
HAL Id: emse-02345694
https://hal-emse.ccsd.cnrs.fr/emse-02345694v1

Submitted on 13 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic IoT Solutions -A Developer Perspective
Hamza Baqa, Martin Bauer, Sonia Bilbao, Aitor Corchero, Laura Daniele,

Iker Esnaola, Izaskun Fernández, Östen Frånberg, Raúl García Castro, Marc
Girod-Genet, et al.

To cite this version:
Hamza Baqa, Martin Bauer, Sonia Bilbao, Aitor Corchero, Laura Daniele, et al.. Semantic IoT
Solutions -A Developer Perspective. 51p, 2019, �10.13140/RG.2.2.16339.53286�. �emse-02345694�

https://hal-emse.ccsd.cnrs.fr/emse-02345694v1
https://hal.archives-ouvertes.fr

Semantic IoT Solutions - A Developer Perspective 1

Semantic Interoperability White Paper

Editor

• Martin Bauer, NEC Laboratories Europe

Contributors

• Hamza Baqa, Easy Global Market
• Martin Bauer, NEC Laboratories Europe
• Sonia Bilbao, Tecnalia Corporación Tecnológica
• Aitor Corchero, Eurecat - Technology Centre of Catalonia
• Laura Daniele, TNO
• Iker Esnaola, IK4-TEKNIKER
• Izaskun Fernández, IK4-TEKNIKER
• Östen Frånberg,1A Konsult
• Raúl García-Castro, Universidad Politécnica de Madrid
• Marc Girod-Genet, Institut Mines-Télécom
• Patrick Guillemin, ETSI
• Amélie Gyrard, Kno.e.sis, Wright State University
• Charbel El Kaed, Google
• Antonio Kung, TRIALOG
• Jaeho Lee, University of Seoul
• Maxime Lefrançois, École des Mines de Saint-Étienne
• Wenbin Li, Orange
• Dave Raggett, W3C
• Michelle Wetterwald, NETELLANY / FBConsulting

1 This document is available under the Creative Commons Attribution 4.0 International
License.

22-Oct-2019 Semantic IoT Solutions - A Developer Perspective 1

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Table of Contents

Background 3

1 Introduction 3

2 Problem Description 4

3 Example Use Cases 6

3.1 Use case 1: Smart Home and Smart Grid 6

3.2 Use Case 2: Ambient Assisted Living (AAL) 9

4 Ontology Selection / Creation 11

4.1 Identify ontology requirements 12

4.2 Reuse existing ontologies 14

4.3 Create new ontology / Extend existing ontologies 20

5 Ontology Development & Instantiation 21

6 Semantic Information and Semantic Annotation 24

7 Storing Semantic Information 28

8 Retrieving/Querying Semantic Information 29

9 Analytics and Reasoning using Semantic Information 33

9.1 Ontology-based Reasoning 33

9.2 Rule-based Reasoning 35

9.3 Other Reasoning 37

10 Software Implementation 37

10.1 RDF Management Libraries 37

10.2 Object Relational Mappers (ORMs) and Ontology Library Generators 38

11 Semantic Interoperability Across Systems 39

12 Testing Semantic Interoperability 41

13 Overall Conclusion 43

References 43

Glossary and Acronym Table 48

2 Semantic IoT Solutions - A Developer Perspective 22-Oct-2019

Background
This paper is co-authored by an informal group of experts from a broad range of
backgrounds, all of whom are active in standards groups, consortia, alliances and/or
research projects in the Internet of Things (IoT) space.

The idea is to show how IoT systems can be built using semantic technologies, enabling
semantic interoperability and thus allowing applications to reuse information originally
provided for a specific application or IoT domain. The primary target audience is IoT
developers that do not have a previous background in semantic technologies. The paper
describes the different tasks and activities required when building semantic systems. The
goal is to enable developers to build systems utilizing semantic technologies. It can be seen
as one building block to achieve semantic interoperability in IoT and thus create the basis for
a true Internet of Things.

The document is made available under the Creative Commons Attribution 4.0 International
License.

1 Introduction
Semantic technologies have recently gained significant support in a number of communities,
in particular the IoT community. An important problem to be solved is that, on the one hand,
it is clear that the value of IoT increases significantly with the availability of information from
a wide variety of domains. On the other hand, existing solutions target specific applications
or application domains and there is no easy way of sharing information between the
resulting silos. Thus, a solution is needed to enable interoperability across information silos.
As there is a huge heterogeneity regarding IoT technologies on the lower levels, the
semantic level is seen as a promising approach for achieving interoperability (i.e. semantic
interoperability) to unify IoT device description, data, bring common interaction, data
exploration, etc.

Semantic technologies have reached a good level of maturity and a number of standards
and de-facto standards are available to implement semantic-based solutions. However,
currently the widespread use is hindered by the fact that developers and system architects
are not familiar with semantic technologies. The respective knowledge is still primarily
limited to a group of experts. Thus, the purpose of this white paper is to spread this
knowledge further and to show the developer community how semantic solutions can be
implemented and how semantic interoperability can be achieved. The goal is to demonstrate
the practical feasibility of the approach. The approach followed in the paper is supported
with an example to go through different aspects and activities that are needed when
developing semantic solutions. For each of the steps, useful tools with short descriptions

22-Oct-2019 Semantic IoT Solutions - A Developer Perspective 3

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

and relevant links are provided. Depending on the respective requirements, we guide
developers to choose the appropriate tool according to their needs.

2 Problem Description

In this section, we describe the problem space in which semantics can be applied, and we
explain why it is needed to provide platform, system or domain interoperability.

Several studies [1], as well as alliances like AIOTI [2], have demonstrated the fragmentation
of the IoT ecosystem in terms of standardization, architectures and available technologies
and IoT service platforms.

Accordingly, measurements and data available in a certain IoT system or implementation
are often not accessible by different digital systems. Furthermore, these digital systems and
the data they handle are often still strongly dependent on the vertical domain (e.g. water,
energy, agriculture, etc.) in which they are implemented.

Therefore, there is a need for interoperability to address the current fragmentation in the IoT
ecosystem and foster cross-domain exchange of measurements and data. There are
several levels of interoperability identified by the existing literature (e.g., the GridWise
Context-setting Framework v1.0 [3], an earlier AIOTI report [4] and ETSI [5], as follows (also
see Figure 1):

● Technical Interoperability (connectivity, network) is usually associated with
hardware/software components that enable communication. It presupposes an
agreement how the information is transported across multiple communication
networks and the protocols needed.

● Syntactic Interoperability is usually associated with data formats. Messages
transferred by communication protocols and their payload need to have a
well-defined, agreed syntax and encoding.

● Semantic Interoperability is associated with the meaning of the content that is
exchanged. This requires agreement on common concepts and their relationships.

● Organizational Interoperability is the ability of organizations to effectively
communicate and transfer meaningful information among a variety of different
information systems and infrastructures. Organizational interoperability depends on
successful technical, syntactic and semantic interoperability.

For communication across different IoT systems, the semantic level is essential to achieve
interoperability. To that end, both sides of the information exchange (i.e., the different IoT
systems under consideration) must refer to a commonly agreed reference model. Ontologies

4 Semantic IoT Solutions - A Developer Perspective 22-Oct-2019

https://paperpile.com/c/bzZ8pX/zSko
https://paperpile.com/c/bzZ8pX/uWNu
https://paperpile.com/c/bzZ8pX/4ylO
https://paperpile.com/c/bzZ8pX/lqlG
https://paperpile.com/c/bzZ8pX/nOoq

can be used to represent such common reference model. Ontologies provide a formal
specification of a shared conceptualization [6], by formally defining relevant concepts, their
attributes and the relationships between these concepts. For example, ontologies can be
used to explicitly define the meaning of the data shared by an IoT device with other entities
(such as devices, servers, processes, applications, users) that need to correctly interpret the
information and commands contained in the transferred data in order to correctly act or
react. Note that some people use the term “knowledge graph” as an equivalent term for
“ontology”.

Figure 1. Different levels of interoperability [5]

Not only semantic interoperability enables interoperability at data level between different
platforms and IoT systems, but also between various vertical domains. When an ontology is
defined for one device from a vertical domain, e.g. agriculture, a generic interworking is
enabled, i.e. the data can be understood by entities and devices operating in other domains
(e.g., smart mobility or smart city). This enables IoT applications to interpret the containing
information exchanged and support smarter decision-making because they collect,
understand the meaning, and process data from all sorts of devices.

Within the next sections, a specific use case illustrates how semantic interoperability can be
implemented and deployed.

22-Oct-2019 Semantic IoT Solutions - A Developer Perspective 5

https://paperpile.com/c/bzZ8pX/E805
https://paperpile.com/c/bzZ8pX/nOoq

3 Example Use Cases

Describe an example use case that instantiates the problem space, is as simple as possible,
but shows the advantages of semantics and can be used in the following subsections.

3.1 Use case 1: Smart Home and Smart Grid
In our smart home use case, smart devices are connected to the smart grid (see Figure 2).
The smart home resident wants to optimize the energy consumption of the house, but still be
in control of key functionalities (e.g., the washing has to be done at a specific time, when the
batteries of the electronic vehicle are recharged, and that the temperature in the house is
kept within a certain range). The smart grid company offers the smart home resident a
special tariff with significant discounts during times when a surplus of energy is available in
exchange for energy consumption savings. Thus, the smart grid company balances the
overall energy consumption and the happier smart home resident reduces the energy bill. As
defined in a recent report commissioned by the European Commission on interoperable
smart homes and grids [7], the ability of the home residents to adapt their electricity
consumption in response to market signals is called “Demand Side Flexibility (DSF)”. To
enable DSF, the home residents may adjust their demand by postponing some tasks that
require large amount of electric power, or decide to pay a higher price for their electricity. To
offer DSF, the home resident requires smart appliances that are able to offer flexibility to the
smart grid company, such as a washing machine that can shift its power demand, or other
appliances such as heat pumps, electric vehicles charging stations, etc. that are able to
connect to the home network and act smart.

6 Semantic IoT Solutions - A Developer Perspective 22-Oct-2019

https://paperpile.com/c/bzZ8pX/BvrB

Figure 2: Smart home and smart grid use case

In order to implement the scenario, different systems have to be integrated allowing the
following:

● Connecting controllable user devices in the smart home.

● Connecting the smart grid with the smart home.

● Providing the smart home resident device operation policies.

● Providing the smart grid operator time-dependent energy cost definition and request
an energy-consumption profile.

● Optimizing energy consumption based on the time-dependent energy costs and
energy consumption profiles in line with the operation policies and a possible
consumption limit.

To achieve interoperability between the different systems in the smart home and the smart
grid, agreement on interfaces and modelling of information is necessary. Thus, we show
how the relevant information can be modelled on a semantic level to achieve semantic
interoperability.

22-Oct-2019 Semantic IoT Solutions - A Developer Perspective 7

Examples of information that needs to be modelled include:

● Device (Status, Control, Monitoring, Energy consumption profile, Operation policy).

● Estimated energy cost timeline.

● Energy consumption limit.

Example use cases that require interoperability and involve devices in the smart home and
the smart grid are the following:

● Configuration of devices that want to connect to each other in the home network, for
example, to register a new dishwasher to the list of smart home devices.

● (Re-)scheduling of appliances in certain modes and preferred times using power
profiles to optimize energy efficiency and accommodate the customer's preferences.

● Monitoring and control status of the appliances.

● Reaction to special requests from the Smart Grid, e.g. incentives to consume more
or less depending on current energy availability, or emergency situations that require
temporary reduction of power consumption.

These use cases are associated with the following user stories described in IEC TR 62746-2
[8]:

● User sets up his/her devices.

● User is notified when the washing machine has finished working.

● User wants to schedule washing at 5:00 p.m. to benefit from the lowest electricity
cost.

● User wants to limit his/her own maximum energy consumption.

● User offers flexibility and gives permission to optimize energy consumption (e.g., the
freezer in a defined range for a specific time), if the grid faces (severe) stability
issues.

● User is notified by the grid in case of emergency situations (e.g. blackout
prevention).

8 Semantic IoT Solutions - A Developer Perspective 22-Oct-2019

https://paperpile.com/c/bzZ8pX/t7ig

3.2 Use Case 2: Ambient Assisted Living (AAL)
Ambient Assisted Living (AAL) is an additional use case (see Figure 3) that we will use to
illustrate what needs to be done to achieve semantic interoperability in the context of the
smart home. The smart home resident in this case is an elderly person that needs special
support and requires continuous monitoring. Depending on their personal health, the
monitoring may include vital parameters such as heartbeat, oxygen, temperature, urinal
leakage, posture and fall detection. This information has to be continuously communicated
to medical and caregiving personal.

Apart from the core health parameters, it is important to understand whether the person is
following the daily routine, i.e. what activities are performed in what order, for example
whether the interaction with smart appliances like the fridge and the electric kettle indicates
that breakfast is being prepared, or whether the use of the washing machine and the
subsequent use of the dryer shows that clothes have been washed. Such information is
important for caregivers and the social environment (e.g. family and neighbours) to
understand what elderly persons can still manage by themselves and where more help is
required. The support of such a scenario is especially relevant in the context of an ageing
society where limited resources need to be used efficiently and the quality of life for elderly
people can be improved by allowing them to stay in their familiar environment for longer than
currently possible [9].

Figure 3: Ambient assisted living use case

22-Oct-2019 Semantic IoT Solutions - A Developer Perspective 9

https://paperpile.com/c/bzZ8pX/heRd

To implement the scenario, different systems have to be integrated allowing the following:

● Connect body-worn sensors (heart rate sensor, temperature sensor, Oximeter, …)
with each other (Smart BAN) and via a gateway to the network to enable access to
caregivers and social environment.

● Enable access to status and energy consumption characteristics of devices (Smart
Home) to identify user activity.

● Optimize comfort in the home based on patient information, i.e. control temperature,
humidity, lighting condition – which needs to be taken into account by energy
management in the smart home.

In this scenario, it is necessary to agree on interfaces and the semantic modelling of
information to achieve interoperability between the different systems in the smart home,
smart body-worn devices of the user and the applications of caregiving and medical staff, as
well as family and social environment. Examples of information that needs to be modelled
include:

● Status and energy usage profile of devices and (changes) in actual energy usage as
basis for detecting user activities.

● Comfort profile and related parameters to be controlled (e.g. temperature, humidity,
lighting conditions).

Example use cases that require interoperability and involve devices in the smart home,
smart body-worn devices and applications are the following:

● To detect user activities, (changes) in actual energy usage have to be accessed and
mapped to detailed energy usage profiles of devices. Additional user related
information (from body sensors, location) can be integrated to improve activity
detection accuracy.

● To create a comfortable atmosphere in the smart home, related parameters (e.g.
temperature, humidity, lighting conditions) have to be controlled taking into account
user profile and body sensor information.

The presented use-cases represent two vertical domains (energy and smart living) that need
to interoperate in order to have common benefits in the interaction with the smart home
devices: (i) energy efficiency and (ii) elderly people’s wellbeing. Thus interoperability
between both scenarios is required, i.e. the information needs to be shared and understood
in the same way for both use cases and this means semantic interoperability has to be
achieved.

10 Semantic IoT Solutions - A Developer Perspective 22-Oct-2019

4 Ontology Selection / Creation

This section aims to help developers willing to discover, select, reuse, integrate and, if
necessary, develop ontologies. We recommend identifying the requirements of the ontology
by defining a set of competency questions. Then, we strongly encourage to reuse existing
ontologies by providing advice on how to discover and select the appropriate existing
ontologies fitting developers’ needs. In case the reuse is not enough, some guidelines for
ontology development are provided. To give an example, we take aspects of our Smart
Home/Smart Grid use case, where we need ontologies describing energy.

An ontology can represent a certain phenomenon, topic, or subject area through the
description of classes, properties and instances (also known as individuals). Classes are
abstract groups, sets, or collections of individuals and represent ontology concepts.
Furthermore, these classes can have a hierarchical relation and can be arranged in
taxonomies of superclasses and subclasses. Properties represent features or characteristics
of individuals as well as the relationship between them. Finally, instances represent
individuals of the classes described in the ontology.

Ontologies can be constructed based on different ontology languages such as the Web
Ontology Language (OWL) [10,11]. OWL itself is based on the Resource Description
Framework (RDF) [12] and RDF Schema (RDFS) [13], thus the vocabulary used for defining
ontologies is a combination of concepts defined in RDF, RDFS and OWL. Certainly, an
ontology language provides the expressive capability to encode knowledge about a specific
domain and is often complemented with inference rules or validation rules that support the
processing of such knowledge.

Figure 4 shows the different steps needed for finding, reusing, extending and, if necessary,
creating the ontologies needed as the basis for building a semantic system.

22-Oct-2019 Semantic IoT Solutions - A Developer Perspective 11

https://www.w3.org/OWL/
https://paperpile.com/c/bzZ8pX/d8ta+dgDN
https://www.w3.org/RDF/
https://paperpile.com/c/bzZ8pX/l7EU
https://www.w3.org/TR/rdf-schema/
https://paperpile.com/c/bzZ8pX/WW20

Figure 4: Ontology selection / creation diagram

4.1 Identify ontology requirements
First of all, it is necessary to define the purpose of the ontology. For that purpose, filling an
ORSD (Ontology Requirements Specification Document) [14] may be helpful. It facilitates
identifying the intended uses of the ontology, the end users, and the requirements the
ontology should fulfill. These requirements will guide the developer during the creation of the
ontology and can be used (iteratively during the ontology development or later, once
ontology is developed) to validate if the ontology fulfills its intended, original purpose.

Use case ontology requirements
An excerpt of the ORSD is shown Figure 5 that can be used for the smart home/smart grid
use case considered in this paper:

12 Semantic IoT Solutions - A Developer Perspective 22-Oct-2019

https://paperpile.com/c/bzZ8pX/2rCP
http://oa.upm.es/5474/1/INVE_MEM_2009_64393.pdf

Figure 5: Ontology Requirement Specification Document example

Other examples of ORSD that were used to specify the requirements that guided the
creation of the Smart Applications REFerence ontology (SAREF) [15] suite of ontologies can
be found in a number of ETSI Technical Reports [16–19].

22-Oct-2019 Semantic IoT Solutions - A Developer Perspective 13

https://saref.etsi.org/saref#
https://paperpile.com/c/bzZ8pX/3ztc
https://paperpile.com/c/bzZ8pX/rEk4+sUBF+bCJD+bce5

4.2 Reuse existing ontologies
Once the purpose and the level of detail of the ontology are clear, it is necessary to define
the concepts, properties and relationships that suit this purpose. Instead of creating an
ontology from scratch, it is a best practice to reuse existing ontologies when possible due to
the following reasons [20]:

● The sharing and reuse of ontologies increases the quality of the applications using
them, as these applications become interoperable and are provided with a deeper,
machine-processable and commonly agreed-upon understanding of the underlying
domain of interest.

● It reduces the costs related to ontology development because it avoids the
reimplementation of ontological components, which are already available on the Web
and can be directly – or after some additional customization – integrated into a target
ontology.

● It potentially improves the quality of the reused ontologies, as these are continuously
revised and evaluated by various parties through reuse.

According to [20], ontology reuse can be understood as a three-step process: (i) ontology
discovery, (ii) ontology selection, and (iii) ontology integration.

(i) Ontology discovery
It consists of finding appropriate ontologies that meet our requirements. By default, we
encourage to look at ontologies supported by standardization such as ETSI SAREF [15],
W3C & OGC SOSA/SSN [21,22] , W3C WoT TD [23], oneM2M Base Ontology [24], ETSI
SmartBAN MyOntoSens, etc.), we refer the readers to look at the white paper Towards
Semantic Interoperability Standards based on Ontologies, Section 4.1 [25]. The task of
finding appropriate ontologies can nowadays be facilitated due to the numerous ontology
catalogs to find existing ontologies. Some of them are listed below, an extensive analysis of
ontology catalogs for smart cities can be found in [26]:

● Linked Open Vocabularies (LOV) [27] designed by the Semantic Web community.
This catalog is highly maintained and references ontology fitting their best practices
criteria (e.g., ontology metadata).

● Linked Open Vocabularies for Internet of Things (LOV4IoT) [28] references more
than 440 ontology-based projects relevant for IoT. It covers more than 20 domains:
IoT, Wireless Sensor Networks (WSNs), Web of Things (WoT), smart home, smart
energy, healthcare, smart city, robotics, etc. LOV4IoT is highly maintained with the
inclusion of new references, ontology-based projects and domains.

14 Semantic IoT Solutions - A Developer Perspective 22-Oct-2019

https://paperpile.com/c/bzZ8pX/MYDU
https://paperpile.com/c/bzZ8pX/MYDU
https://saref.etsi.org/saref#
https://paperpile.com/c/bzZ8pX/3ztc
http://www.w3.org/ns/sosa/
https://www.w3.org/TR/vocab-ssn/
https://paperpile.com/c/bzZ8pX/qsW3+dDwd
https://www.w3.org/2019/wot/td
https://paperpile.com/c/bzZ8pX/lGZR
https://git.onem2m.org/MAS/BaseOntology
https://paperpile.com/c/bzZ8pX/Q1Bi
https://doi.org/10.13140/RG.2.2.26825.29282
https://doi.org/10.13140/RG.2.2.26825.29282
https://paperpile.com/c/bzZ8pX/bflO
https://paperpile.com/c/bzZ8pX/e317
https://lov.linkeddata.es/dataset/lov/
https://paperpile.com/c/bzZ8pX/iwhT
http://lov4iot.appspot.com/
https://paperpile.com/c/bzZ8pX/wn2a

● READY4SmartCities [29], an ontology catalog for smart cities.

Use case ontology discovery
Since the use case presented in this report is more oriented to smart homes rather than
smart cities, we have decided to focus on the LOV4IoT catalogue for the following
discussion.

In Figure 6, a screenshot of LOV4IoT is shown. With regards to the “Smart Home, Smart
office, Building Automation, Activities of Daily Living Catalog” to which the presented use
case belongs to, there are different ontologies that can be leveraged. Among them, SAREF
[30] is one of the top recommended ontologies because it is shared online, it is referenced
by the LOV community since it follows a set of best practices requested by the community,
and it is highly maintained.

Figure 6: LOV4IoT Catalog search

As for the LOV, Figure 7 shows ontologies related to the term “electric consumption” which
is relevant for the use case at hand as it has been shown in the ORSD. The first results are

22-Oct-2019 Semantic IoT Solutions - A Developer Perspective 15

http://smartcity.linkeddata.es/
https://paperpile.com/c/bzZ8pX/FKPZ
https://saref.etsi.org/saref#
https://paperpile.com/c/bzZ8pX/sXTt

terms defined in the m3-lite taxonomy [31], whose main purpose is to extend the
representation of concepts that are not covered by the SOSA/SSN [21] [22] ontology (e.g.
different types of sensors or actuators) in a rather detailed way.

Figure 7: LOV ontologies related to electric consumption

(ii) Selection of suitable (parts of) ontologies
This task deals with assessing the usability of an ontology with respect to the use case
requirements. This may result in an arduous task due to the different criteria that make
ontologies suitable for a certain use case [32]. These criteria encompass the content of the
ontology and the organization of their contents, the language in which it is implemented, the
methodology that has been followed to develop it, the software tools used to build and edit
the ontology, and the costs that the ontology will require in a certain project. Furthermore,
the scarce documentation of ontologies can make this process even more difficult.

As already indicated above, we recommend to first look at ontologies supported by
standardization activities (e.g., ETSI SAREF [15], W3C & OGC SOSA/SSN [21,22] , W3C
WoT TD [23], oneM2M Base Ontology [24], ETSI SmartBAN MyOntoSens, etc.).

In case the developer needs to reuse only a subset of classes and properties of the
ontology, instead of the whole ontology, an extractor tool can be used.

16 Semantic IoT Solutions - A Developer Perspective 22-Oct-2019

http://purl.org/iot/vocab/m3-lite#
https://paperpile.com/c/bzZ8pX/hf7W
http://www.w3.org/ns/sosa/
http://www.w3.org/ns/ssn/
https://paperpile.com/c/bzZ8pX/qsW3
https://paperpile.com/c/bzZ8pX/dDwd
https://paperpile.com/c/bzZ8pX/MKu4
https://saref.etsi.org/saref#
https://paperpile.com/c/bzZ8pX/3ztc
http://www.w3.org/ns/sosa/
https://www.w3.org/TR/vocab-ssn/
https://paperpile.com/c/bzZ8pX/qsW3+dDwd
https://www.w3.org/2019/wot/td
https://paperpile.com/c/bzZ8pX/lGZR
https://git.onem2m.org/MAS/BaseOntology
https://paperpile.com/c/bzZ8pX/Q1Bi

Limitations: Further effort is needed to improve ontology ranking algorithms to support
developers to find suitable ontologies that match their needs.

In the context of the smart home/smart grid use case, let us consider the simple example of
a temperature sensor in a room that can help to optimize energy efficiency in combination
with other smart devices in the home. In this context, an existing ontology that meets the use
case description is SAREF [15]. As shown in the UML diagram in Figure 8, by reusing parts
of SAREF, our temperature sensor can be described as a Device (saref:Device) of type
Sensor (saref:Sensor) that is provided with some static attributes, such as a Description
(String), a Manufacturer (String) and a model (String). In order to provide some
measurements, the temperature sensor needs to be in an ON state (saref:OnState). As
a temperature sensor, this device performs a sensing function
(saref:SensingFunction , which is a subclass of saref:Function) which has

● a range, a sensing time and the sensor type (saref:Temperature)

● an associated command (in our example we defined a ex:GetTemperature
command as a subclass of the more general saref:GetCommand).

The temperature sensor is used to make a measurement that relates to Temperature (which
is a saref:Property), has a unit of measure of type saref:UnitOfMeasure (°C in our
example), and has a Value (22.0 in our example).

Figure 8: UML diagram representing a temperature sensor according to SAREF [30]

22-Oct-2019 Semantic IoT Solutions - A Developer Perspective 17

https://saref.etsi.org/saref#
https://paperpile.com/c/bzZ8pX/3ztc
https://paperpile.com/c/bzZ8pX/sXTt

Use case ontology selection
After having identified existing ontologies that are suitable for the use case at hand, it has to
be decided if these ontologies can be reused as they are. For our use case, the choice of
reusing SAREF is based on its support by a standardization body (ETSI) and the extended
community of users. However, SAREF does not cover all the use case requirements, so it is
necessary to look further at other ontologies.

If multiple ontologies are imported at the same time, they may overlap to a certain extent in
some of their parts and it is desirable to avoid redundancy of similar concepts to enhance
interoperability. In our use case example, we find out that the m3-lite ontology [33] can be
reused, as it contains terms related to “properties” that are not captured in SAREF.
Therefore, SAREF can be integrated with classes from the m3-lite ontology. However, of the
several classes of the m3-lite that are shown in Figure 9, we are actually interested only in
the subclasses of qu:QuantityKind , “qu: ” being the namespace for the NASA QUDT
ontology for Units of Measure, Quantity Kinds, Dimensions and Types [34]. Thus we would
like to reuse a subset of the m3-lite ontology and want to extract this subset. To that end, a
Module Extractor Tool, e.g. the Locality Module Extractor Tool [35], can be used to reuse
only the part of the ontology that is relevant to our use case.

Figure 9: Classes of the m3-lite ontology

After running the Module Extractor Tool, we get an ontology module named
“m3-lite_QuantityKindModule” that contains the qu:QuantityKind subclasses and their
related axioms (see Figure 10). Comparing this module with the original m3-lite ontology, we
can see how the size has been reduced, including only the terms that are relevant to our use
case (i.e., “Properties”). The number of axioms of the complete m3-lite ontology have been
reduced in the “m3-lite_QuantityKindModule” from 2035 to 360, and the number of classes
from 451 to 178.

18 Semantic IoT Solutions - A Developer Perspective 22-Oct-2019

http://purl.org/iot/vocab/m3-lite#
https://paperpile.com/c/bzZ8pX/rq55
https://bioportal.bioontology.org/ontologies/QUDT
https://bioportal.bioontology.org/ontologies/QUDT
https://paperpile.com/c/bzZ8pX/qzOt
https://www.cs.ox.ac.uk/isg/tools/ModuleExtractor/
https://paperpile.com/c/bzZ8pX/7d50

Figure 10: Classes extracted from m3-lite Ontology

(iii) Ontology integration
Finally, the selected ontology or combination of ontologies may need to be customized in
order to further accommodate the use case’s requirements. This customization may involve
additional modification and integration operations such as extraction of ontology parts or
even content and structural modification or extension.

When more than one ontology (or parts) are integrated, an ontology matching tool can be
used to return a potential alignment between two ontologies. Some basic ontology matching
tasks consist in setting relationships such as:

● Equivalences between concepts (with the owl:equivalentClass property) and
between properties (with the owl:equivalentProperty)

● Subsumptions (with the rdfs:subClassOf or rdfs:subPropertyOf properties)

● Disjointness between concepts (with the owl:disjointWith property)

● Labels and comments to deduce similarities (with rdfs:label and
rdfs:comment properties)

Use case ontology integration
The process to be followed to integrate the SAREF ontology and the
“m3-lite_QuantityKindModule” module depends on the ontology design tool used (e.g., it can
be done by importing the ontology within the Protege [36] ontology editor). Once integrated,

22-Oct-2019 Semantic IoT Solutions - A Developer Perspective 19

https://paperpile.com/c/bzZ8pX/YJkH

it needs to make explicit that the class saref:Property and qu:QuantityKind have
the same adjacent semantics. That is, the equivalence between the two concepts needs to
be set. This equivalence can be set with the following axiom:

saref:Property owl:equivalentClass qu:QuantityKind

Likewise, the equivalence can be set in the ontology design tool.

4.3 Create new ontology / Extend existing ontologies
If the existing ontologies do not meet all the requirements captured in the ORSD, then they
need to be extended. Ontologies must be carefully designed and implemented, as these
tasks have a direct impact on their final quality. Therefore, the use of well-founded ontology
development methodologies such as the ontology development 101 [37], NeOn
Methodology [38], On-To-Knowledge, DILIGENT are advised. The following ontology
selection/creation process is inspired by the NeOn Methodology. In case no other existing
ontologies match our specific requirements captured in the ORSD, it can be considered to
develop a new ontology from scratch. Concerning ontology editing tools, Protégé [36] is one
of the most popular software to learn how to create ontologies. Protégé provides a Graphical
User Interface (GUI) to design and develop ontologies. One can either set up Protégé on
their own computer or use the web collaborative Protégé tool. There are a set of excellent
tutorials to develop your first ontology with Protégé [39] [37].

When creating or extending an ontology, some good practices should be followed for
associating metadata to the ontology and to the terms it defines, and for extending or
reusing existing ontologies. Section 8.3 in ETSI Technical Report 103 608 [40] is dedicated
to these issues.

It is also advisable to follow the modularisation principle by separating the required
knowledge in well-decoupled ontology modules. The main benefits of this principle are: 1)
scalability for querying data and reasoning on ontologies, 2) scalability for evolution and
maintenance, 3) complexity management, 4) understandability, 5) context-awareness and
personalization, and 5) reuse [15]. For example, when some of the ontology modules are
updated, thanks to the modularization, the impact of these changes in other modules and
the global ontology is minimized. IoT-O [41] and FIESTA-IoT [33] ontologies are good
examples of ontology modules.

Note that the extension and maintenance of ontologies require proper understanding on the
resulting business impact. For instance a smart appliance using an extended ontology might
no longer be interoperable with another smart appliance using the initial version. A
maintenance strategy might therefore have to be defined prior to the implementation of an
extension.

20 Semantic IoT Solutions - A Developer Perspective 22-Oct-2019

https://paperpile.com/c/bzZ8pX/StXp
https://paperpile.com/c/bzZ8pX/hg6i
https://protege.stanford.edu/
https://paperpile.com/c/bzZ8pX/YJkH
https://paperpile.com/c/bzZ8pX/mQul
https://paperpile.com/c/bzZ8pX/StXp
https://paperpile.com/c/bzZ8pX/unRI
https://paperpile.com/c/bzZ8pX/YpOT
https://paperpile.com/c/bzZ8pX/rq55

It is also recommendable to use Ontology Design Patterns (ODP) as building blocks to
create new ontology modules. An ODP is a modeling solution to solve a recurrent ontology
design problem. The ODP repository collects and makes ODPs available on the Web. It may
contain a solution created by somebody else who already faced the same modeling
challenge. For example, ETSI Technical Report TR 103 549 [42] lists Ontology Patterns that
may be used for the IoT domain. Also, ETSI Technical Specification TS 103 548 [43]
describes a standard ontology pattern to describe connected systems, along with guidelines
on how to instantiate this pattern for different verticals.

Once the ontology is created, it is advisable to align it with related ontologies to make the
ontology applicable to similar problems in different domains and scenarios.

5 Ontology Development & Instantiation

This section explains the creation of the semantic information based on the ontology
concepts previously selected and adapted. The ontology provides the vocabulary describing
a smart home to support the use case mentioned earlier.

Once the ontology, e.g. for assisted living or smart grid, has been refined and reaches a
minimal viable state, it can be instantiated and be part of the use case or solution. The main
objective is to instantiate an ontology which is populated by data from the sensors and
actuators deployed in the context. For example, an ontology, similar to the one depicted in
the UML diagram of Figure 8, exposes a device which makes measurements and has
functions. This ontology needs to be populated with actual devices deployed in the real
environment, as shown in Figure 11.

Figure 11: Creation of the dataset annotated with the ontology

22-Oct-2019 Semantic IoT Solutions - A Developer Perspective 21

https://paperpile.com/c/bzZ8pX/bQ97
https://paperpile.com/c/bzZ8pX/4BQI

The developers create the necessary software which can be deployed on a device firmware
such as in [44] to produce data already conforming to the ontology. The software can also
be deployed on a more complex system such as a building management system as in [45].
In this example, the data is collected locally from various sensors and gateways, then
transformed to an ontology instance conforming to the ontology and then pushed to the
cloud. In some cases, where it is not possible to easily update existing devices and systems,
the software can be deployed on the cloud as in [46], in order to semantically annotate data
to be compliant with the ontology and use cloud resources to save device power
consumption.

The following example, depicted in Figure 12, specifies how to instantiate a light switch
using the SAREF ontology, as described in [19]. This instantiation is referred to using the
saref-ls prefix. Note that this prefix is different from the saref prefix, which indicates the
SAREF ontology on which the saref-ls instantiation is built upon. The instantiation of an
ontology is also called dataset.

Figure 12: Light Switch example using SAREF (from ETSI TR 103 411 [19])

22 Semantic IoT Solutions - A Developer Perspective 22-Oct-2019

https://paperpile.com/c/bzZ8pX/tBn5
https://paperpile.com/c/bzZ8pX/Ffrn
https://paperpile.com/c/bzZ8pX/Ckcr
https://paperpile.com/c/bzZ8pX/bce5
https://paperpile.com/c/bzZ8pX/bce5

The light switch instance in Figure 12 is called saref-ls:LightSwitch_LS1001 and
represents a device of type saref:LightSwitch , which is a subclass of
saref:Actuator . The light switch instance also has a human readable label "Light

switch LS1001" and some properties that uniquely characterize it, namely its model,
manufacturer and a human-readable description as follows:

● is designed to accomplish the task of saref:Lighting , which is of type
saref:Task;

● consists of a saref-ls:Switch_A6372J , which is of type saref:Switch and is
used for the purpose of controlling a property of type saref:Light ;

● can be found in the states saref:On or saref:Off ;

● performs a saref:OnOffFunction , which has the commands saref:On and
saref:Off (note that the saref:On command acts upon a saref:Off state,
while vice-versa the saref:Off command acts upon a saref:On state);

● offers a saref-ls:SwitchOnService , which in turn is of type
saref:SwitchOnService . The saref:SwitchOnService is a representation
of the saref-ls:OnOffFunction to allow the remote switch on of the lights
through mobile phone devices that are connected to the local network.

Ontologies and their instantiations are modelled as triples following the RDF (Resource
Description Framework) [12] mode. The triples have the form <subject, predicate,

object> . As the object of one triple can be the subject of other triples, the overall structure
becomes a graph, e.g. as the one shown in Figure 12. Subject and object are instances of
ontology concepts/classes and predicates are (object) properties that are defined in the
ontology as relating instances of a concept/class (domain) to other instances of a
concept/class (range).

The RDF triples can be represented in different serialization formats. In particular, the
following serialization formats are frequently used: Turtle [47], N-Triples [48], N-Quads [49],
JSON-LD [50], N3 [51], RDF/XML [52] and RDF/JSON [53]. The serialization formats are to
a large degree equivalent and the choice depends on the tasks and the available tools. In
this paper, we primarily use a Turtle representation as it is compact and human-friendly with
respect to readability. The Turtle code corresponding to Figure 12 is available at
https://saref.etsi.org/saref/v2.1.1/example/lightswitch.ttl. The Turtle code of an additional
example of how to instantiate a smart meter with an associated measurement using SAREF
is available at https://saref.etsi.org/saref/v2.1.1/example/energymeter.ttl.

There are several libraries and tools which enables developers to accelerate the ontology
instantiation as detailed in Section 10 on Software Implementation.

22-Oct-2019 Semantic IoT Solutions - A Developer Perspective 23

https://www.w3.org/RDF/
https://paperpile.com/c/bzZ8pX/l7EU
https://www.w3.org/TR/turtle/
https://paperpile.com/c/bzZ8pX/dz45
https://www.w3.org/TR/n-triples/
https://paperpile.com/c/bzZ8pX/KIRd
https://www.w3.org/TR/n-quads/
https://paperpile.com/c/bzZ8pX/Jxgv
https://www.w3.org/TR/json-ld11/
https://paperpile.com/c/bzZ8pX/qyvF
https://www.w3.org/TeamSubmission/n3/
https://paperpile.com/c/bzZ8pX/OSX9
https://www.w3.org/TR/rdf-syntax-grammar/
https://paperpile.com/c/bzZ8pX/ngNE
https://www.w3.org/TR/rdf-json/
https://paperpile.com/c/bzZ8pX/Irf6
https://saref.etsi.org/saref/v2.1.1/example/lightswitch.ttl
https://saref.etsi.org/saref/v2.1.1/example/energymeter.ttl

6 Semantic Information and Semantic Annotation

This section describes how the information instances created in the previous section are
used – either having uniform semantic information, i.e there is only the semantic information,
or using semantic information as annotation of existing non-semantic information, i.e. there
is the original information in whatever form and semantic annotation that further describes
this original information. Different representations can be used for the semantic information.
Aspects of the smart home are described semantically using different representations.

To fully use semantic technologies, systems and platforms are expected to serve
information with ontologies so that one can look up data content and get information from
ontology definitions including the relationships between the terms in the ontology. Semantic
information is regarded as any form of information containing explicit semantic descriptions
and using ontologies to drive the information lifecycle. Comparing to classical syntax data,
semantic information is human and machine understandable and unambiguous to
support advanced data functions such as complex query, intelligent human-machine
interaction, contextual data analytics and data interoperability.

In order to have semantic information on hand, we have typically two ways, i.e., Semantic
Information Creation and Semantic Annotation, as detailed as follows. Both of the processes
bridge the gap between syntax and semantics world with different application cases.

Semantic Information Creation produces semantic information using ontologies from
scratch. The used ontologies specify the concepts and relations used in the information.

This is the most convenient way to create new semantic data based on semantic
technologies, if no existing constraints apply. The semantic information built from scratch
fully inherits the semantic benefits, while the required efforts are similar to the efforts of data
creation following predefined schemas.

Semantic Annotation is the process of linking existing information in whatever format with
specific ontologies to provide both machine understandable and human readable
descriptions. This means that the original information is kept as it is and semantic
information further describes this original information, i.e. can be seen as meta information.
For example, the original information can be structured documents, services, functions,
images and videos, etc. Ontologies provide semantics to existing data and furthermore link
different information together via predefined relations.

This process is more suitable in cases where data already exists based on other
specifications or the data sources can only provide data following specific formats without

24 Semantic IoT Solutions - A Developer Perspective 22-Oct-2019

semantics. Thus, the objective is to evolve the existing data with semantic technologies
while keeping as much as possible backward compatibility with existing specifications.

In order to better illustrate the two processes, we present an example following our smart
home scenario, in which a room with a URI sd:Room1001 and an energy limit profile is
equipped with a temperature sensor providing temperature measurement and a washing
machine providing washing machine states and remote washing services to turn on/off and
switch mode. We respectively introduce how we can build semantic information of the
example following semantic information creation and semantic annotation; throughout the
process, the main ontologies we use for semantic annotation are SAREF, which has been
introduced in previous chapters, and the SAREF extension SAREF for Energy (S4ENER)
that targets the energy domain.

1. Semantic Information Creation The semantic information creation builds the
corresponding information from scratch. The general semantic information creation can be
briefly summarized into the two following steps:

1. Identification or definition of ontologies to be used;

2. creation of semantic information by use of ontology concepts;

In our example, we describe the Room1001 resource of type Room defined in our own
ontology, (since the Room type is not defined in SAREF or S4ENER), and the Room1001
has an energy profile which points to another resource “/Limit”. We use the standard
N-Triples as the serialization format and the output of the above descriptions are three
triples as shown in Table 1.

Table 1 Semantic modelling and its representation in N-Triples

By doing so, we indicate that the
Room1001 is an instance of the
own:Room class. The relation between
the Room1001 and the resource “/Limit”
is further detailed in the
s4ener:hasEnergy property, and the
resource “/Limit” is actually an instance
of the s4ener:energyMax class which
specifies the maximum energy profile.

sd is the prefix for the SAREF dataset.

sd:Room1001 rdf:type own:Room,

sd:Room1001 s4ener:hasEnergy sd:Limit,

sd:Limit rdf:type s4ener:EnergyMax

Room1001 has two devices with ids
Ts001 and Wm002, which are
respectively instances of
saref:TemperatureSensor and

sd:Room1001 s4ener:hasDevice sd:Ts001,

sd:Room1001 s4ener:hasDevice sd:Wm002,

sd:Ts001 rdf:type saref:TemperatureSensor,

sd:Wm002 rdf:type saref:WashingMachine

22-Oct-2019 Semantic IoT Solutions - A Developer Perspective 25

saref:WashingMachine classes. This
is expressed by the relation
s4ener:hasDevice.

As the last step, we further add the
descriptions of the two devices we just
added.

This example describes that the
temperature sensor Ts001 has a
sensed value 25; the washing machine
Wm002 has a state defined in
Wm002/state (an instance of
saref:State class) and offers a
switch service defined in wm002/switch
(an instance of saref:Service class).

sd:Ts001 saref:hasValue "25",

sd:Wm002 saref:hasState sd:Wm002/state

sd:Wm002/state rdf:type saref:State

sd:Wm002 saref:offers sd:Wm002/switch

sd:Wm002/switch rdf:type saref:Service

By combining all the triples above, we get a complete description of our example following
semantic information creation process. Through the whole process, we also link different
information together by use of the properties defined in different ontologies, which further
facilitates the data search and analytics.

Moreover, although we use N-triples as the serialization format in our example, the
information we created can be easily transformed to other semantic serialization formats
such as JSON-LD and RDF/XML.

2. Semantic Annotation Existing non-semantic information can be enriched with semantics
and transformed to semantic information via semantic annotation. The general semantic
process can be briefly summarized into the following three steps:

1. Preparation of source information to be annotated;

2. Identification or definition of ontologies to be used;

3. Manual or automatic link between source information and ontologies;

In Table 2 we present an example, where a non-semantic JSON representation can be
annotated and transformed into a JSON-LD representation.

26 Semantic IoT Solutions - A Developer Perspective 22-Oct-2019

Table 2. Non-semantic JSON information and annotation transforming it into JSON-LD

The description of the rooms is
serialized in JSON and thus in
non-semantic form.

{ "id": "Room1001",

"type": "Room",

"energyProfile": "/Limit",

"devices": [{ "id": "Ts001",

"type": "TemperatureSensor",

"value": "25"},

 { "id": "Wm002",

"type": "WashingMachine",

"state": "/state",

"service": /switch" }]

}

As a first step for mapping to
JSON-LD, the JSON description of
the Room1001 as the source
information has to be annotated.

For JSON-LD we need @id and
@type for each element so that all
ids in the JSON descriptions are
defined as an object node with a
URI as identifier, while all types are
identified as @type, whose value
will be an ontology class.
As corresponding information, i.e. id
and type, already exist in JSON, a
simple mapping is sufficient. In other
cases the information may have to
be added.

"id": "@id",

"type": "@type"

All type values in the JSON are
mapped to different SAREF or
SAREF for Energy (S4ENER)
classes and properties, except the
Room which is not defined in
SAREF or S4ENER and thus needs
to be defined in a different ontology.

"saref": "https://w3id.org/saref",

"s4ener": "https://w3id.org/saref4ener",

"own" “https://myOntology”

"TemperatureSensor": "saref:TemperatureSensor",

"WashingMachine": "saref:WashingMachine",

"Room": "own:Room"

"energyProfile":"s4ener:hasEnergy",

"/Limit":"s4ener:energyMax",

"value":"saref:hasValue",

"service": "saref:offers",

22-Oct-2019 Semantic IoT Solutions - A Developer Perspective 27

"devices":"s4ener:hasDevice",

"Wm002/switch": "saref:Service",

"state ": "saref:hasState",

"Wm002/state": "saref:State"

This defined mapping is put into an
“@context” element and added to
the original JSON. As the result of
this annotation, all terms used in
JSON are linked to semantic
concepts, for example, we now
know that the resource
"Wm002/switch" is a device service
defined by SAREF, and the "/Limit"
is a resource describing the
maximum energy consumption as
specified in S4ENER.

{

 "@context": {

"id": "@id",

"Wm002/state": "saref:State",

 "Room": "own:Room"

… …

},

"id": "Room1001",

"type": "Room",

… …

}

However, most documents cannot be straightforwardly transformed to RDF with this
method. For these other cases, many tools are available off-the-shelf. The W3C wiki
contains a list of tools [54] to generate RDF from a set of predefined data formats, or generic
solutions to define transformations from a variety of data formats. On top of these, paper
[55] proposes an approach to make web services and things on the Web of things reach
semantic interoperability, while letting them the freedom to use their preferred formats.

7 Storing Semantic Information

Once the instance dataset is created , we make it accessible to applications. The traditional
way is to store the information in a suitable and efficient way.

The instance dataset created needs to be stored and made accessible to applications and
other components to later process it. For a fast prototyping, the semantic dataset could be
stored in a file. The ideal solution is storing semantic datasets in specialized databases
called triple stores. As RDF is based on triples, triple stores are optimized for storing and
accessing these RDF triples. Other specialized data stores like graph databases can also be
used.

When choosing the right storage for your semantic information, a number of different criteria
have to be taken into account. An important aspect is the scalability of the database, what
kind of request you typically execute (detailed in Section 8 Retrieving/Querying Semantic

28 Semantic IoT Solutions - A Developer Perspective 22-Oct-2019

https://www.w3.org/wiki/ConverterToRdf
https://paperpile.com/c/bzZ8pX/lbpn
https://paperpile.com/c/bzZ8pX/hIau

Information), whether you want to be able to automatically infer information and what kind of
inference is supported (detailed in the Section 9 Analytics and Reasoning), but also the
programming language supported, tool integration and under what kind of license it is
available / how much it costs. To help with the selection, benchmarks are used.

Several benchmarks for triple stores are being collected and published by W3C [34]. The
W3C benchmark takes into account the type of inferencing you need in the project (RDF,
RDFS, OWL), the license (commercial or open source) and the initial information capacity
expected for your application. The performance capacity (how the semantic store performs
the inferences and where the information is stored) is another key aspect to have in mind
when selecting a semantic store. A big drawback of the semantic stores is that they need
huge resources to perform the corresponding inferencing, process and load the information.
This main drawback is derived mainly from the mix of storing the information in different files
and in-memory. An overview of current triple store benchmarks can be found in [56,57].

Semantic repositories typically correspond to a server with a frontend. So, they usually
provide common commands and front-end to load and query the information. Moreover, they
also provide an API to connect the semantic store to our programs even directly using
libraries (Jena, RDF4J, RDFLib, etc) or through REST services (HTTP Requests and
responses, e.g. using the SPARQL 1.1 set of W3C recommendations). A common
recommendation is to use the commands to load and update the information when large
data-sets are present. We recommend using the user-interface when static data are only
present or for testing purposes.

8 Retrieving/Querying Semantic Information

Once you have created instances of semantic information or annotated information, you
want to make this information available to applications in a suitable and efficient way. For
accessing semantic information, query languages and APIs have been defined. In our smart
home energy use case, relevant information is about devices, their state, measurements
and energy profiles.

As shown in the previous sections, semantic information is typically encoded as RDF triples
(subject, predicate, object) in different representations. Objects in one triple can be subjects
in other triples, so taking all triples together, we get a graph. An example is shown in Figure
13.

22-Oct-2019 Semantic IoT Solutions - A Developer Perspective 29

https://paperpile.com/c/bzZ8pX/If7J+vtfD

Figure 13: Example of RDF triples as graph

SPARQL (SPARQL Protocol and RDF Query Language) [58] is the most commonly used
query language to query RDF graphs. SPARQL provides a set of query functionalities
(similar to the SQL language), i.e. join, sort and aggregate, together with graph traversal
syntax, e.g. as shown below:

Table 3. Set of questions in natural language and the corresponding
SPARQL query and result.

Question SPARQL query Result

What devices
are associated
with
Room1001?

PREFIX s4ener:

 <https://saref.etsi.org/saref4ener#>

PREFIX rooms: <https://myrooms.org>

SELECT ?device WHERE {

rooms:Room1001 s4ener:hasDevice ?device

}

The result is a set of matching
assignments, i.e.

device

<https://mydevices.org/t

s001>

<https://mydevices.org/w

m002>

What is the
temperature in
Room1001?

PREFIX saref: <https://w3id.org/saref>

PREFIX s4ener:

 <https://saref.etsi.org/saref4ener#>

PREFIX rooms: <https://myrooms.org>

SELECT ?temperature WHERE {

rooms:Room1001 s4ener:hasDevice ?device

The result is the following match:

temperature

25

30 Semantic IoT Solutions - A Developer Perspective 22-Oct-2019

https://paperpile.com/c/bzZ8pX/rMC3

.

?device rdf:type

 saref:TemperatureSensor .

?device saref:hasValue ?temperature

}

As shown in the second example (Table 3), SPARQL enables joins across triples. This
works well in centralized architectures – i.e. where all information is available locally – and
can be extended to distributed architectures, in which distribution is limited or it is known
where to find what triples. However, such expressiveness is problematic in highly distributed
settings, where relevant triples could be found anywhere.

An API that targets semantic context information is NGSI-LD [59]. The underlying
information model is based on entities, which have a semantic type. Entities have properties
used to describe aspects of the respective entity and relationships to other entities. Thus the
resulting model represents a graph (see Figure 14). Properties and relationships can again
be further described with another level of properties and relationships. Overall, the NGSI-LD
information model is less general, but provides a higher abstraction level.

It is based on JSON-LD, which is a representation of RDF – see example representation for
Room1001 (Table 4).

Table 4 NGSI-LD graph: visualization and code

Figure 14: Example of NGSI-LD graph

{

 "id": "urn:ngsi-ld:Room:1001",

 "type": "Room",

 "temperature": {

 "type": "Property",

"value": "25"

},

 "hasDevice": {

 "type": "Relationship",

 "object":

"urn:ngsi-ld:TemperatureSensor:ts001",

 "deployedAt": {

 "type": "Property",

 "value":

"2018-10-18T16:40:20"

 }

 },

"@context": [

"http://uri.etsi.org/ngsi-ld/coreConte

22-Oct-2019 Semantic IoT Solutions - A Developer Perspective 31

https://paperpile.com/c/bzZ8pX/0b5n

xt.jsonld",

"http://example.org/ngsi-ld/commonTerm

s.jsonld",

"http://example.org/ngsi-ld/rooms.json

ld",

"http://example.org/ngsi-ld/devices.js

onld"

]

}

The NGSI-LD API enables synchronous queries for entities, as well as asynchronous
subscribe-notify interactions relating to changes in the information. The requested entities,
properties and relationships can be specified and filtering of results can be based on
property values and relationship objects. With requests based only on the entity type or
existing properties/relationships, new entities can be discovered, e.g. the following query for
the temperature of all Rooms where the temperature is larger than 20.

GET

/ngsi-ld/entities/?type=Room&attrs=temperature&q=temperature>20

Accept: application/ld+json

Link: <http://example.org/cim/aggregatedContext.jsonld>;

rel="http://www.w3.org/ns/json-ld#context";

type="application/ld+json"

As location is highly relevant in real-world related use cases, NGSI-LD enables the
geographic scoping of request – which may also be necessary to make entity type based
discovery practical, e.g. request all entities within 2000m of a geographic coordinate:

GET /ngsi ld/entities/?type=Vehicle&georel=near;maxDistance==2000

&geometry=Point&coordinates=[8.684783577919006,

49.406131991436396]

Accept: application/ld+json

Link: <http://example.org/cim/aggregatedContext.jsonld>;

rel="http://www.w3.org/ns/json-ld#context";

type="application/ld+json"

32 Semantic IoT Solutions - A Developer Perspective 22-Oct-2019

9 Analytics and Reasoning using Semantic Information

In this section we show how additional semantic information can be derived based on
explicitly available information together with encoded domain understanding. In this way we
get insights and create value. We give an overview of different analytics and reasoning
approaches that can be used for this purpose and illustrate them with use case examples.

Not all information is explicitly provided by information sources like sensors. Some
information, in particular higher-level information, has to be derived from base information,
using knowledge about the domain that is encoded in some way.

For example, we have explicit information that sd:Wm002 is a washing machine. With
knowledge about the domain we know that sd:Wm002 is also a device, as all washing
machines are devices and that it consumes energy, as all devices consume energy. Due to
the latter, sd:Wm002 needs to be included in the home energy management.

In general, there are different formalism and mechanisms for deriving semantic information.
In the following part of the document, we focus on two common types of reasoning in the
area of semantics: ontology-based reasoning and rule-based reasoning. For ontology-based
reasoning the inference rules used for deriving information are fixed by the ontology
language. In the case of OWL, there are different profiles with different expressiveness,
which define what logic aspects can be expressed and thus what can be derived through
reasoning. The expressiveness has an influence on important properties like completeness,
decidability and computational complexity. For example OWL DL corresponds to Description
Logics, which is a particular decidable fragment of first order logic [10]. Another approach to
reasoning is based on rules, e.g. in the form of antecedent ⇒ consequent, where both
antecedent and consequent are conjunctions of atoms written as a1 ∧ ... ∧ an. In the
following, the different analytics and reasoning approaches are described in more detail.
Some rules language to encode rules are Semantic Web Rule Language (SWRL) [58,60],
SPIN rules [61], Notation3 [51] and SPARQL [58] construct queries.

9.1 Ontology-based Reasoning
Ontology languages define properties and their underlying semantics so that they can be
used for reasoning. For example, RDFS defines the semantics of rdfs:subClassOf and
rdfs:subPropertyOf (among others):

● rdfs:subClassOf - if A is of type B and B is a subClass of C then A is also of type
C

22-Oct-2019 Semantic IoT Solutions - A Developer Perspective 33

https://paperpile.com/c/bzZ8pX/d8ta
https://www.w3.org/Submission/SWRL/
https://paperpile.com/c/bzZ8pX/rMC3+GgC4
https://spinrdf.org/
https://paperpile.com/c/bzZ8pX/3Thw
https://www.w3.org/TeamSubmission/n3/
https://paperpile.com/c/bzZ8pX/OSX9
http://www.w3.org/TR/sparql11-overview/
https://paperpile.com/c/bzZ8pX/rMC3

● rdfs:subPropertyOf - if A and B are related by property C and C is a
sub-property of D then A and B are also related by D

These properties are used when defining ontologies. For example in SAREF a washing
machine is defined as a subClass of device:

saref:WashingMachine rdfs:subClassof saref:Device

When instantiating the ontology for a smart home, a user may define a specific washing
machine Wm002 is of type WashingMachine:

sd:Wm002 rdf:type saref:WashingMachine

Based on these two statements, a reasoner can infer that the specific washing machine is
also a Device:

sd:Wm002 rdf:type saref:Device

A similar examples is the following:

An ontology defines measuresTemperature as a sub-property of measures.

ont:measuresTemperature rdfs:subPropertyOf ont:measures

When instantiating the ontology a user defines a triple indicating that a temperature sensor
makes a temperature measurement:

sd:Ts001 ont:measuresTemperature sd:Measurement423

Based on these two statements, a reasoner can infer that also the property measures holds
between Ts001 and Measurement423:

sd:Ts001 ont:measures sd:Measurement423

OWL provides some further vocabulary that can be used to construct classes and
properties, and to define logical axioms. For example owl:inverseOf and
owl:TransitiveProperty :

● owl:inverseOf - if A is related to B by property C and C is inverse of D, then B is
related to A by property D

● owl:TransitiveProperty - if A is related to B by property D and B is related to
C by property D and D is a transitive property, then A is related to C by property D

34 Semantic IoT Solutions - A Developer Perspective 22-Oct-2019

Table 5 OWL inverse and transitive property examples

owl:inverseOf example saref:isAccomplishedBy owl:inverseOf

saref:accomplishes

Wm002 saref:accomplishes

WashingTask#table_ngsi-ld_graph_visualization_and_code

→ WashingTask saref:isAccomplishedBy

Wm002

owl:TransitiveProperty
example

isPartOf rdf:type

owl:TransitiveProperty

Room001 isPartOf Appartment005

 Appartment005 isPartOf Building125

→ Room001 isPartOf Building125

As indicated above, a reasoner is the software that is able to infer information based on
user-provided instances (facts) and properties defined in the ontology (axioms). Reasoners
differ with respect to the expressiveness they support (which relates to the underlying
ontology language), whether they support incremental additions and removals of
information, but also the interfaces and tool integrations that are available. A detailed
comparison of reasoners can be found in [62].

9.2 Rule-based Reasoning
A rule-based reasoning provides simple IF THEN logical rules. It will enable deducing
meaningful information from semantic sensor data (e..g, IF the room temperature is below
15 Degree Celsius, THEN the temperature in the room is considered as cold). For instance,
Apache Jena is an open-source Java RDF library. The Jena framework [63] provides an
inference engine (rule-based reasoning) to deduce meaningful knowledge from semantic
datasets. AndroJena [64], a light version of the Jena framework, compatible with Android
devices, also provides the query engine and the inference engine for constrained devices.
The Jena inference engine is used to infer high-level abstractions by executing a set of
"common sense" rules (e.g., following guidelines).

The example below shows a rule compliant with the Jena framework and the SOSA/SSN
ontology to do analytics and reasoning using semantic information

22-Oct-2019 Semantic IoT Solutions - A Developer Perspective 35

https://paperpile.com/c/bzZ8pX/VSVD
https://jena.apache.org/
https://paperpile.com/c/bzZ8pX/GZcs
https://github.com/sbrunk/jena-android
https://paperpile.com/c/bzZ8pX/XXHZ

Table 6 OWL inverse and transitive property examples

[BelowRoomTemperature:

 (?measurement rdf:type sensorTaxonomy:RoomTemperature)

 (?measurement sosa:hasSimpleResult ?v)

 greaterThan(?v,10)

 lessThan(?v,20)

 ->

 (?measurement rdf:type sensorTaxonomy:BelowRoomTemperature)]

According to Wikipedia Air Quality Index [65] (AQI) guidelines, we can define a set of rules
for air quality.

For instance, IF AirQualityIndex greaterThan 101 and LowerThan 150 THEN
UnhealthyOutdoorAirQualityIndexUS. The Jena rule is implemented this way:

Table 7 Example of Jena rule regarding air quality index

[UnhealthyOutdoorAirQualityIndexUS:

(?measurement rdf:type sensorTaxonomy:OutdoorAirQualityIndex)

(?measurement

sosa:hasSimpleResult#table_owl_inverse_and_transitive_property_examples ?v)

greaterThan(?v,101)

lessThan(?v,150)

->

(?measurement rdf:type sensorTaxonomy:UnhealthyOutdoorAirQualityIndexUS)]

Various rules (compliant with the Jena framework) can be provided by the Sensor-based
Linked Open Rules (S-LOR) tool [66–68] which classifies rules per domain. Figure 15 shows
a drop-down list with a set of IoT sub-domains such as smart home that we are interested in.
Once, the domain is selected, the list of sensors relevant for this domain (e.g., presence
detector, temperature, light sensor) are depicted. The developer clicks on the button “Get
Project” to retrieve existing projects already using such sensors, or the “Get rule” button to
find existing rules relevant for this sensor to deduce meaningful information from sensor
data. For instance, for a temperature sensor within a smart home, the smart home
application integrating a rule-base reasoner understands that when the temperature is cold
or too hot, it can automatically switch on the heater or air-conditioning.

36 Semantic IoT Solutions - A Developer Perspective 22-Oct-2019

https://en.wikipedia.org/wiki/Air_quality_index
https://paperpile.com/c/bzZ8pX/2ciX
https://paperpile.com/c/bzZ8pX/Oi7q+G9kM+oZKF

9.3 Other Reasoning

The Knowledge Acquisition Toolkit (KAT) tool [69] focuses on sensor data pre-processing. It
is a machine-learning approach dealing with real-time data. KAT infers high-level
abstractions from sensor data provided by gateways in order to reduce the traffic in network
communications. KAT comprises three components: 1) An extension of Symbolic Aggregate
Approximation (SAX) algorithm, called SensorSAX, 2) Abductive reasoning based on the
Parsimonious Covering Theory (PCT), and 3) Temporal and spatial reasoning. It uses
machine learning techniques (i.e. k-means clustering and Markov model methods) and
rule-based systems to add labels to abstractions. KAT employs the abductive model rather
than inductive or deductive approaches to solve the incompleteness limitation due to
missing observation information. The tool is tested on real sensor data (i.e. temperature,
light, sound, presence and power consumption).

10 Software Implementation

To ease developers’ life, we introduce various kinds of frameworks, libraries and tools to
develop semantics-based systems.

Several open source or proprietary frameworks and libraries allow developers to implement
software components to instantiate ontologies. We present in the following an overview of
each category.

10.1 RDF Management Libraries
Most programming languages have libraries to serialize, parse, store and manipulate RDF,
and potentially interact with RDF triple stores, or reason.

Such libraries usually provide low level classes and functions to manipulate concepts
directly mapped to the RDF language without any higher level abstractions. However,
developers need to be aware of the technical aspects and theory of the RDF concepts and
principles in order to implement an ontology-based solution.

Examples include Cowl [70], Redland RDF [71] or AutoRDF [72] for C/C++, Jena [63] or
RDF4J [73] for Java, Ruby RDF [74] for Ruby, dotNetRDF [75] for .Net, RDFLib for Python
[76], SWI-Prolog Semantic Web Library 3.0 [77] for Prolog, RDFjs [78] in JavaScript. A
comparison of RDF libraries for JavaScript [79] can be found online.

We have provided a code example on Github [80] showing the use of Apache Jena Fuseki
[81] with Java.

22-Oct-2019 Semantic IoT Solutions - A Developer Perspective 37

http://info.ee.surrey.ac.uk/CCSR/KAT/
https://paperpile.com/c/bzZ8pX/9gEC
https://github.com/scslab/cowl/tree/master/rdf
https://paperpile.com/c/bzZ8pX/9bEE
http://librdf.org/
https://paperpile.com/c/bzZ8pX/XNmU
https://github.com/ariadnext/AutoRDF
https://paperpile.com/c/bzZ8pX/wbgQ
https://jena.apache.org/
https://paperpile.com/c/bzZ8pX/GZcs
https://rdf4j.eclipse.org/
https://paperpile.com/c/bzZ8pX/ZyDv
https://github.com/ruby-rdf
https://paperpile.com/c/bzZ8pX/jsJt
https://www.dotnetrdf.org/
https://paperpile.com/c/bzZ8pX/5Vu0
https://github.com/RDFLib/rdflib
https://paperpile.com/c/bzZ8pX/InQB
https://www.swi-prolog.org/pldoc/doc_for?object=section(%27packages/semweb.html%27)
https://paperpile.com/c/bzZ8pX/xkPb
https://github.com/rdfjs
https://paperpile.com/c/bzZ8pX/rnJm
https://www.w3.org/community/rdfjs/wiki/Comparison_of_RDFJS_libraries
https://paperpile.com/c/bzZ8pX/Ilnc
https://github.com/martin-p-bauer/SemanticWhitepaperCodeExample
https://paperpile.com/c/bzZ8pX/0qER
https://jena.apache.org/documentation/fuseki2/
https://paperpile.com/c/bzZ8pX/le76

10.2 Object Relational Mappers (ORMs) and Ontology Library
Generators
ORMs are built on top of RDF management libraries and provide an object oriented
abstraction layer allowing developers to manipulate objects instead of RDF concepts.
Several ORMs are available in various programming languages, such as: 1) KOMMA [82],
Empire [83] and AliBaba [84] in Java, 2) RomanticWeb [85] and TrinityRDF [86] in .Net, and
3) RDFAlchemy [87] in Python. ORMs rely on the code decoration where a developer
annotates the code with tags referencing IRIs from the ontology. Most of the Java ORM rely
on the Java Persistence API (JPA) while the .Net ORMs rely on the Entity Framework.
During the code implementation of an application, the developer requests a factory to
instantiate the ontology and can generate SPARQL queries with SPARQL query builders or
adapters such as the LINQ to SPARQL for the .Net technology. We discuss in the following
the ORMs providing some code generation features. Tools such as the OWLBeans,
AutoRDF, OLGA [45] (Ontology Library GenerAtor) can be used to generate libraries from
an ontology. Such tools accelerate the adoption of Standard W3C Semantic technology
among developers, by:

1. Reducing friction barrier for developers when working with an ontology;

2. Accelerating development of ontology based systems;

3. Eliminating complexity by providing Object Oriented libraries for developers.

These tools are based on a model driven approach taking as input an ontology file already
defined by an ontology expert and a domain expert (as depicted in Figure 16). From this file,
they generate a library based on the ontology model. The generated library can be imported
and used when developing to:

● Generate an ontology instance conform to the ontology model.
● Query the generated ontology instance by relying on Object Oriented Model instead

of SPARQL.

38 Semantic IoT Solutions - A Developer Perspective 22-Oct-2019

https://marketplace.eclipse.org/content/komma-rdf-eclipse
https://paperpile.com/c/bzZ8pX/Yn7y
https://github.com/mhgrove/Empire
https://paperpile.com/c/bzZ8pX/m6oo
https://bitbucket.org/openrdf/alibaba
https://paperpile.com/c/bzZ8pX/AxbR
http://romanticweb.net/
https://paperpile.com/c/bzZ8pX/5b5k
https://bitbucket.org/semiodesk/trinity
https://paperpile.com/c/bzZ8pX/TDtC
https://rdfalchemy.readthedocs.io/en/latest/
https://paperpile.com/c/bzZ8pX/RQWo
https://ecostruxure.github.io/OLGA/
https://paperpile.com/c/bzZ8pX/Ffrn

Figure 16: Ontology Library Generator (image from [45])

11 Semantic Interoperability Across Systems

Building semantic systems aims to achieve semantic interoperability across different
systems. We discuss how semantic interoperability can be achieved based on the two
example use cases smart home/smart grid and ambient assisted living, where we want to
make the systems interoperable.

Semantic interoperability ensures that two systems exchange information with the same
understanding regarding the meaning of the information. In traditional tightly-coupled
systems the semantics is implicitly encoded in the system(s) by the programmers. IoT
systems require an explicit understanding of the semantics to share and reuse information
across systems that were not explicitly developed together, but integrated later. For a
broader introduction to Semantic Interoperability, see the Whitepaper on Semantic
Interoperability for the Web of Things [88].

Two use cases have been introduced in this white paper: 1) Smart Home and Smart Grid,
and 2) Ambient Assisted Living. In the following, we discuss what is relevant for achieving
semantic interoperability taking aspects of the two use cases for illustration purposes.

To achieve semantic interoperability, agreement on the semantic concepts ensures a
common understanding on the information exchanged. As discussed in Section 4 Ontology

22-Oct-2019 Semantic IoT Solutions - A Developer Perspective 39

https://paperpile.com/c/bzZ8pX/Ffrn
https://www.researchgate.net/publication/307122744_Semantic_Interoperability_for_the_Web_of_Things
https://www.researchgate.net/publication/307122744_Semantic_Interoperability_for_the_Web_of_Things
https://paperpile.com/c/bzZ8pX/T36F

Selection / Creation, the respective concepts and related properties and possible values are
defined in ontologies. The relevant concepts for the information exchange have to be
identified. It depends on the status of the systems that should interwork. If none of the
systems exists, they can be built together, selecting appropriate ontologies with a common
subset for what is required for interoperability and domain-specific parts for both use cases.
This can be done based on the description in Section 4.2 Reuse existing ontologies. In case
one of the systems already exists as a semantic system, the relevant ontology aspects can
be taken into account when designing the other system, either using them directly or
defining a suitable mapping. If both systems are already semantic-enabled systems, a
suitable mapping between the underlying ontologies has to be defined. The mapping may
require changes to the existing system.

Figure 17: Control environment use case

Taking the example use case of controlling the environment, e.g. temperature and light
conditions, in a home as shown in Figure 17, it can be seen that this is a joint use case that
is part of the overall smart home & smart grid use case, because controlling the environment
is related to energy consumption, but it is also part of the ambient assisted living use case,
because controlling the environment is related to the wellbeing of the person living in the
home. For the integration, both aspects have to be taken into account and thus relevant
concepts like the target temperature range have to be mapped.

For example, if both systems use the SAREF ontology, no mapping is needed. Otherwise,
the mapping is more complex, e.g. if one system uses the SOSA/SSN ontology and the
other one SAREF. In this case, the relevant concepts and properties have to be mapped.
OWL and RDFS provide the relevant vocabulary for such a mapping, i.e
owl:equivalentClass and rdfs:subClassOf for mapping classes and
owl:equivalentProperty and rdfs:subPropertyOf for mapping properties.

For example, SAREF defines saref:Temperature as rdfs:subClassOf

saref:Property , whereas SSN only introduces ssn:Property as a generic concept for
which temperature can be defined as a specific subclass. One possible way of mapping
would be to make saref:Temperature also a subclass of ssn:Property - assuming
that saref:Property and ssn:Property are not equivalent. If they were,
ssn:Property owl:equivalentClass saref:Property could be defined instead,

40 Semantic IoT Solutions - A Developer Perspective 22-Oct-2019

making saref:Temperature also a subclass of ssn:Property by being a subclass of
saref:Property and saref:Property and ssn:Property being equivalent.

When instantiating the semantic information based on the selected ontologies, different
systems may choose different syntactic representations, e.g. as introduced in Section 5
Ontology Development & Instantiation. In this case a syntactic translation has to be
performed when exchanging information between the systems. However, this is generally
possible, as opposed to the case where there is a mismatch between semantic concepts,
which cannot generally be resolved.

The translation can be realized directly between the ontologies used by the two systems or
by translating each used ontology to a generic ontology that serves as a common reference.
The mapping should occur at the interface between both systems to minimize the
development effort.

In all these cases, there is a need to test the interoperability between the systems before
putting them into service. The more different the semantics used by each component of the
system are, the more complex the testing will have to be to ensure the service proper
operation. The next section introduces the different steps needed to appropriately prepare
this testing.

12 Testing Semantic Interoperability

Testing and validating the semantic IoT solution is the final step. In this section, we describe
how developers plan and test their IoT system, and its interaction with other systems using
the same, or a different ontology.

Developers wishing to test the semantic interoperability of their implementation should follow
the steps below [89]:

1. identifying the features to be tested and when relevant, the set of standards against
which the interoperability test will be run. The features to be tested can be basically
divided into two categories: ontology management (i.e. acquisition, storage, update
of the ontology as well as instantiation of the ontology mapped to the data structure
of the tested implementation) and data management, which tests the usage of the
ontology by the implementation i.e. its capability to generate a request for a specific
data, to understand unambiguously the reply and to reply to a data request from
another entity.

2. determining the testing configurations to be run according to the objectives of the
previous step. Possible testing configurations range from a very simple case with a
sensor and an IoT platform, up to a more complex scenario with two platforms, an

22-Oct-2019 Semantic IoT Solutions - A Developer Perspective 41

https://paperpile.com/c/bzZ8pX/8Uhu

IoT device on one side and an IoT application on the other side, with even more
complex configurations where the two IoT platforms use different ontologies and a
mapping between these ontologies is required in one of the platforms. Figure 18
shows a basic example where an IoT device registered at one platform reports a
measurement (in our example the room temperature) to an application registered at
a different IoT platform. In this example, both platforms are using the same ontology.

Figure 18: Example of testing configuration

Based on the selected configurations, scenarios and testing sequences need to be defined
and documented before the test is executed, to ensure that the test will cover all the
implementation details to be validated. A typical scenario defines the entities involved in the
test (for example, IoT device, IoT platform, IoT application) and the scenario sequence:

● the starting point conditions,

● acquisition and storage of the tested ontology by the IoT platforms,

● generation of a request from one of the entities,

● reception by the second entity,

● verification of the correct understanding,

● generation of the reply,

● the failure cases associated to this type of sequence.

The last preparation step before running the test is to organise the testing environment, by
defining the IT and infrastructure needed for its execution and preparing the testing report.
The test report logs the issues and inconsistencies found in each testing sequence and
serves as a reference when fixing those issues.

42 Semantic IoT Solutions - A Developer Perspective 22-Oct-2019

13 Overall Conclusion
This white paper aims to ease the development of semantic systems to achieve semantic
interoperability and bridge information silos. We target the software developer and system
architect audience who are getting familiar with semantic technologies. We give a
step-by-step introduction to the different tasks required for the development of semantic
systems, supported by a use case. There are appendices that complement the different
tasks by providing links to additional tools to select when developing semantics-based
projects, and giving guidance to select the appropriate tool fitting developers’ needs.

As semantic technologies have gained a good level of maturity and there is increasing
support in a number of communities, this paper lowers the hurdle of developing semantic
systems. It represents one step towards a broader adoption of semantic technologies; a
promising direction for overcoming the information silos that still exists in many domains and
create value across domains, which is of particular importance in the Internet of Things.

References
1. ETSI. SmartM2M; IoT LSP use cases and standards gaps. 2016 Oct. Report No.: TR 103 376

V1.1.1. Available:
https://www.etsi.org/deliver/etsi_tr/103300_103399/103376/01.01.01_60/tr_103376v010101p.pdf

2. AIOTI. WG3 IoT Standardisation Landscape. 2017. Available:
https://aioti.eu/wp-content/uploads/2017/03/tr_103375v010101p-Standards-landscape-and-future
-evolutions.pdf

3. GridWise Architecture Council. GridWise Interoperability Context-Setting Framework. 2008.
Available: https://www.gridwiseac.org/pdfs/interopframework_v1_1.pdf

4. AIOTI. WG03 Semantic Interoperability, Release 2.0. 2015. Available:
https://www.iab.org/wp-content/IAB-uploads/2016/03/AIOTIWG03Report2015-SemanticInteroper
ability.pdf

5. van der Veer H, Wiles A. ETSI White Paper No. 3 Achieving Technical Interoperability - the ETSI
Approach. 2018. Available:
https://www.etsi.org/images/files/ETSIWhitePapers/IOP%20whitepaper%20Edition%203%20final
.pdf.

6. Gruber TR. Towards principles for the design of ontologies used for knowledge sharing.
International Journal of Human-Computer Studies - Special issue: the role of formal ontology in
the information technology. 1993;43: 625–640.

7. Daniele L, Strabbing W, Roelofsen B, Aalberts A, Stapersma P. Study on ensuring
interoperability for enabling Demand Side Flexibility. 2019. Available:
https://ec.europa.eu/digital-single-market/en/news/digitalising-energy-sector-ensuring-interopera
bility-enabling-demand-side-flexibility

8. IEC. Systems interface between customer energy management system and the power
management system - Part 2: Use cases and requirements. 2015. Report No.: TR 62746-2.

22-Oct-2019 Semantic IoT Solutions - A Developer Perspective 43

http://paperpile.com/b/bzZ8pX/zSko
http://paperpile.com/b/bzZ8pX/zSko
https://www.etsi.org/deliver/etsi_tr/103300_103399/103376/01.01.01_60/tr_103376v010101p.pdf
http://paperpile.com/b/bzZ8pX/uWNu
https://aioti.eu/wp-content/uploads/2017/03/tr_103375v010101p-Standards-landscape-and-future-evolutions.pdf
https://aioti.eu/wp-content/uploads/2017/03/tr_103375v010101p-Standards-landscape-and-future-evolutions.pdf
http://paperpile.com/b/bzZ8pX/4ylO
http://paperpile.com/b/bzZ8pX/4ylO
https://www.gridwiseac.org/pdfs/interopframework_v1_1.pdf
http://paperpile.com/b/bzZ8pX/lqlG
https://www.iab.org/wp-content/IAB-uploads/2016/03/AIOTIWG03Report2015-SemanticInteroperability.pdf
https://www.iab.org/wp-content/IAB-uploads/2016/03/AIOTIWG03Report2015-SemanticInteroperability.pdf
http://paperpile.com/b/bzZ8pX/nOoq
http://paperpile.com/b/bzZ8pX/nOoq
https://www.etsi.org/images/files/ETSIWhitePapers/IOP%20whitepaper%20Edition%203%20final.pdf.
https://www.etsi.org/images/files/ETSIWhitePapers/IOP%20whitepaper%20Edition%203%20final.pdf.
http://paperpile.com/b/bzZ8pX/E805
http://paperpile.com/b/bzZ8pX/E805
http://paperpile.com/b/bzZ8pX/E805
http://paperpile.com/b/bzZ8pX/BvrB
http://paperpile.com/b/bzZ8pX/BvrB
https://ec.europa.eu/digital-single-market/en/news/digitalising-energy-sector-ensuring-interoperability-enabling-demand-side-flexibility
https://ec.europa.eu/digital-single-market/en/news/digitalising-energy-sector-ensuring-interoperability-enabling-demand-side-flexibility
http://paperpile.com/b/bzZ8pX/t7ig
http://paperpile.com/b/bzZ8pX/t7ig

Available: https://webstore.iec.ch/publication/22279

9. European Commission. The 2018 Ageing Report Economic & Budgetary Projections for the 28
EU Member States (2016-2070). 2018. Available:
https://ec.europa.eu/info/sites/info/files/economy-finance/ip079_en.pdf

10. Recommendation W. OWL Web Ontology Language Guide. 2004 Feb. Available:
https://www.w3.org/TR/owl-guide/

11. W3C. Web Ontology Language (OWL). 2012 Dec. Available: https://www.w3.org/OWL/

12. W3C. Resource Description Framework (RDF). 2004 Feb. Available: https://www.w3.org/RDF/

13. W3C. RDF Schema 1.1. 2014 Feb. Available: https://www.w3.org/TR/rdf-schema/

14. ORSD guide: How to Write and Use the Ontology Requirements Specification Document. [cited
19 Oct 2019]. Available: http://oa.upm.es/5474/1/INVE_MEM_2009_64393.pdf

15. Smart Applications REFerence Ontology (SAREF). [cited 19 Oct 2019]. Available:
https://saref.etsi.org/saref#

16. ETSI. SmartM2M; SAREF extension investigation; Requirements for Industry and Manufacturing
domains. 2018 Sep. Report No.: ETSI TR 103 507 V1.1.1. Available:
https://www.etsi.org/deliver/etsi_tr/103500_103599/103507/01.01.01_60/tr_103507v010101p.pdf

17. ETSI. SmartM2M; SAREF extension investigation; Requirements for AgriFood domain. 2018
Sep. Report No.: TR 103 511 V1.1.1. Available:
https://www.etsi.org/deliver/etsi_tr/103400_103499/103411/01.01.01_60/tr_103411v010101p.pdf

18. ETSI. SmartM2M; SAREF extension investigation; Requirements for Smart Cities. 2018 Sep.
Report No.: TR 103 506 V1.1.1. Available:
https://www.etsi.org/deliver/etsi_tr/103500_103599/103506/01.01.01_60/tr_103506v010101p.pdf

19. ETSI. SmartM2M; Smart Appliances; SAREF extension investigation. 2018 Feb. Report No.: TR
103 411 V1.1.1. Available:
https://www.etsi.org/deliver/etsi_tr/103400_103499/103411/01.01.01_60/tr_103411v010101p.pdf

20. Simperl E, Cristina S, Ungrangsi R, Bürger T. Reusing ontologies on the Semantic Web: A
feasibility study. Data & Knowledge Engineering. 2009. pp. 905–925.
doi:10.1016/j.datak.2009.02.002

21. Sensor Observation, Sample and Actuator (SOSA) Ontology. [cited 19 Oct 2019]. Available:
http://www.w3.org/ns/sosa/

22. Semantic Sensor Network (SSN) Ontology. [cited 19 Oct 2019]. Available:
http://www.w3.org/ns/ssn/

23. Web of Things (WoT) Thing Description Ontology, W3C Editor’s Draft. 18 Oct 2019 [cited 19 Oct
2019]. Available: https://www.w3.org/2019/wot/td

24. oneM2M Base Ontology. [cited 19 Oct 2019]. Available:
https://git.onem2m.org/MAS/BaseOntology

25. Bauer M, Baqa H, Bilbao S, Corchero A, Daniele L, Esnaola I, et al. Towards Semantic
Interoperability Standards based on Ontologies. 2019. doi:10.13140/RG.2.2.26825.29282

26. Gyrard A, Zimmermann A, Sheth A. Building IoT-Based Applications for Smart Cities: How Can

44 Semantic IoT Solutions - A Developer Perspective 22-Oct-2019

http://paperpile.com/b/bzZ8pX/t7ig
https://webstore.iec.ch/publication/22279
http://paperpile.com/b/bzZ8pX/heRd
http://paperpile.com/b/bzZ8pX/heRd
https://ec.europa.eu/info/sites/info/files/economy-finance/ip079_en.pdf
http://paperpile.com/b/bzZ8pX/d8ta
https://www.w3.org/TR/owl-guide/
http://paperpile.com/b/bzZ8pX/dgDN
https://www.w3.org/OWL/
http://paperpile.com/b/bzZ8pX/l7EU
https://www.w3.org/RDF/
http://paperpile.com/b/bzZ8pX/WW20
https://www.w3.org/TR/rdf-schema/
http://paperpile.com/b/bzZ8pX/2rCP
http://paperpile.com/b/bzZ8pX/2rCP
http://oa.upm.es/5474/1/INVE_MEM_2009_64393.pdf
http://paperpile.com/b/bzZ8pX/3ztc
https://saref.etsi.org/saref#
http://paperpile.com/b/bzZ8pX/rEk4
http://paperpile.com/b/bzZ8pX/rEk4
https://www.etsi.org/deliver/etsi_tr/103500_103599/103507/01.01.01_60/tr_103507v010101p.pdf
http://paperpile.com/b/bzZ8pX/sUBF
http://paperpile.com/b/bzZ8pX/sUBF
https://www.etsi.org/deliver/etsi_tr/103400_103499/103411/01.01.01_60/tr_103411v010101p.pdf
http://paperpile.com/b/bzZ8pX/bCJD
http://paperpile.com/b/bzZ8pX/bCJD
https://www.etsi.org/deliver/etsi_tr/103500_103599/103506/01.01.01_60/tr_103506v010101p.pdf
http://paperpile.com/b/bzZ8pX/bce5
http://paperpile.com/b/bzZ8pX/bce5
https://www.etsi.org/deliver/etsi_tr/103400_103499/103411/01.01.01_60/tr_103411v010101p.pdf
http://paperpile.com/b/bzZ8pX/MYDU
http://paperpile.com/b/bzZ8pX/MYDU
http://paperpile.com/b/bzZ8pX/MYDU
http://dx.doi.org/10.1016/j.datak.2009.02.002
http://paperpile.com/b/bzZ8pX/qsW3
http://www.w3.org/ns/sosa/
http://paperpile.com/b/bzZ8pX/dDwd
http://www.w3.org/ns/ssn/
http://paperpile.com/b/bzZ8pX/lGZR
http://paperpile.com/b/bzZ8pX/lGZR
https://www.w3.org/2019/wot/td
http://paperpile.com/b/bzZ8pX/Q1Bi
https://git.onem2m.org/MAS/BaseOntology
http://paperpile.com/b/bzZ8pX/bflO
http://paperpile.com/b/bzZ8pX/bflO
http://dx.doi.org/10.13140/RG.2.2.26825.29282
http://paperpile.com/b/bzZ8pX/e317

Ontology Catalogs Help? IEEE Internet of Things Journal. 2018. pp. 3978–3990.
doi:10.1109/jiot.2018.2854278

27. Linked Open Vocabularies (LOV). [cited 19 Oct 2019]. Available:
https://lov.linkeddata.es/dataset/lov/

28. Linked Open Vocabularies for Internet of Things (LOV4IoT). [cited 19 Oct 2019]. Available:
http://lov4iot.appspot.com/

29. READY4SmartCities, an ontology catalog for smart cities. [cited 19 Oct 2019]. Available:
http://smartcity.linkeddata.es/

30. ETSI. SmartM2M Smart Appliances; Reference Ontology and oneM2M Mapping. 2017 Mar.
Report No.: TS 103 264 V2.1.1. Available:
https://www.etsi.org/deliver/etsi_ts/103200_103299/103264/02.01.01_60/ts_103264v020101p.pd
f

31. M3 Lite Taxonomy. 7 Sep 2017 [cited 19 Oct 2019]. Available: http://purl.org/iot/vocab/m3-lite#

32. Lozano-Tello A, Gómez-Pérez A. Ontometric: A method to choose the appropriate ontology.
Journal of database management. 2004;2: 1–18.

33. Agarwal R, Fernandez DG, Elsaleh T, Gyrard A, Lanza J, Sanchez L, et al. Unified IoT ontology
to enable interoperability and federation of testbeds. 2016 IEEE 3rd World Forum on Internet of
Things (WF-IoT). 2016. doi:10.1109/wf-iot.2016.7845470

34. Quantities, Units, Dimensions, and Types (QUDT) Ontology. 8 Oct 2019 [cited 19 Oct 2019].
Available: https://bioportal.bioontology.org/ontologies/QUDT

35. Locality Module Extractor Tool. In: Tools [Internet]. [cited 18 Oct 2019]. Available:
https://www.cs.ox.ac.uk/isg/tools/ModuleExtractor/

36. Stanford University. Protégé tool. In: Stanford University [Internet]. [cited 20 Oct 2019]. Available:
https://protege.stanford.edu/

37. Noy NF, McGuinness DL. Ontology development 101: A guide to creating your first ontology.
2001. Report No.: KSL-01-05. Available:
https://protege.stanford.edu/publications/ontology_development/ontology101.pdf

38. Suárez-Figueroa MC, Gómez-Pérez A, Fernández-López M. The NeOn Methodology for
Ontology Engineering. Ontology Engineering in a Networked World. 2012. pp. 9–34.
doi:10.1007/978-3-642-24794-1_2

39. Horridge M. A Practical Guide To Building OWL Ontologies. 2011. Available:
http://mowl-power.cs.man.ac.uk/protegeowltutorial/resources/ProtegeOWLTutorialP4_v1_3.pdf

40. ETSI. SmartM2M; SAREF publication framework reinforcing the engagement of its community of
users. 2019 Jul. Report No.: TR 103 608 V1.1.1. Available:
https://www.etsi.org/deliver/etsi_tr/103600_103699/103608/01.01.01_60/tr_103608v010101p.pdf

41. Seydoux N, Drira K, Hernandez N, Monteil T. IoT-O, a Core-Domain IoT Ontology to Represent
Connected Devices Networks. Lecture Notes in Computer Science. 2016. pp. 561–576.
doi:10.1007/978-3-319-49004-5_36

42. ETSI. SmartM2M; Guidelines for consolidating SAREF with new reference ontology patterns,
based on the experience from the ITEA SEAS project. 2019 Jul. Report No.: TR 103 549 V1.1.1.

22-Oct-2019 Semantic IoT Solutions - A Developer Perspective 45

http://paperpile.com/b/bzZ8pX/e317
http://paperpile.com/b/bzZ8pX/e317
http://dx.doi.org/10.1109/jiot.2018.2854278
http://paperpile.com/b/bzZ8pX/iwhT
https://lov.linkeddata.es/dataset/lov/
http://paperpile.com/b/bzZ8pX/wn2a
http://lov4iot.appspot.com/
http://paperpile.com/b/bzZ8pX/FKPZ
http://smartcity.linkeddata.es/
http://paperpile.com/b/bzZ8pX/sXTt
http://paperpile.com/b/bzZ8pX/sXTt
https://www.etsi.org/deliver/etsi_ts/103200_103299/103264/02.01.01_60/ts_103264v020101p.pdf
https://www.etsi.org/deliver/etsi_ts/103200_103299/103264/02.01.01_60/ts_103264v020101p.pdf
http://paperpile.com/b/bzZ8pX/hf7W
http://purl.org/iot/vocab/m3-lite#
http://paperpile.com/b/bzZ8pX/MKu4
http://paperpile.com/b/bzZ8pX/MKu4
http://paperpile.com/b/bzZ8pX/rq55
http://paperpile.com/b/bzZ8pX/rq55
http://paperpile.com/b/bzZ8pX/rq55
http://dx.doi.org/10.1109/wf-iot.2016.7845470
http://paperpile.com/b/bzZ8pX/qzOt
http://paperpile.com/b/bzZ8pX/qzOt
https://bioportal.bioontology.org/ontologies/QUDT
http://paperpile.com/b/bzZ8pX/7d50
https://www.cs.ox.ac.uk/isg/tools/ModuleExtractor/
http://paperpile.com/b/bzZ8pX/YJkH
https://protege.stanford.edu/
http://paperpile.com/b/bzZ8pX/StXp
http://paperpile.com/b/bzZ8pX/StXp
https://protege.stanford.edu/publications/ontology_development/ontology101.pdf
http://paperpile.com/b/bzZ8pX/hg6i
http://paperpile.com/b/bzZ8pX/hg6i
http://paperpile.com/b/bzZ8pX/hg6i
http://dx.doi.org/10.1007/978-3-642-24794-1_2
http://paperpile.com/b/bzZ8pX/mQul
http://mowl-power.cs.man.ac.uk/protegeowltutorial/resources/ProtegeOWLTutorialP4_v1_3.pdf
http://paperpile.com/b/bzZ8pX/unRI
http://paperpile.com/b/bzZ8pX/unRI
https://www.etsi.org/deliver/etsi_tr/103600_103699/103608/01.01.01_60/tr_103608v010101p.pdf
http://paperpile.com/b/bzZ8pX/YpOT
http://paperpile.com/b/bzZ8pX/YpOT
http://paperpile.com/b/bzZ8pX/YpOT
http://dx.doi.org/10.1007/978-3-319-49004-5_36
http://paperpile.com/b/bzZ8pX/bQ97
http://paperpile.com/b/bzZ8pX/bQ97

Available:
https://www.etsi.org/deliver/etsi_tr/103500_103599/103549/01.01.01_60/tr_103549v010101p.pdf

43. ETSI. SmartM2M; SAREF consolidation with new reference ontology patterns, based on the
experience from the SEAS project. 2019 Jul. Report No.: TS 103 548 V1.1.1. Available:
https://www.etsi.org/deliver/etsi_ts/103500_103599/103548/01.01.01_60/ts_103548v010101p.pd
f

44. Kaed CE, El Kaed C, Danilchenko V, Delpech F, Brodeur J, Radisson A. Linking an Asset and a
Domain Specific Ontology for a Simple Asset TimeSeries Application. 2018 IEEE International
Conference on Big Data (Big Data). 2018. doi:10.1109/bigdata.2018.8621972

45. El Kaed C, Ponnouradjane A. A Model Driven Approach Accelerating Ontology-based IoT
Applications Development. Proceedings of the SIS-IoT workshop. Available:
https://www.researchgate.net/publication/319650390_A_Model_Driven_Approach_Accelerating_
Ontology-based_IoT_Applications_Development

46. Kaed CE, El Kaed C, Ponnouradjane A, Shah D. A Semantic Based Multi-Platform IoT
Integration Approach from Sensors to Chatbots. 2018 Global Internet of Things Summit (GIoTS).
2018. doi:10.1109/giots.2018.8534520

47. W3C. RDF 1.1 Turtle - Terse RDF Triple Language. 2014 Feb. Available:
https://www.w3.org/TR/turtle/

48. W3C. RDF 1.1 N-Triples - A line-based syntax for an RDF graph. 2014 Feb. Available:
https://www.w3.org/TR/n-triples/

49. W3C. RDF 1.1 N-Quads - A line-based syntax for RDF datasets. 2014 Feb. Available:
https://www.w3.org/TR/n-quads/

50. W3C. JSON-LD 1.1 - A JSON-based Serialization for Linked Data, Working Draft. 2019 Oct.
Available: https://www.w3.org/TR/json-ld11/

51. Notation3 (N3): A readable RDF syntax. In: W3C [Internet]. [cited 19 Oct 2019]. Available:
https://www.w3.org/TeamSubmission/n3/

52. W3C. RDF 1.1 XML Syntax. 2014 Feb. Available: https://www.w3.org/TR/rdf-syntax-grammar/

53. W3C. RDF 1.1 JSON Alternate Serialization (RDF/JSON). 2013 Nov. Available:
https://www.w3.org/TR/rdf-json/

54. W3C Wiki: Converter to RDF. [cited 19 Oct 2019]. Available:
https://www.w3.org/wiki/ConverterToRdf

55. Lefrançois M. RDF presentation and correct content conveyance for legacy services and the web
of things. Proceedings of the 8th International Conference on the Internet of Things. ACM; 2018.
p. 43.

56. W3C. RDF Store Benchmarking. Available: https://www.w3.org/wiki/RdfStoreBenchmarking

57. Saleem M, Khan Y, Hasnain A, Ermilov I, Ngomo A-CN. A fine-grained evaluation of SPARQL
endpoint federation systems. Semantic Web. 2016. pp. 493–518. doi:10.3233/sw-150186

58. Recommendation W. SPARQL 1.1 Overview. 2013 Mar. Available:
http://www.w3.org/TR/sparql11-overview/

46 Semantic IoT Solutions - A Developer Perspective 22-Oct-2019

http://paperpile.com/b/bzZ8pX/bQ97
https://www.etsi.org/deliver/etsi_tr/103500_103599/103549/01.01.01_60/tr_103549v010101p.pdf
http://paperpile.com/b/bzZ8pX/4BQI
http://paperpile.com/b/bzZ8pX/4BQI
https://www.etsi.org/deliver/etsi_ts/103500_103599/103548/01.01.01_60/ts_103548v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/103500_103599/103548/01.01.01_60/ts_103548v010101p.pdf
http://paperpile.com/b/bzZ8pX/tBn5
http://paperpile.com/b/bzZ8pX/tBn5
http://paperpile.com/b/bzZ8pX/tBn5
http://dx.doi.org/10.1109/bigdata.2018.8621972
http://paperpile.com/b/bzZ8pX/Ffrn
http://paperpile.com/b/bzZ8pX/Ffrn
https://www.researchgate.net/publication/319650390_A_Model_Driven_Approach_Accelerating_Ontology-based_IoT_Applications_Development
https://www.researchgate.net/publication/319650390_A_Model_Driven_Approach_Accelerating_Ontology-based_IoT_Applications_Development
http://paperpile.com/b/bzZ8pX/Ckcr
http://paperpile.com/b/bzZ8pX/Ckcr
http://paperpile.com/b/bzZ8pX/Ckcr
http://dx.doi.org/10.1109/giots.2018.8534520
http://paperpile.com/b/bzZ8pX/dz45
https://www.w3.org/TR/turtle/
http://paperpile.com/b/bzZ8pX/KIRd
https://www.w3.org/TR/n-triples/
http://paperpile.com/b/bzZ8pX/Jxgv
https://www.w3.org/TR/n-quads/
http://paperpile.com/b/bzZ8pX/qyvF
http://paperpile.com/b/bzZ8pX/qyvF
https://www.w3.org/TR/json-ld11/
http://paperpile.com/b/bzZ8pX/OSX9
https://www.w3.org/TeamSubmission/n3/
http://paperpile.com/b/bzZ8pX/ngNE
https://www.w3.org/TR/rdf-syntax-grammar/
http://paperpile.com/b/bzZ8pX/Irf6
https://www.w3.org/TR/rdf-json/
http://paperpile.com/b/bzZ8pX/lbpn
https://www.w3.org/wiki/ConverterToRdf
http://paperpile.com/b/bzZ8pX/hIau
http://paperpile.com/b/bzZ8pX/hIau
http://paperpile.com/b/bzZ8pX/hIau
http://paperpile.com/b/bzZ8pX/If7J
https://www.w3.org/wiki/RdfStoreBenchmarking
http://paperpile.com/b/bzZ8pX/vtfD
http://paperpile.com/b/bzZ8pX/vtfD
http://dx.doi.org/10.3233/sw-150186
http://paperpile.com/b/bzZ8pX/rMC3
http://www.w3.org/TR/sparql11-overview/

59. ETSI Industry Specification Group on Context Information Management. Context Information
Management (CIM); NGSI-LD. 2019 Jan. Report No.: ETSI GS CIM 009 V1.1.1 . Available:
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.01.01_60/gs_CIM009v010101p.pdf

60. SWRL: A Semantic Web Rule Language Combining OWL and RuleML. 21 May 2004 [cited 19
Oct 2019]. Available: https://www.w3.org/Submission/SWRL/

61. SPIN - SPARQL Inferencing Notation. [cited 19 Oct 2019]. Available: https://spinrdf.org/

62. Abburu S. A Survey on Ontology Reasoners and Comparison. Int J Comput Appl Technol.
2012;57. Available:
https://pdfs.semanticscholar.org/9091/e269a2cf7a44b46681b3de3ca489a36ad243.pdf

63. Apache Jena Framework. [cited 19 Oct 2019]. Available: https://jena.apache.org/

64. Andro Jena - Apache Jena Framework for Android. [cited 19 Oct 2019]. Available:
https://github.com/sbrunk/jena-android

65. Air Quality Index. In: Wikipedia [Internet]. [cited 19 Oct 2019]. Available:
https://en.wikipedia.org/wiki/Air_quality_index

66. Gyrard A, Serrano M, Jares JB, Datta SK, Ali MI. Sensor-based Linked Open Rules (S-LOR).
Proceedings of the 26th International Conference on World Wide Web Companion - WWW ’17
Companion. 2017. doi:10.1145/3041021.3054716

67. Serrano M, Gyrard A. A Review of Tools for IoT Semantics and Data Streaming Analytics. In:
Soldatos J, editor. Building Blocks for IoT Analytics. River Publishers; 2016. pp. 139–163.

68. Gyrard A. Sensor-based Linked Open Rules (S-LOR) & Demo. [cited 20 Oct 2019]. Available:
http://linkedopenreasoning.appspot.com/

69. Ganz F, Enshaeifar S, Puschmann D, Ahrabian A, Elsaleh T. Knowledge Acquisition Toolkit
(KAT). [cited 19 Oct 2019]. Available: http://info.ee.surrey.ac.uk/CCSR/KAT/

70. COWL RDF. [cited 19 Oct 2019]. Available: https://github.com/scslab/cowl/tree/master/rdf

71. Redland RDF Libraries. [cited 19 Oct 2019]. Available: http://librdf.org/

72. AutoRDF - A framework for C++ proxy class generation from Web Ontology Language. [cited 19
Oct 2019]. Available: https://github.com/ariadnext/AutoRDF

73. Eclipse rdf4j - Scalable RDF for Java. [cited 19 Oct 2019]. Available: https://rdf4j.eclipse.org/

74. Ruby RDF - Public domain libraries for RDF & SPARQL in the Ruby programming language.
[cited 19 Oct 2019]. Available: https://github.com/ruby-rdf

75. dotNetRDF - An Open Source .NET Library for RDF. [cited 19 Oct 2019]. Available:
https://www.dotnetrdf.org/

76. RDFLib for Python. [cited 19 Oct 2019]. Available: https://github.com/RDFLib/rdflib

77. SWI-Prolog Semantic Web Library 3.0. [cited 19 Oct 2019]. Available:
https://www.swi-prolog.org/pldoc/doc_for?object=section(%27packages/semweb.html%27)

78. RDF JavaScript Libraries. [cited 19 Oct 2019]. Available: https://github.com/rdfjs

79. Comparison of RDFJS libraries. In: W3C Community [Internet]. [cited 19 Oct 2019]. Available:

22-Oct-2019 Semantic IoT Solutions - A Developer Perspective 47

http://paperpile.com/b/bzZ8pX/0b5n
http://paperpile.com/b/bzZ8pX/0b5n
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.01.01_60/gs_CIM009v010101p.pdf
http://paperpile.com/b/bzZ8pX/GgC4
http://paperpile.com/b/bzZ8pX/GgC4
https://www.w3.org/Submission/SWRL/
http://paperpile.com/b/bzZ8pX/3Thw
https://spinrdf.org/
http://paperpile.com/b/bzZ8pX/VSVD
http://paperpile.com/b/bzZ8pX/VSVD
https://pdfs.semanticscholar.org/9091/e269a2cf7a44b46681b3de3ca489a36ad243.pdf
http://paperpile.com/b/bzZ8pX/GZcs
https://jena.apache.org/
http://paperpile.com/b/bzZ8pX/XXHZ
https://github.com/sbrunk/jena-android
http://paperpile.com/b/bzZ8pX/2ciX
https://en.wikipedia.org/wiki/Air_quality_index
http://paperpile.com/b/bzZ8pX/Oi7q
http://paperpile.com/b/bzZ8pX/Oi7q
http://paperpile.com/b/bzZ8pX/Oi7q
http://dx.doi.org/10.1145/3041021.3054716
http://paperpile.com/b/bzZ8pX/G9kM
http://paperpile.com/b/bzZ8pX/G9kM
http://paperpile.com/b/bzZ8pX/oZKF
http://linkedopenreasoning.appspot.com/
http://paperpile.com/b/bzZ8pX/9gEC
http://paperpile.com/b/bzZ8pX/9gEC
http://info.ee.surrey.ac.uk/CCSR/KAT/
http://paperpile.com/b/bzZ8pX/9bEE
https://github.com/scslab/cowl/tree/master/rdf
http://paperpile.com/b/bzZ8pX/XNmU
http://librdf.org/
http://paperpile.com/b/bzZ8pX/wbgQ
http://paperpile.com/b/bzZ8pX/wbgQ
https://github.com/ariadnext/AutoRDF
http://paperpile.com/b/bzZ8pX/ZyDv
https://rdf4j.eclipse.org/
http://paperpile.com/b/bzZ8pX/jsJt
http://paperpile.com/b/bzZ8pX/jsJt
https://github.com/ruby-rdf
http://paperpile.com/b/bzZ8pX/5Vu0
https://www.dotnetrdf.org/
http://paperpile.com/b/bzZ8pX/InQB
https://github.com/RDFLib/rdflib
http://paperpile.com/b/bzZ8pX/xkPb
https://www.swi-prolog.org/pldoc/doc_for?object=section(%27packages/semweb.html%27)
http://paperpile.com/b/bzZ8pX/rnJm
https://github.com/rdfjs
http://paperpile.com/b/bzZ8pX/Ilnc

https://www.w3.org/community/rdfjs/wiki/Comparison_of_RDFJS_libraries

80. Semantic Whitepaper Code Example. [cited 19 Oct 2019]. Available:
https://github.com/martin-p-bauer/SemanticWhitepaperCodeExample

81. Apache Jena Fuseki. [cited 19 Oct 2019]. Available:
https://jena.apache.org/documentation/fuseki2/

82. KOMMA - RDF for Eclipse. In: Eclipse Marketplace [Internet]. [cited 19 Oct 2019]. Available:
https://marketplace.eclipse.org/content/komma-rdf-eclipse

83. Empire - JPA implementation for RDF. [cited 19 Oct 2019]. Available:
https://github.com/mhgrove/Empire

84. alibaba - Sesame RDF framework. [cited 19 Oct 2019]. Available:
https://bitbucket.org/openrdf/alibaba/src/master/

85. Romantic Web - Object Mapping for RDF in .net. [cited 19 Oct 2019]. Available:
http://romanticweb.net/

86. Trinity - A high-level API for RDF written in C#. [cited 19 Oct 2019]. Available:
https://bitbucket.org/semiodesk/trinity/src/default/

87. RDFAlchemy - Object RDF Mapper for semantic web users. [cited 19 Oct 2019]. Available:
https://rdfalchemy.readthedocs.io/en/latest/

88. Murdock P, Bassbouss L, Kraft A, Bauer M, Logvinov O, Ben Alaya M, et al. “Semantic
Interoperability for the Web of Things”, White Paper. 2016. Available:
https://www.researchgate.net/publication/307122744_Semantic_Interoperability_for_the_Web_of
_Things

89. ETSI. SmartM2M; PlugtestsTM preparation on Semantic Interoperability. 2019. Report No.: TR
103 537.

Glossary and Acronym Table
Table 8 Glossary and acronym table

AAL Ambient Assisted Living

AIOTI Alliance for IoT Innovation

API Application Programming Interface

AQI Air Quality Index

BAN Body Area Network

DL Description Logics

DSF Demand Side Flexibility

48 Semantic IoT Solutions - A Developer Perspective 22-Oct-2019

https://www.w3.org/community/rdfjs/wiki/Comparison_of_RDFJS_libraries
http://paperpile.com/b/bzZ8pX/0qER
https://github.com/martin-p-bauer/SemanticWhitepaperCodeExample
http://paperpile.com/b/bzZ8pX/le76
https://jena.apache.org/documentation/fuseki2/
http://paperpile.com/b/bzZ8pX/Yn7y
https://marketplace.eclipse.org/content/komma-rdf-eclipse
http://paperpile.com/b/bzZ8pX/m6oo
https://github.com/mhgrove/Empire
http://paperpile.com/b/bzZ8pX/AxbR
https://bitbucket.org/openrdf/alibaba/src/master/
http://paperpile.com/b/bzZ8pX/5b5k
http://romanticweb.net/
http://paperpile.com/b/bzZ8pX/TDtC
https://bitbucket.org/semiodesk/trinity/src/default/
http://paperpile.com/b/bzZ8pX/RQWo
https://rdfalchemy.readthedocs.io/en/latest/
http://paperpile.com/b/bzZ8pX/T36F
http://paperpile.com/b/bzZ8pX/T36F
https://www.researchgate.net/publication/307122744_Semantic_Interoperability_for_the_Web_of_Things
https://www.researchgate.net/publication/307122744_Semantic_Interoperability_for_the_Web_of_Things
http://paperpile.com/b/bzZ8pX/8Uhu
http://paperpile.com/b/bzZ8pX/8Uhu
http://paperpile.com/b/bzZ8pX/8Uhu
http://paperpile.com/b/bzZ8pX/8Uhu

ETSI European Telecommunication Standards Institute

HTTP HyperText Transfer Protocol

Interoperability Interoperability is the ability of two systems to exchange information and
utilize it.

IoT Internet of Things

IRI Internationalized Resource Identifier

IT Information Technology

JPA Java Persistence API

JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation for Linked Data

KAT Knowledge Acquisition Toolkit . Reasoning tool

LINQ Language-Integrated Query

LOV Linked Open Vocabularies

Ontology catalog

LOV4IoT Linked Open Vocabularies for Internet of Things

Catalog of ontology-based projects relevant for IoT.

NGSI Next Generation Service Interface

ODP Ontology Design Patterns

OLGA Ontology Library GenerAtor

Ontology Formal specification of concepts and their relationshionships to
describe a specific area. This is sometimes referred to as ontology
model or T-Box.

Ontology
instance

Instantiation of ontology concepts and relationships. This is the actual
information using the ontology’s concepts and relationships. This is
sometimes referred to as semantic dataset or A-Box.

ORM Object Relational Mappers

22-Oct-2019 Semantic IoT Solutions - A Developer Perspective 49

ORSD Ontology Requirement Specification Document

It identifies the intended uses of the ontology, the end users, and the
requirements the ontology should fulfill.

OWL Web Ontology Language

Formal language for the description of an ontology

RDF Resource Description Framework.
The basic semantic web language to describe triples.

RDF graph Exchangeable representation (also called serialised representation) of
an ontology instance, based on RDF.

RDFS Resource Description Framework Schema. Set of classes with certain
properties (e.g., subclassOf) using RDF for providing basic elements for
the description of ontologies.

SAREF Smart Applications REFerence ontology

SAREF for Energy is SAREF extension for the Energy domain

Semantics Semantics is the study of meaning. In the context of this work, the idea
is to uniquely identify and agree on concepts and their
relationships.This can be formally specified in an ontology.

S-LOR Sensor-based Linked Open Rules

SOSA Sensor, Observation, Sample, and Actuator

SPARQL Recursive acronym (SPARQL Protocol and RDF Query Language).

A query language to query semantic datasets based on RDF graphs.

SSN Semantic Sensor Network

Triple Triples have the form of <subject, predicate, object> and are used to
describe ontology elements

W3C World Wide Web Consortium

WoT Web of Things

WSN Wireless Sensor Network

50 Semantic IoT Solutions - A Developer Perspective 22-Oct-2019

UML Unified Modeling Language

XML eXtensible Markup Language

Acknowledgements
This work has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreements No.732240 (SynchroniCity) and No. 688467
(VICINITY); from ETSI under Specialist Task Forces 534, 556, 566 and 578.
This work is partially funded by Hazards SEES NSF Award EAR 1520870, and KHealth NIH 1
R01 HD087132-01. The opinions expressed are those of the authors and do not reflect those of
the sponsors.

22-Oct-2019 Semantic IoT Solutions - A Developer Perspective 51

View publication statsView publication stats

https://www.researchgate.net/publication/336679022

