is 2,400 seconds for a set of
criteria to optimize in Pareto manner, i.e. 300 seconds multiplied by four
search strategies and two neighborhood structures. Three sets of criteria to
optimize are considered: CA, CB and CC . CA includes three criteria: Cmax,
Tmax and

∑
Ti. CB adds criterion

∑
Ui to the criteria in CA, and CC adds

criterion
∑
Ci to the criteria in CB.

The analysis was conducted in six phases that are described in the follow-
ing sections. Sections 6.1 to 6.5 use the problem instances from Brandimarte
(1993) by setting the due date of each job Ji to 1.3 ×

∑ni

j=1
1
|Rj |

∑
a∈Rj

pj,

where ni is the number of operations of job Ji. Section 6.1 analyzes the Net
Front Contribution (NFC) and the Weak OutPerformance (WOP) of the two
neighborhood structures to check if one is dominating the other. Then, the
same analysis is performed for the search strategies. The impact of adding
criteria in the set of criteria to optimize on the number of non-dominated
solutions is studied in Section 6.2. Elite solutions for five regular criteria are
analyzed in Section 6.3. The diversity is studied in Section 6.4. The analy-
sis of the hypervolume and the mean ideal distance is presented in Section
6.5. Finally, Section 6.6 compares our approach to previous approaches to
optimize the makespan and the total tardiness.
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6.1. Analysis of the Net Front Contribution (NFC) and Weak OutPerfor-
mance (WOP)

The Net Front Contribution (NFC) is the percentage of solutions of the
reference front that are included in a specified set of non-dominated solutions
(Deb et al. (2001)). For example, if the NFC of Strategy T1 is 25%, then
25% of the solutions of the reference front belong to T1. The Weak Out-
Performance metric (WOPx,o) evaluates the dominance between two sets of
non-dominated solutions sx and so (see Vilcot and Billaut (2011)). The set
sx weakly outperforms so if no solution in sx is dominated by a solution in
so and at least one solution in sx dominates a solution in so. Hence, WOPx,o

takes value 1 if sx weakly outperforms so and 0 otherwise. To further improve
the analysis of dominance between sx and so, we extend the numerical scale
to three values -1, 0 and 1: WOPx,o is equal to 1 (resp. -1) if sx (resp. so)
weakly outperforms so (resp. sx) and 0 otherwise.

Table 4 presents, over ten runs of the algorithm, the average NFC and
the average percentage for WOPN1,N2 (WOP) when it is equal to 1 or -1 for
each set of criteria and for each neighborhood structure. As an example,
mk01 has six machines (m), 10 jobs (n) and a flexibility level (flex) of 2.09,
i.e. one operation has on average 2.09 eligible machines. For CA, the average
NFC for neighborhood N1 is 50% and 53.3% for N2. N1 weakly outperforms
N2 (1 in column WOP) in 33.3% of cases and N2 weakly outperforms N1 (-1
in column WOP) in 60% of cases. Additionally, the neighborhood structure
with the average largest NFC and WOP are written in bold.

CA CB CC
Inst Size flex NFC(%) WOP(%) NFC(%) WOP(%) NFC(%) WOP(%)

(m× n) N1 N2 1 −1 N1 N2 1 −1 N1 N2 1 −1
mk01 6× 10 2.09 50.0 53.3 33.3 60.0 85.2 20.8 26.7 0.0 71.0 29.6 6.7 0.0
mk02 6× 10 4.1 66.7 56.7 33.3 26.7 53.3 80.0 13.3 40.0 67.8 33.3 53.3 26.7
mk03 8× 15 3.01 43.3 63.3 40.0 53.3 39.2 60.8 6.7 53.3 32.4 67.6 20.0 53.3
mk04 8× 15 1.91 55.7 44.3 33.3 53.3 47.6 52.9 0.0 0.0 31.8 68.2 0.0 0.0
mk05 4× 15 1.71 61.8 38.2 66.7 26.7 48.4 51.8 0.0 0.0 49.5 50.5 0.0 0.0
mk06 15× 10 3.27 93.3 46.7 53.3 6.7 100.0 93.3 6.7 0.0 40.0 60.0 33.3 53.3
mk07 6× 10 2.83 41.6 58.4 26.7 53.3 60.9 39.3 6.7 0.0 47.7 52.3 0.0 0.0
mk08 5× 20 1.43 46.7 53.3 46.7 53.3 6.5 93.5 0.0 80.0 8.3 91.7 0.0 80.0
mk09 10× 20 2.53 63.9 36.1 46.7 26.7 49.6 52.2 20.0 0.0 64.2 35.8 20.0 0.0
mk10 15× 20 2.98 46.6 53.4 40.0 40.0 53.0 47.4 6.7 0.0 55.2 44.8 13.3 0.0

Table 4: Average NFC and WOP for N1 and N2

Table 4 shows that there is not a dominant neighborhood structure, even
though N2 is slightly better, which confirms the benefit of using the concept
of blocks to solve the flexible job-shop scheduling problem. Using the NFC
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metric, neighborhood structure N2 generates larger contributions for 17 in-
stances over 30 instances: mk01, mk03, mk07, mk08 and mk10 for CA; mk02,
mk03, mk04, mk05, mk08 and mk09 for CB, and mk03, mk04, mk05, mk06,
mk07 and mk08 for CC . N1 generates larger contributions for the remaining
13 instances. Concerning the metric WOP, N2 weakly outperforms N1 in 11
instances: mk01, mk03, mk04, mk07 and mk08 for CA; mk02, mk03 and mk08
for CB and mk03, mk06 and mk08 for CC , and N1 weakly outperforms N2 in
13 instances (4 for CA, 5 for CB and 4 for CC). Additionally, no neighborhood
structure weakly outperforms the other in five instances: mk04 and mk05
for CB and CC , and mk07 for CC .

Table 5 helps us to analyze the contribution of each search strategy to
the reference front by considering only neighborhood structure N2 for each
set of criteria. Note that the values in this table are average values over ten
runs of the algorithm.

Inst CA CB CC
T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

mk01 0.0 100.0 100.0 100.0 0.0 0.0 25.0 75.0 0.0 7.7 92.3 0.0
mk02 0.0 100.0 100.0 100.0 33.3 0.0 66.7 33.3 0.0 100.0 100.0 100.0
mk03 0.0 100.0 0.0 0.0 0.0 50.0 25.0 25.0 0.0 0.0 80.0 20.0
mk04 0.0 100.0 50.0 50.0 0.0 18.4 46.9 36.7 0.0 7.9 47.4 44.7
mk05 0.0 83.3 16.7 0.0 0.0 30.8 48.7 20.5 0.0 7.7 30.8 61.5
mk06 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 100.0 100.0
mk07 0.0 0.0 100.0 100.0 0.0 4.6 50.0 45.5 0.0 0.0 88.0 12.0
mk08 0.0 100.0 100.0 100.0 0.0 81.5 18.5 0.0 0.0 0.0 0.0 100.0
mk09 20.0 80.0 0.0 0.0 0.0 19.1 38.1 42.9 0.0 0.0 24.0 76.0
mk10 0.0 0.0 100.0 20.0 0.0 33.3 22.2 44.4 0.0 0.0 10.0 90.0

Table 5: Analysis of NFC for the different strategies and N2

The results of Table 5 reveals that the contribution of T1 is equal to zero
except for mk09 with CA, mk02 with CB, and mk06 for CA and CB. When
using T2, the entire solutions of the reference front is obtained in 5 instances
for CA (mk01, mk02, mk03, mk04 and mk08 ) and 2 instances for CC (mk02
and mk06 ). However, the NFC of T2 is equal to zero in 11 instances (3 for CA,
3 for CB and 5 for CC). Besides, T2 has the largest number of non-dominated
solutions in 2 instances (mk05 and mk09 for CA), and 2 instances (mk03 and
mk08 ) for CB. The contribution of T2 for the CC is really low, which implies
that this search strategy is not adequate for minimizing

∑
Ci. Further, T3

and T4 seem to be the best search strategies and their results are comparable
with a slight advantage to the former for the three sets of criteria. Indeed,
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T3 generates the highest contribution in 9 instances (1 for CA, 4 for CB, and
4 for CC) whereas T4 obtains the highest contribution in 7 instances (3 for CB
and 4 for CC). Both T3 and T4 reach all the solutions of the reference front
in 6 instances (4 for CA and 2 for CC). The largest number of non-dominated
solutions is obtained by T3 or T4 in 73.33% of instances.

To extend the analysis of the four search strategies, Table 6 shows the
WOP by considering again neighborhood structure N2. It can be seen from
WOP1−2 (column 1−2), WOP1−3 (column 1−3) and WOP1−4 (column 1−4)
that T1 is dominated by the other search strategies except for instance mk06
for CA. Strategy T2 dominates Strategies T3 and T4 in only two instances
(mk03 and mk09 ) for CA, although T2 is better for CA regarding the metric
NFC. The comparison between T3 and T4 does not show any obvious domi-
nance since WOP3−4 is equal to zero in the largest number of instances (90%
of instances for CA, 50% of instances for CB, and 70% of instances for CC).
T3 is better than T4 in 4 instances and worst in 5 instances.

Inst CA CB CC
1− 2 1− 3 1− 4 2− 3 2− 4 3− 4 1− 2 1− 3 1− 4 2− 3 2− 4 3− 4 1− 2 1− 3 1− 4 2− 3 2− 4 3− 4

mk01 -1 -1 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1
mk02 -1 -1 -1 0 0 0 1 0 0 -1 -1 0 -1 -1 -1 0 0 0
mk03 -1 -1 -1 1 1 0 -1 -1 -1 -1 0 1 -1 -1 -1 -1 -1 0
mk04 -1 -1 -1 0 0 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0
mk05 -1 0 0 -1 1 1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0
mk06 1 1 1 0 0 0 -1 -1 -1 -1 -1 0 -1 -1 -1 0 0 0
mk07 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0
mk08 -1 -1 -1 0 0 0 -1 -1 -1 0 -1 1 -1 -1 -1 -1 -1 -1
mk09 -1 -1 -1 1 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0
mk10 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Table 6: Analysis of WOP for N2

It can be concluded from the analysis in this section that Strategy T1 is
not suitable to optimize the three sets of criteria, T2 is effective for solving
CA regarding the NFC but does not appear interesting when considering the
WOP, and Strategies T3 and T4 are the most efficient when considering both
NFC and WOP, in particular for sets CB and CC .

6.2. Analysis of the number of non-dominated solutions

Table 7 is used to analyze the number of non-dominated solutions con-
sidering three outputs: The minimum (Min), average (Av), and maximum
(Max) numbers of non-dominated solutions when running ten times each set
of criteria. For example, after executing the approach ten times with set CA
for instance mk01, the minimum number of non-dominated solutions was 1,
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the maximum was 2 and on average 1.3 solutions were obtained. In an ideal
situation, it is desired that the three outputs are equal.

Inst Size flex CA CB CC
m× n Min Av Max Min Av Max Min Av Max

mk01 6× 10 2.09 1 1.3 2 4 4.8 5 10 15.8 28
mk02 6× 10 4.10 1 1.5 2 1 1.5 2 1 1.5 2
mk03 8× 15 3.01 1 1.3 2 1 1.8 2 2 7.3 17
mk04 8× 15 1.91 1 2.3 4 22 35.0 51 30 36.0 41
mk05 4× 15 1.71 4 6.8 11 17 26.0 30 27 30.3 32
mk06 15× 10 3.27 1 1 1 1 1 1 1 1 1
mk07 5× 20 2.83 4 6.0 10 20 27.8 32 12 20.8 26
mk08 10× 20 1.43 1 1.3 2 2 16.8 27 3 6.0 9
mk09 10× 20 2.53 1 2.8 4 19 33.0 51 22 27.8 38
mk10 15× 20 2.98 4 6.8 10 16 23.8 30 14 17.0 24

Table 7: Analysis of the number of non-dominated solutions

The addition of criteria and the flexibility level affects the number of
non-dominated solutions, but there is not a clear behavior in function of the
flexibility level since different trends can be identified. More precisely, in in-
stances with a large flexibility level (flex > 3), one or two solutions solve the
problem, i.e. in instance mk06 (flex = 3.27) only one solution is generated
for the three sets of criteria. In instance mk02 (flex = 4.10), no more than
two non-dominated solutions for the three sets of criteria were obtained, and
this is also the case for instance mk03 when optimizing sets CA and CB. In
instances with a small flexibility level (flex < 2), the average number of
non-dominated solutions increases when adding criteria, such as the case of
instances mk04 and mk05. However, in instance mk08 (flex = 1.43), this
average number increases from set CA to set CB (1.3 to 16.8) and decreases
when

∑
Ci is added (6.0). The same observation can be drawn for the max-

imum number of non-dominated solutions. The addition of criterion
∑
Ui

to CA increases the number of non-dominated solutions, and adding
∑
Ci to

CB increases the number of non-dominated solutions in 50% of instances, i.e.
instances mk01, mk03, mk04, mk05 and mk09.

6.3. Analysis of elite solutions

In the previous analysis of the number of non-dominated solutions, the
values of the criteria were not considered. Now, let us evaluate elite solu-
tions to determine which set of criteria effectively leads to improving the
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convergence of the front. The first criterion considered is the makespan since
it is the most studied in the literature and its quality can strongly explain
the efficiency of our approach. Then the other criteria are analyzed. Only
neighborhood structure N2 is considered in the analysis.

6.3.1. Elite solutions for the makespan

The results for the makespan for each set of criteria are illustrated in
Table 8, which details the minimum value Min, the average value Av and
the percentage of error Per(%) generated by the average value with respect
to the best known value BKV (González et al. (2015)) after running ten
times our approach. The value of the makespan is underlined for instances
where the best known value is obtained, and the minimum value is written
in bold for the remaining instances.

Inst BKV CA CB CC
Min Av Per(%) Min Av Per(%) Min Av Per(%)

mk01 40 42 42.0 5.0 40 40.0 0.0 40 40.0 0.0
mk02 26 28 29.0 11.5 29 30.0 15.4 28 29.0 11.5
mk03 204 204 204.8 0.4 204 204.0 0.0 204 204.0 0.0
mk04 60 67 68.8 14.6 60 61.5 2.5 62 63.8 6.3
mk05 172 176 176.3 2.5 174 174.8 1.6 175 175.5 2.0
mk06 57 67 69.5 21.9 69 71.3 25 70 70.5 23.7
mk07 139 144 146.3 5.3 142 143.0 2.9 148 148.3 6.7
mk08 523 523 523.0 0.0 523 523.0 0.0 523 523.0 0.0
mk09 307 320 327.5 6.7 307 308.0 0.3 307 309.3 0.7
mk10 196 221 223.0 13.8 216 216.5 10.5 228 231.3 18.0

Table 8: Elite solutions for makespan

Minimizing the makespan performs better when the approach optimizes
Set CB since, in 6 instances, the best known value is obtained (mk01, mk03,
mk04, mk07, mk08 and mk09 ). Figure 3 shows the sequences of operations on
machines for instance mk01 when the makespan is minimized. Besides, Set
CB has the best performance compared to Sets CA and CC in instances mk05
with an error of 1.6% and mk10 in spite of the large error (9.9%). In the
instances mk02 and mk06, the best known value is not obtained for any set
and the error is quite large, e.g. 11.5% and 21.9% with Set CA. As illustrated
in Section 6.2, few solutions are determined for these two instances that have
large flexibility levels. This means that, to improve the convergence of the
makespan, new strategies might be needed, in particular for instances with
large flexibility levels.
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Figure 3: Gantt diagram when minimizing makespan in instance mk01

6.3.2. Elite solutions for maximum tardiness and total tardiness

The performances of the approach with criteria Tmax and
∑
Ti are shown

in Table 9 and Table 10. The meaning of columns is similar to Table 8, except
for Column Per(%) that corresponds to the percentage of error generated by
the average and the minimum value. This is due to the fact that there is a lack
of results in the literature on instances from Brandimarte (1993). However,
Per(%) gives insights on the homogeneity of our approach in generating good
solutions in all ten runs.

Inst CA CB CC
Min Av Per(%) Min Av Per(%) Min Av Per(%)

mk01 10 11.5 15.0 9 9.0 0.0 9 9.0 0.0
mk02 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0
mk03 77 77.0 0.0 77 77.0 0.0 77 77.0 0.0
mk04 27 27.5 1.9 20 20.0 0.0 20 20.3 1.3
mk05 100 101.0 0.5 98 98.0 0.0 99 99.8 0.8
mk06 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0
mk07 73 78.0 6.8 70 70.3 0.4 76 77.3 1.6
mk08 310 310.0 0.0 310 310.0 0.0 310 310.0 0.0
mk09 137 143.0 4.4 123 127.3 3.5 123 125.5 2.0
mk10 38 42.8 12.5 30 31.3 4.2 50 50.5 1.0

Table 9: Elite solutions for Tmax

It can be observed from Table 9 that optimizing Set CB provides the best
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results for Tmax in all instances. This means that the addition of
∑
Ui im-

proves the convergence not only for the makespan but also for Tmax. Besides,
including

∑
Ci does not affect the quality of Tmax, since the minimum value

is obtained in 7 instances. For the remaining 3 instances, the obtained Tmax

is very close to the best value in instance mk05 (99 for set CC against 98
for set CB), and the only bad result is obtained for instance mk10 where the
gap is really large (30 for CB and 50 for CC). This table also shows that the
approach is quite stable for Tmax as the average value is always close to the
minimum value for the three sets CA, CB and CC .

Inst CA CB CC
Min Av Per(%) Min Av Per(%) Min Av Per(%)

mk01 39 44.8 14.7 18 18.2 1.1 19 20.5 7.9
mk02 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0
mk03 523 576.3 10.2 275 278.0 1.1 321 325.8 1.5
mk04 170 198.0 16.5 108 112.4 4.1 125 130.5 4.4
mk05 1102 1179.3 7.0 788 811.2 2.9 854 916.0 7.3
mk06 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0
mk07 895 995.3 11.2 808 840.0 4.0 845 887.5 5.0
mk08 4786 4832.0 1.0 2932 3102.4 5.8 3387 3496.5 3.2
mk09 2060 2292.5 11.3 1048 1144.0 9.2 1270 1321.8 4.1
mk10 496 566.8 14.3 340 395.2 16.2 482 548.0 13.7

Table 10: Elite solutions for
∑
Ti

For
∑
Ti, optimizing Set CB provides much better results than when

optimizing the two other sets, since not only the best solutions are always
obtained for CB, but there is also a large gap between the value obtained
with CB and the ones obtained with the two other sets (e.g. in instance mk08
where 2932 is obtained with CB whereas 4786 and 3387 are obtained with CA
and CC , respectively). Contrary to the case with Tmax, the value of Per(%)
is sometimes large such as in instance mk10 for the three sets. This can be
explained by the fact that the criterion

∑
Ti is more difficult to solve than

Tmax, which implies that additional strategies might be needed to make the
approach more stable for

∑
Ti.

6.3.3. Elite solutions for total number of tardy jobs and total completion
times∑
Ui is one of the most difficult criteria to minimize, since it is nonlinear.

This is because Ui is equal to 1 as soon as the completion time of job Ji is

25



strictly larger than its due date. The results obtained wih sets CB and CC
are illustrated in Table 11. Note that CB still leads to the best results for
all instances. Further, adding criterion

∑
Ci to CC has a small effect on the

value of
∑
Ui, in particular for instances with 15 and 20 jobs, i.e. mk03,

mk04, mk08, mk09 and mk10. Per(%) is sometimes large for CB, which can
be explained by the small values of

∑
Ui such as in instance mk05 in which

Min = 5 and Av = 5.8 leading to Per = 15.0. For criterion
∑
Ci, the only

observation that can be drawn is that Per(%) is quite small, which confirms
the homogeneity of our approach for this criterion.

Inst
∑
Ui

∑
Ci

CB CC CC
Min Av Per(%) Min Av Per(%) Min Av Per(%)

mk01 3 3.0 0.0 3 3.0 0.0 272 274.0 0.7
mk02 0 0.0 0.0 0 0.0 0.0 237 241.0 1.7
mk03 5 5.8 15.0 6 6.5 8.3 2100 2159.0 2.8
mk04 6 6.3 4.2 7 7.3 3.6 653 656.0 0.5
mk05 12 12.5 4.2 12 12.8 6.3 1789 1851.0 3.5
mk06 0 0.0 0.0 0 0.0 0.0 657 662.0 0.7
mk07 15 15.5 3.3 15 15.0 0.0 2142 2177.0 1.6
mk08 16 17.0 6.3 17 17.8 4.4 7021 7130.0 1.5
mk09 13 14.8 13.5 15 15.8 5.0 4873 4919.0 0.9
mk10 11 12.3 11.4 14 14.3 1.8 3773 3835.0 1.6

Table 11: Elite solutions for
∑
Ui and

∑
Ci

6.4. Analysis of the diversity

This section aims at validating that the front of Pareto is diverse in solu-
tions, so that the decision maker can choose among representative solutions
in different regions of the front. The evaluation of the diversity is only pre-
sented for set CB, because this is the set of criteria for which our approach
found the best results. Table 12 includes the minimum value (Min), the
average value (Av), the maximum value (Max) and the standard deviation
(σ) for each instance. Column AvNDS recalls the average number of non-
dominated solutions of Table 7. For example, for instance mk01, on average
4.8 non-dominated solutions are generated (Column AvNDS ) and, when con-
sidering the maximum spread D, the minimum (resp. maximum) distance
between extreme solutions is 7.9 (resp. 10.2), the average distance is 9.4 and
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σ = 1.0. Besides, for the average distance between nearest solutions (spacing
SP ), the minimum (resp. maximum) distance is 1.2 (resp. 2.6) with an
average of 2.0 and σ = 0.6. If an ideal situation is taken as reference, the
tendency of σ is to be equal to zero.

Inst AvNDS D SP
Min Av Max σ Min Av Max σ

mk01 4.8 7.9 9.4 10.2 1.0 1.2 2.0 2.6 0.6
mk02 1.5 0.0 1.3 3.2 1.6 0.0 0.1 0.5 0.2
mk03 1.8 0.0 17.6 30.7 13.5 0.0 0.3 0.8 0.3
mk04 35.0 74.7 79.9 84.2 4.3 3.8 6.3 11.4 3.5
mk05 26.0 293.9 341.6 396.7 43.7 5.3 8.7 10.0 2.3
mk06 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
mk07 27.8 154.1 243.9 311.1 65.9 8.3 13.1 16.0 3.6
mk08 16.8 98.1 482.5 728.9 289.0 0.5 18.0 29.8 12.4
mk09 33.0 410.5 567.4 710.8 136.1 13.7 18.5 21.7 3.4
mk10 23.8 251.1 321.6 384.1 60.6 19.3 23.7 32.2 5.9

Table 12: Results for maximum spread D and spacing SP for CB

When analyzing the spacing SP , the ideal performance corresponds to
small values of SP and σ. Looking at Table 12, it is possible to infer that,
in the instances with high flexibility mk02, mk03 and mk06 (i.e. flex > 3),
the spacing values are very close to zero, which is mainly explained by the
results of Table 7 in which only there are very few solutions in the set of
non-dominated solutions. Further, it is possible to infer two other trends.
The first trend is that spacing seems to increase with the size of the problem,
in particular for instances mk07, mk09 and mk10 with 20 jobs. The second
trend is that the number of non-dominated solutions does not affect the
spacing since, even though there are large values for AvNDS in instances
mk04, mk05 and mk08, the spacing is small (3.8, 5.3 and 0.5). Moreover,
for instance mk04, AvNDS = 35.0 and the average spacing is 6.3 while, in
instance mk10 with a lower number of non-dominated solutions (AvNDS =
23.8), the average spacing is 23.7.

Concerning the maximum spread D, an efficient value corresponds to a
large average and a low σ. When looking at Table 12, it is possible to infer
that the maximum spread is large for instances with medium flexibility (2 <
flex < 3) such as instances mk07, mk09 and mk10. However, the size of the
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problem, especially the number of jobs, seems to not influence the maximum
spread as the values (i.e. Min, Av, Max) obtained in instance mk05 with 15
jobs are larger than the corresponding values in instances mk07, mk08 and
mk10. It is also possible to infer, by observing for example instances mk07
and mk10, that there is no trend between the number of non-dominated
solutions and the maximum spread. These observed trends of diversity can
be considered as additional arguments to confirm the performance of our
approach.

6.5. Analysis of HyperVolume (HV ) and Mean Ideal Distance (MID)

In this section, we expand the analysis for CB using the HV and MID
measures, which must be maximized and minimized, respectively. Table 13
gives the minimum value (Min), the average value (Av) and the maximum
value (Max) of these measures for each instance after running ten times our
approach. The value Per(%) = (Av −Min)/Min for MID and Per(%) =
(Max−Av)/Max for HV . To calculate HV , the coordinates of the reference
point is fixed to 10,000 for Cmax and Tmax, to 100,000 for

∑
Ti and to two

times the number of jobs for
∑
Ui. For example, the coordinates of the

reference point are (10, 000; 10, 000; 100, 000; 20) for instances with 10 jobs.
To improve the scale of distance when calculating MID, the criterion

∑
Ti

of each solution has been divided by the number of jobs.
It is very difficult to assess the quality of our approach due to the lack

of previous values for HV and MID for the regular criteria studied in this
paper. However, we can observe that the values of HV tend to 100% for
instances mk02 and mk06 with few solutions and large flexibility. Our ap-
proach is stable since σ is closer to zero for all instances and Per(%) is lower
than 3.4%. The analysis of MID also reveals uniformity in the results, which
is explained by small values of σ and Per(%) except for two instances: mk08
(σ = 6.27) and mk09 (σ = 5.35), which could be explained by the number
of jobs.

6.6. Comparison with previous approaches

The performance of our approach is compared against the Multi-Objective
Differential Evolution algorithm (MODE) proposed in Wisittipanich and
Kachitvichyanukul (2014) to minimize the makespan and the total tardiness.
In MODE, the Pareto front was obtained by evaluating five search strategies
(MODE-ms1, MODE-ms2, MODE-ms3, MODE-ms4 and MODE-ms5) and
the MOPSO algorithm proposed in Nguyen and Kachitvichyanukul (2010).
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Inst Size flex HyperVolume (HV ) Mean Ideal Distance (MID)
m× n Min Av Max Per(%) σ Min Av Max Per(%) σ

mk01 6× 10 2.09 0.80 0.82 0.85 3.4 0.01 43.22 43.95 45.29 1.69 0.49
mk02 6× 10 4.10 0.95 0.98 1.00 1.3 0.02 29.00 30.21 31.00 4.19 0.65
mk03 8× 15 3.01 0.75 0.77 0.80 3.7 0.01 219.02 224.34 231.47 2.43 4.60
mk04 8× 15 1.91 0.65 0.67 0.69 3.2 0.01 73.86 75.41 77.68 2.10 1.15
mk05 4× 15 1.71 0.50 0.51 0.52 2.3 0.00 218.26 221.08 227.37 1.29 2.38
mk06 15× 10 3.27 0.99 0.99 0.99 0.0 0.00 69.00 71.33 73.00 3.38 1.50
mk07 5× 20 2.83 0.53 0.54 0.55 2.0 0.01 173.05 176.19 182.29 1.82 3.01
mk08 10× 20 1.43 0.47 0.48 0.49 2.2 0.01 640.25 652.11 662.71 1.85 6.27
mk09 10× 20 2.53 0.54 0.55 0.57 2.8 0.01 364.68 376.42 384.45 3.22 5.35
mk10 15× 20 2.98 0.55 0.58 0.60 3.4 0.01 230.97 238.25 246.64 3.15 4.72

Table 13: Analysis of HV and MID for CB

Note that the solutions of the Pareto front are mainly obtained from those
determined by MODE-ms1, MODE-ms2, MODE-ms3 and MODE-ms5. The
comparison is based on a set of eight problem instances used in Wisittipanich
and Kachitvichyanukul (2014), which includes five problem instances from
Dauzère-Pérès et al. (1998) (dpp02a, dpp09a, dpp11a, dpp16a and dpp18a)
and three problem instances from Brandimarte (1993) (mk04, mk07 and
mk09 ). The due dates of jobs were determined using the expression provided
in He et al. (1993). Figure 4 shows the non-dominated solutions obtained by
N1 and N2 for instance dpp02a with set CA.
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Figure 4: Set of non-dominated solutions for instance dpp02a and set CA
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To compare the results of GMD with MODE, the Weak OutPerfor-
mance metric (WOPx,o) and the set coverage metric (SCMx,o) are analyzed.
WOPx,o evaluates the dominance between two sets of non-dominated solu-
tions sx and so. SCMx,o is the ratio of solutions of so weakly dominated by
solutions of sx (Zitzler (1999)).

Table 14 provides for bothGMD andMODE the number of non-dominated
solutions in column NDS, the Pareto set in column Solutions, the set cov-
erage metric in column SCM1 and SCM2, and the Weak OutPerformance
metric in column WOP . For example in instance dpp09a, our approach finds
12 non-dominated solutions when MODE finds 14 non-dominated solutions,
and 71% (10 of 14) of the solutions of MODE are weakly dominated by at
least one solution of GMD, and WOP = 0 means that there are weakly
dominated solutions in both sets of non-dominated solutions. Table 14 also
shows that the performance of GMD and MODE are comparable. Our ap-
proach is better for three instances (dpp02a, dpp11a and dpp16a, since WOP
and SCM1 are equal to 1 and SCM2 is equal to 0), and MODE is better for
three instances (dpp18a, mk07 and mk09). Figure 5 depicts the sets of non-
dominated solutions obtained by GMD and MODE for instance dpp02a.
Note that GMD was ran with criteria Cmax and

∑
Ti.
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Figure 5: Comparison of GMD and MODE using the instance dpp02a
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Inst GMD MODE
NDS Solutions NDS Solutions SCM1 SCM2 WOP

(2285, 15141) (2573, 14383) (2412, 16073.65) (2471, 15602.65)
(2290, 14716) (2579, 14381) (2413, 15994.65) (2481, 15478.65)
(2313, 14469) (2582, 14344) (2433, 15857.65) (2513, 15452.65) 1.00 0.00 1

dpp02a 8 (2556, 14457) (2583, 14313) 11 (2435, 15754.65) (3195, 15403.65)
(2456, 15679.65) (3352, 15339.65)

(2463, 15663.65)
(2146, 21689) (2239, 19839) (2168, 21022.3) (2196, 20098.3)
(2148, 21337) (2280, 19692) (2170, 20909.3) (2198, 20088.3)
(2150, 20253) (2284, 19659) (2172, 20734.3) (2200, 20068.3)

dpp09a 12 (2155, 20244) (2288, 19637) 14 (2173, 20691.3) (2201, 20015.3) 0.71 0.50 0
(2176, 19953) (2290, 19571) (2174, 20228.3) (2204, 19650.3)
(2180, 19951) (2306, 19474) (2191, 20101.3) (2207, 19600.3)

(2193, 20099.3) (2220, 19430.3)
(2155, 20829) (2194, 20070) (2234, 21190.61) (2330, 20385.61)
(2172, 20821) (2195, 20033) (2238, 21109.61) (2866, 20301.61)
(2176, 20503) (2196, 19948) (2273, 21073.61) (2951, 20296.61)

dpp11a (2177, 20298) (2203, 19935) (2282, 20537.61) (3152, 20226.61)
17 (2178, 20265) (2332, 19894) 9 (2307, 20496.61) 1.00 0.00 1

(2184, 20246) (2345, 19886)
(2185, 20181) (2459, 19489)
(2186, 20137) (2461, 19486)

(2193, 20086)
(2389, 31441) (2545, 30303) (2582, 33004.83) (2643, 31674.83)
(2392, 30779) (2597, 30180) (2584, 32930.83) (2644, 31577.83)
(2399, 30760) (2607, 30177) (2607, 32909.83) (2652, 31294.83)

dpp16a 10 (2409, 30360) (2607, 30127) 11 (2610, 32426.83) (2657, 31187.83) 1.00 0.00 1
(2435, 30313) (2865, 30020) (2636, 32159.83) (3552, 31130.83)

(2642, 32009.83)
(2237, 29053) (2298, 28626) (2227, 26698.92) (2254, 25651.92)
(2238, 29033) (2321, 28563) (2229, 26431.92) (2256, 25447.92)
(2246, 28924) (2327, 28530) (2233, 26428.92) (2276, 25307.92)

dpp18a 7 (2280, 28722) 16 (2234, 26363.92) (2277, 25190.92) 0.00 1.00 -1
(2237, 26354.92) (2278, 25123.92)
(2238, 26135.92) (2280, 24991.92)
(2251, 26097.92) (2282, 24789.92)
(2253, 25754.92) (2789, 24078.92)

(61, 479) (64, 455) (64, 445.46) (67, 390.46)
mk04 6 (62, 464) (73, 438) 6 (65, 439.46) (69, 388.46) 0 0.50 -1

(63, 457) (75, 429) (66, 401.46) (74, 386.46)
(144, 1661) (184, 1618) (143, 1789.49) (150, 1424.49)

mk07 5 (147, 1660) (198, 1599) 7 (144, 1492.49) (152, 1413.49) 0 1.00 -1
(150, 1629) (146, 1476.49) (154, 1341.18)

(147, 1465.49)
(307, 3498) (328, 3342) (307, 3216.1) (403, 3166.1)

mk09 7 (311, 3454) (332, 3338) 7 (309, 3206.1) (409, 3084.1) 0 1.00 -1
(325, 3386) (334, 3295) (311, 3191.1) (418, 2993.1)

(326, 3347) (315, 3190.1)

Table 14: Comparison of GMD and MODE
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7. Conclusions

In this paper, we proposed a general local search approach to determine
Pareto fronts for the Multi-Objective Flexible Job-shop Scheduling Problem
(MOFJSP) for any combination of regular scheduling criteria. Regular crite-
ria correspond to various customer service objectives, which are important in
a competitive environment. The local search approach is based on two neigh-
borhood structures (N1 and N2), that consist in moving a critical operation
in the conjunctive graph, sufficient conditions to determine the feasibility of
a move without transforming the graph, and an estimation function to select
the best move. A hierarchical test is proposed to quickly update the set of
non-dominated solutions during the search, and four search strategies (T1,
T2, T3 and T4) have been proposed.

Three sets of criteria to optimize are considered in our experiments. The
experiments showed that N2 is the dominant neighborhood structure and
generates the largest number of non-dominated solutions. Besides, a com-
bination of Strategies T3 and T4 is sufficient to solve the MOFJSP with all
sets of criteria.

In future research, we would like to study how our approach can be im-
proved for specific regular criteria. New dedicated properties could be used
to accelerate the search or avoid being stuck in local optima for criteria such
as

∑
Ti or

∑
Ui, that are more complex to handle. Another research avenue

is the use of sophisticated metaheuristics that could help to better diver-
sify the search process to reach promising regions. We also intend to work
on extending our approach to search for more diverse solutions by better
considering different types of criteria.
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Pérez, M. A. F., Raupp, F. M. P., Apr 2016. A newton-based heuristic algo-
rithm for multi-objective flexible job-shop scheduling problem. Journal of
Intelligent Manufacturing 27 (2), 409–416.

Rahmati, S. H. A., Zandieh, M., Yazdani, M., Feb 2013. Developing two
multi-objective evolutionary algorithms for the multi-objective flexible job
shop scheduling problem. The International Journal of Advanced Manu-
facturing Technology 64 (5), 915–932.

Sadrzadeh, A., Dec 2013. Development of both the ais and pso for solving
the flexible job shop scheduling problem. Arabian Journal for Science and
Engineering 38 (12), 3593–3604.

Schott, J. R., 1995. Fault tolerant design using single and multicriteria ge-
netic algorithm optimization. Tech. rep., AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH.

Shao, X., Liu, W., Liu, Q., Zhang, C., Aug 2013. Hybrid discrete particle
swarm optimization for multi-objective flexible job-shop scheduling prob-
lem. The International Journal of Advanced Manufacturing Technology
67 (9), 2885–2901.

Shen, X.-N., Han, Y., Fu, J.-Z., Nov 2017. Robustness measures and ro-
bust scheduling for multi-objective stochastic flexible job shop scheduling
problems. Soft Computing 21 (21), 6531–6554.

Shi-Jin, W., Bing-Hai, Z., Li-Feng, X., 2008. A filtered-beam-search-based
heuristic algorithm for flexible job-shop scheduling problem. International
Journal of Production Research 46 (11), 3027–3058.

Singh, M. R., Singh, M., Mahapatra, S. S., Jagadev, N., Aug 2016. Par-
ticle swarm optimization algorithm embedded with maximum deviation
theory for solving multi-objective flexible job shop scheduling problem.
The International Journal of Advanced Manufacturing Technology 85 (9),
2353–2366.

Tay, J. C., Ho, N. B., 2008. Evolving dispatching rules using genetic program-
ming for solving multi-objective flexible job-shop problems. Computers &
Industrial Engineering 54 (3), 453–473.

36



Türkyılmaz, A., Bulkan, S., 2015. A hybrid algorithm for total tardiness
minimisation in flexible job shop: genetic algorithm with parallel vns exe-
cution. International Journal of Production Research 53 (6), 1832–1848.

Vilcot, G., Billaut, J.-C., 2011. A tabu search algorithm for solving a mul-
ticriteria flexible job shop scheduling problem. International Journal of
Production Research 49 (23), 6963–6980.

Wang, L., Wang, S., Liu, M., 2013. A pareto-based estimation of distribu-
tion algorithm for the multi-objective flexible job-shop scheduling problem.
International Journal of Production Research 51 (12), 3574–3592.

Wisittipanich, W., Kachitvichyanukul, V., 2014. A pareto-archived differ-
ential evolution algorithm for multi-objective flexible job shop scheduling
problems. Logistics Operations, Supply Chain Management and Sustain-
ability, 325–339.

Xia, W., Wu, Z., 2005. An effective hybrid optimization approach for multi-
objective flexible job-shop scheduling problems. Computers & Industrial
Engineering 48 (2), 409–425.

Xing, L.-N., Chen, Y.-W., Yang, K.-W., Jun 2009. An efficient search method
for multi-objective flexible job shop scheduling problems. Journal of Intel-
ligent Manufacturing 20 (3), 283–293.

Xiong, J., ning Xing, L., wu Chen, Y., 2013. Robust scheduling for multi-
objective flexible job-shop problems with random machine breakdowns.
International Journal of Production Economics 141 (1), 112 – 126, meta-
heuristics for manufacturing scheduling and logistics problems.

Xiong, J., Tan, X., Yang, K.-w., Xing, L.-n., Chen, Y.-w., 2012. A hybrid
multiobjective evolutionary approach for flexible job-shop scheduling prob-
lems. Mathematical Problems in Engineering 2012, 1–27.

Yuan, Y., Xu, H., Jan 2015. Multiobjective flexible job shop scheduling us-
ing memetic algorithms. IEEE Transactions on Automation Science and
Engineering 12 (1), 336–353.

Zhang, G., Shao, X., Li, P., Gao, L., 2009. An effective hybrid particle
swarm optimization algorithm for multi-objective flexible job-shop schedul-
ing problem. Computers & Industrial Engineering 56 (4), 1309–1318.

37



Zhang, R., Wu, C., 2011. A simulated annealing algorithm based on block
properties for the job shop scheduling problem with total weighted tardi-
nessobjective. Computers & Operations Research 38 (5), 854–867.

Zitzler, E., 1999. Evolutionary Algorithms for Multiobjective Optimization:
Methods and Applications. Ph.D. thesis, ETH Zurich, Switzerland.

Zitzler, E., Brockhoff, D., Thiele, L., 2007. The hypervolume indicator revis-
ited: On the design of pareto-compliant indicators via weighted integra-
tion. In: Evolutionary multi-criterion optimization. Springer, pp. 862–876.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., Da Fonseca, V. G.,
2003. Performance assessment of multiobjective optimizers: An analysis
and review. IEEE Transactions on Evolutionary Computation 7 (2), 117–
132.

38


	clickableplot0: 
	clickableplot0-result: 
	clickableplot0-result2: 
	clickableplot0-resultmark: 
	clickableplot0-result2mark: 
	clickableplot0-slope: 
	clickableplot1: 
	clickableplot1-result: 
	clickableplot1-result2: 
	clickableplot1-resultmark: 
	clickableplot1-result2mark: 
	clickableplot1-slope: 


