
HAL Id: emse-02360718
https://hal-emse.ccsd.cnrs.fr/emse-02360718

Submitted on 14 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reducing waste in manufacturing operations:
bi-objective scheduling on a single-machine with

coupled-tasks
Corentin Le Hesran, Aayush Agarwal, Anne-Laure Ladier, Valerie

Botta-Genoulaz, Valérie Laforest

To cite this version:
Corentin Le Hesran, Aayush Agarwal, Anne-Laure Ladier, Valerie Botta-Genoulaz, Valérie Lafor-
est. Reducing waste in manufacturing operations: bi-objective scheduling on a single-machine
with coupled-tasks. International Journal of Production Research, 2020, 58 (23), pp.7130-7148.
�10.1080/00207543.2019.1693653�. �emse-02360718�

https://hal-emse.ccsd.cnrs.fr/emse-02360718
https://hal.archives-ouvertes.fr


Reducing waste in manufacturing operations: bi-objective scheduling

on a single-machine with coupled-tasks

Corentin Le Hesrana, Aayush Agarwala, Anne-Laure Ladiera, Valérie
Botta-Genoulaza and Valérie Laforestb

aUniv Lyon, INSA Lyon, DISP laboratory EA 4570, 69621 Villeurbanne cedex, France
bUniv Lyon, EMSE, CNRS, UMR 5600 EVS, 158 cours Fauriel, 42023 Saint-Etienne
cedex 2, France

ARTICLE HISTORY

Compiled September 20, 2019

ABSTRACT

This study addresses a scheduling problem involving a single-machine with coupled-tasks and bi-
objective optimisation considering simultaneously inventory and environmental waste. A Mixed In-
teger Linear Program (MILP) representing the problem is first developed. Subsequently, a Genetic
Algorithm (GA) is presented, followed by numerical experiments on multiple instances. Pareto fronts
are determined using the ε-constraint and weighted sum methods, and a trade-off point is selected
according to a distance criterion. Numerical experiments on both small and large instances show near
optimal results for small instances, and considerably reduced computing times for large ones when
using the GA. The results show that a compromise can be found, with a decrease in setup-related
waste up to 36% for an increase of inventory of 12%. This will help decision-makers to better consider
the environmental aspect when designing schedules, as well as reduce their production environmental
impact and waste management costs.

KEYWORDS
Coupled-tasks, bi-objective optimisation, scheduling, genetic algorithm, waste
prevention, Mixed-integer linear programming
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1. Introduction

Sustainable production is defined as “the creation of goods and services using processes and sys-
tems that are non-polluting; conserving of energy and natural resources; economically viable; safe
and healthful for workers, communities, and consumers; and socially and creatively rewarding for all
working people” (Lowell Center for Sustainable Production, 1998). In the recent years, more and more
research has been devoted to it as a possible answer to the environmental issues affecting industrial
companies, such as stricter regulations, highly volatile energy prices, shortage of raw materials and
natural resources or customer demand for more environmentally responsible products (Giret et al.,
2015). As a key factor in production efficiency, operations scheduling is one of several levers that can be
used in order to address those problems. In a literature review of sustainability in manufacturing op-
erations scheduling, Giret et al. (2015) show that concerns have been mostly focused on the reduction
of energy consumption thus far; detailed reviews on energy efficient scheduling can be found in Gahm
et al. (2016) and Biel and Glock (2016). Giret et al. (2015) also emphasise the need to address the
consequences of scheduling implementation, notably waste, to design sustainable scheduling systems,
since there are few works on this topic.
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Our goal is to show how scheduling can help reduce waste generation, e.g. by reducing cleaning and
setup operations. As an example, in a painting line if there are less painting cabins than types of paint,
the painting nozzles need to be cleaned at every paint change. Cleaning the painting nozzles generates
wastewater soiled with paint particles and solvent, which needs to be treated and then disposed of. This
treatment is costly and its end product, paint sludge, is considered hazardous by the European Waste
Code (European Commission, 2000). This entails production restriction, careful handling and storage,
and the hiring of a special contractor to retrieve it. Thus, it might be beneficial both environmentally
and economically to include these costs in production scheduling considerations and minimise the
number of paint changes. This particular problem is a case of coupled-tasks scheduling problem, where
a product needs to be processed multiple times by the same machine with mandatory lag-times between
each operation (Shapiro, 1980). It has been solved using Mixed Integer Linear Programming (MILP)
in Le Hesran et al. (2018), showing potential for compromises between inventory and paint changes but
requiring large computation times. The present paper is an extended version of Le Hesran et al. (2018)
proposing a solving method based on a Genetic Algorithm (GA) in order to reduce the computation
time needed for large instances. The contribution of this paper is twofold. Firstly, it introduces an
environmental criterion where none had been considered before, allowing for the implementation of
greener schedules. Secondly, it provides both an exact and meta-heuristic methods for solving a bi-
objective problem involving coupled-tasks, which had not previously been done, providing relevant
information for decision-making.

The rest of the paper is organised as follows: a review of the relevant literature is provided in
section 2. Section 3 introduces the positioning of our work, the mathematical model of the problem
and the data, variables and constraints used. Section 4 explains the structure and different operators
of the GA. Finally, section 5 presents the numerical experiments and results, followed by conclusions
regarding both solving methods (GA and MILP) in section 6.

2. Literature review

In this section, a brief review of the existing literature relevant to our case is conducted. It includes
some cases of waste-related sustainable production, a summary of research concerning the coupled-
tasks scheduling problem and some studies making use of GAs in operations scheduling.

2.1. Waste-conscious scheduling

As previously stated, Giret et al. (2015) note that research on waste-reducing scheduling is scarce,
and mainly originates from the chemical industry. In a recent literature review on waste-minimising
scheduling problems, Le Hesran et al. (2018) identify 70 articles that address the issue of waste min-
imisation through scheduling. Among those, Adonyi et al. (2008) address the issue of waste generated
during equipment cleaning in a paint producing plant. By adapting former research on S-Graphs
by Sanmart́ı et al. (2002), they propose a new algorithm which accounts for the equipment cleaning
cost, and offer several alternative solutions with varying makespans and total cleaning costs. Similarly,
Zhang (2018) addresses the issue of minimising setup-related waste in painting lines by avoiding colour
changes, respectively using MILP and Particle Swarm Optimisation, providing alternative schedules.
Other examples of setup-induced waste minimising scheduling problems can be found in Nonas and
Thorstenson (2008); Cui and Yang (2010); Wu et al. (2017) or Pulluru et al. (2017), none of them
including coupled-tasks characteristics.

2.2. Coupled-tasks scheduling problems

A coupled-tasks scheduling problem is a problem where a set of n jobs comprising two operations
has to be processed on the same single-machine (Shapiro, 1980), a job being a set of similar products
with a defined size and due date. An exact amount of time, or time-lag Li, needs to elapse between
the end of the first operation of job i (processing time ai) and the beginning of its second operation
(processing time bi). Operations from other jobs can be processed during this time-lag. It is noted
as {1 | Coup-task | −} in the extended Graham notation (Graham et al., 1979). Particular cases of
interest can emerge when specifying the values of ai, bi or Li. Blazewicz et al. (2012) provide a survey
of research on coupled-tasks scheduling problems, as well as a list of important results for the most
common variants and subproblems.

The complexity of the coupled-task scheduling problem was studied by Orman and Potts (1997).
They prove the general problem to be NP-Hard, as well as several particular cases. Due to the com-
plexity of the problem, heuristic-based methods are more frequent than exact methods. They usually
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focus on the minimisation of makespan, such as Shapiro (1980) who develops three sub-optimal algo-
rithms for a specific case of radar scheduling, while Gupta (1996) develops several heuristic algorithms.
Lin and Haley (1993) solve the makespan minimisation problem with arbitrary lower-bound time de-
lays using greedy and iterative heuristics as well as a branch and bound algorithm. Lin et al. (1995)
consider the same problem, using threshold acceptance and simulated annealing. Ahr et al. (2004)
study the Identical Coupled-Tasks Problem where all processing times and time-lags are equal be-
tween jobs (i.e. ai = a, bi = b, Li = L), and define an exact algorithm to solve it. Their work is
adapted by Brauner et al. (2009) to fit a one-machine robotic cell problem, both with an exact and
bounded delay L. Potts and Whitehead (2007) study the makespan minimisation problem with upper
and lower bounds for the time-lags and compare seven different heuristics. Condotta and Shakhlevich
(2012) propose a tabu-search algorithm for the exact time-lag problem, and compare it with the join-
and-decompose heuristic defined by Potts and Whitehead (2007) for the flexible time-lag problem. A
tabu-search metaheuristic for solving the general case is also developed by Li and Zhao (2007), showing
good results when compared with a theoretical lower bound, as well as some algorithms for NP-Hard
special cases of the problem. Finally, Amrouche and Boudhar (2016) and Amrouche et al. (2017) con-
sider the problem of the two-machine chain re-entrant with identical time lags. This problem, noted
{F2|ChR, lj = L|Cmax} considers a two machine flowshop with exact time-lags where each task needs
to be processed twice on the first machine. They develop nine heuristics, with numerical experiments
marking two of those, IHLRP and IHL6, as more efficient. Courtad et al. (2017) study the single
machine flowtime minimisation problem with paired-tasks, in which a minimum delay must occur
between two tasks of a same job. They first use a MILP approach, then propose an insertion heuris-
tic providing near-optimal results. Finally, Meziani et al. (2018) propose to minimise the makespan
in a two-machine flowshop with coupled tasks problem (F2|aj , bj , Lj , cj |Cmax). They first propose a
lower bound as well as four heuristics. A hybrid PSO and Simulated Annealing (SA) metaheuristic
is developed and compared with the PSO and SA-only approaches, outperforming them both. The
coupled-task problem is a particular case of re-entrant problems, in which jobs are allowed to be
processed by the same machine more than once. Re-entrant problems are mainly solved using heuris-
tic approaches. Exact models are proposed by Chen and Chao-Hsien Pan (2006), who develop eight
integer programming models for the re-entrant job-shop and flow-shop scheduling problem based on
formulations by Wagner (1959), Manne (1960), Wilson (1989) and You and Chii-Tsuen (1992). Those
initial models are not re-entrant, therefore Chen and Chao-Hsien Pan (2006) relax their assumption
that every machine may only be visited once, in order to obtain new formulations for the re-entrant
shop problem. Since re-entrant problems state that no two consecutive operations of a job can be
processed on the same machine (Chen and Chao-Hsien Pan, 2006), this assumption must be relaxed
for the coupled-task case.

Other works concern different objective functions or extensions of the problem. Focusing on radar
control, Winter and Baptiste (2007) develop two heuristics and a local-search algorithm for a prob-
lem with lower and upper bounded time-lags, the objective function being the total cost minimisa-
tion of the delay between an operation’s ideal starting time versus its real starting time. Simonin
et al. (2011) study the acquisition and treatment of data by torpedoes, and propose an algorithm for
minimising the makespan in a coupled-tasks problem with precedence constraints on treatment tasks
(1|prec, (ai, Li, bi)(Ti, pmtn), Gc|Cmax). Sequence dependence in the coupled-tasks scheduling problem
is introduced by Blazewicz (2010) who studies the cases of general and in-out precedence constraints
tree.

To the best of our knowledge, none of the papers on coupled-tasks scheduling address the issue
of waste generation, as most consider the issue of makespan minimisation, nor do they optimise the
number of setups required.

Additionally, no multi-objective problems involving coupled tasks have been addressed. Although
the issue of reentrance was tackled using for example genetic algorithms (Dugardin et al., 2010; Cho
et al., 2011; Zhang et al., 2012) or large neighborhood search (Rifai et al., 2016), none of them consider
an environmental criterion in their objectives.

3. Problem modeling

In this section, the problem is defined and the particularities of our approach compared to the previous
works reviewed in Section 2 are highlighted. The MILP is then detailed and the different constraints
explained.
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3.1. Problem definition

Drawing inspiration from the example of hubcap factory described in Section 1, our problem is defined
as follows. In the shop-floor, only one painting line is available for the processing of all products,
making this a single-machine scheduling problem. A passage into the painting line is referred to as an
operation, while the set of operations required for completion of an order is called a job.

The products can be painted several times to apply coatings, which can be of different colours,
meaning that a job can require to go through the painting line more than once. Additionally, a
minimum drying time must be left between two coatings of a same product. Based on the definition
provided in Section 2.2, this is a coupled-tasks scheduling problem. Since there is a need to clean
the painting line at each colour change, another of its characteristics is a sequence-dependent waste
treatment cost. A hard due date constraint forbids lateness on any order, and earliness is not desirable
either since keeping inventory represents a holding cost for the company: indeed, most manufacturing
companies nowadays operate on a just-in-time basis.

The objective function is therefore twofold. An environmental objective consists in minimising
the waste induced by setups, which is proportional to the number of colour changes. The economic
objective is to minimise the inventory associated with earliness, which is defined by the number of
products held in the inventory while they await processing or shipping.

Based on this previous description, and using the extended three-fields notation from
Blazewicz et al. (2012), this problem can be written as {1 | (ai,L , bi), dependent cost, Di

|
∑
Ei,Number of setups}

The proposed mathematical model is based on the extension of Manne’s model (Manne, 1960)
by Chen and Chao-Hsien Pan (2006) which assumes that the jobs to be scheduled are composed of
different numbers of operations. The assumption that no machine can process two tasks of a same job
consecutively was relaxed to allow for a single machine setting.

3.2. Problem data

The next paragraphs detail the different sets, data and decision variables necessary for the modeling of
the problem as a MILP. While the studied case of hubcap manufacturing only considers two operations
per job, this model also works for problems with more than two operations per job.

3.2.1. Data sets

• I: set of the different jobs to be scheduled;
• J : set of the different operations composing a job.

3.2.2. Data

• Pij : processing time for operation j of job i;
• L: minimum drying time between two consecutive operations of a job;
• Qi: number of products in job i;
• Di: due date for job i;
• Yijkl = 1 if switching from operation j of job i to operation l of job k implies a setup, 0

otherwise;
• Ni: number of operations for job i;
• M : maximum length of the planning horizon, i.e. M = max

i∈I
Di.

3.2.3. Decision variables

• yijkl: 1 if operation j of job i takes place just before operation l of job k, 0 otherwise;
• sij : starting time of operation j of job i;
• tij : drying time after operation j of job i;
• ei: earliness of job i (time between the end of the last operation and the due date of job i);
• gij : machine idle-time between the end of operation j of job i and the next scheduled operation.

The objective function is composed of two elements:

• zinventory: the total inventory, which represents all products finished early, that therefore must
be stored until their due date. This includes semi-finished products that stay in the drying
inventory longer than the minimum required amount of time. Minimising the inventory equates
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to minimising the holding cost, since it is proportional to the number of products in stock
multiplied by the time spent before expedition;

• zsetup: the number of setups needed. Since a fixed quantity of waste is generated each time
a colour change occurs, waste treatment and disposal cost is proportional to the number of
setups.

3.3. Mathematical model

The complete MILP is detailed in Figure 1.

min zinventory =
∑
i∈I

Qi × ei +
∑

i∈I|Ni>1

Ni∑
j=1

Qi(tij − L)

min zsetup =
∑
i∈I

Ni∑
j=1

∑
k∈I

Nk∑
l=1

Yijkl yijkl

s.t. sij + Pij + tij ≤ si,j+1 ∀i ∈ I, j ∈ {1, . . . , Ni − 1} (1)

yijil = 0 ∀i ∈ I, j ∈ {1, . . . , Ni}, ∀l ∈ {1, . . . , Ni | l ≤ j} (2)
ei = Di − siNi

− PiNi
∀i ∈ I (3)

sij + Pij + gij +M(1− yijkl) ≥ skl ∀(i, k) ∈ {I2|k 6= i}, j ∈ {1, . . . , Ni}, l ∈ {1, . . . , Nk} (4)

sij + Pij + gij ≤M(1− yijkl) + skl ∀(i, k) ∈ {I2|k 6= i}, j ∈ {1, . . . , Ni}, l ∈ {1, . . . , Nk} (5)∑
i∈I

Ni∑
j=1

∑
k∈I

Nk∑
l=1

yijkl =
∑
i∈I

Ni − 1 (6)

∑
k∈I

Nk∑
l=1

yijkl ≤ 1 ∀i ∈ I, j ∈ {1, . . . , Ni} (7)

∑
k∈I

Nk∑
l=1

yklij ≤ 1 ∀i ∈ I, j ∈ {1, . . . , Ni} (8)

tij ≥ L ∀i ∈ {I | Ni > 1},∀j ∈ J (9)

sij , tij , ei, gij ≥ 0 ∀i ∈ I, j ∈ J (10)
yijkl ∈ {0, 1} ∀i ∈ I, j ∈ J , k ∈ I, l ∈ J (11)

Figure 1. Mixed Integer Linear Program modeling the scheduling problem

Constraint set (1) ensures that all operations (but the first one) start only after the previous one
on the same job is done and the drying time has ended. Constraints (2) ensure that no operation l of
a job can be placed before operation j of a same job in the yijkl variables. Constraint set (3) defines
job earliness as the difference between the due date and the completion date of the last operation on
this job. The positivity constraint on ei (10 ensures that no job can end after its due date.

Constraint sets (4) and (5) guarantee that only the operation (k, l) consecutive to (i, j) can be
started after (i, j) (including some possible lag-time). They result from the linearisation of the following
expression:

yijkl = 1⇒ sij + Pij + gij = skl

Since yijkl is equal to one if and only if operation j of job i is directly followed by operation l of job
k, each operation but the first one can have exactly one predecessor. Constraint (6) therefore makes
sure that the number of possible successors is equal to the total number of operations minus one.

Constraint set (7) and (8) are used to make sure that a given operation (i, j) has no more than
one successor or predecessor respectively. Constraint set (9) defines the minimum drying time between
two operations of a same job. Finally, the non-negativity constraints and the binarity of y are given
by constraint sets (10) and (11).

3.4. Bi-objective approach

Since we work on a multi-objective scheduling problem, it is advisable to provide the decision-maker
with alternative solutions that represent the variety of possible results. In the case of bi-objective
optimization, this can be achieved using a Pareto front. A Pareto front represents the set of non-
dominated solutions for multiobjective optimization, i.e. solutions that cannot be improved without
degrading at least one of the other objectives (more details are available in Blasco et al. (2008)). We
generate this Pareto front using the ε-constraint method, that turns the multi-objective problem into
a single-objective one by transforming other objective functions into constraints (Mavrotas, 2009).
The fact that we only need to minimise two objectives, and that one takes integer values (namely the
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number of setups zsetup) makes this method especially convenient. The steps required for the obtention
of the Pareto front are detailed in Algorithm 1. The initialization phase computes a mono-objective
MILP, using α and β as parameters in the weighted sum objective function. The chosen weights α=1
and β=0.005 ensure that the inventory criterion takes precedence over the number of setups, therefore
giving the leftmost point of the Pareto front, i.e. the schedule with the lowest possible inventory and
for which the number of setups cannot be reduced.

Algorithm 1 Pareto front generation
1: Input: Instance data

2: Output: Pareto front
3: Compute the (zmin

inventory, z
0
setup) point by solving the model with the following objective function:

zweighted = αzinventory + βzsetup

4: Set ε = z0
setup − 1

5: while problem is feasible do

6: Solve the ε-constraint problem with zsetup ≤ ε as a constraint and zinventory as the objective func-

tion. Add the objective function value (zit
inventory, z

it
setup) to the set of Pareto front points

7: Set ε = zit
setup − 1

8: it = it + 1

9: end while

While obtaining this Pareto front provides us with all non-dominated schedules, all of them might
not be suited to a practical use. Since the size of the front is limited by the maximum number of
possible colour changes, which is equal to the total number of operations minus one, it might contain
too many points to be easily understandable by the decision-makers. As such, providing the whole
front might be counterproductive since it potentially contains a lot of unnecessary information. To
alleviate this issue, key points are extracted for each instance, which each have different characteristics.
Those points, and the way they are obtained, are detailed below:

Two extreme points (zmin
inventory, z

0
setup) and (z0

inventory, z
min
setup), which represent the cases where the

decision-maker wishes to minimise one objective in priority, either the inventory or the number
of setups respectively.

The ideal point (zmin
inventory, z

min
setup), which is defined using the two optimum values of these points,

i.e. the minimum inventory and minimum number of setups achievable.

The coordinates of each point zit are normalised using the formula znormal = zit−zmin

z0−zmin for both zinventory

and zsetup. This norm provides new values between 0 and 1 ; scaling both objective functions enables
us to compare values of different nature and order of magnitude. This is especially useful in our case
where a holding cost and a number of setups cannot be compared directly. In case the Pareto front
consists of only one point, i.e. z0 = zmin for inventory and setups, no normalization occurs and this
single point is returned. Using these normalised values, the euclidean distance of each point to the
ideal point is calculated, which is used to define our next key point:

The trade-off point ztrade-off, which represents the best compromise in terms of number of se-
tups reduction versus increase in inventory according to our distance criterion. The euclidean
distance provides an accurate evaluation of the geometrical distance to the ideal point, and
corresponds more closely to the shape of the Pareto front.

Finally, one last key point is presented in order to provide another interesting alternative for decision-
makers:

The percent point zpercent is chosen as the point with the highest difference between waste per-
centage reduction and inventory percentage increase. This point aims at providing an attractive
option for decision-makers that wish to improve their environmental impact without affecting
their costs negatively.

An example of Pareto front with its important points is shown in Figure 2.
Figure 3 presents the Gantt chart for a 10 jobs instance with a drying-time L=4, couple (i, j) being

operation j of job i, with due dates of each job appearing as red lines. Table 1 contains the processing
times Pij , operation type and due date Di associated with each operation j of job i of the featured
Gantt chart.

6



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(zmin
setup,zmin

inventory) (z0setup,zmin
inventory)

(zmin
setup,z0inventory)

ztrade-off

zpercent

Number of setups

In
ve

n
to

ry

Figure 2. Example of Pareto front for a 10 jobs instances, 20%-80% distribution

Figure 3. Gantt chart of a schedule with ten jobs

Table 1. Example chromosome instance data

i 1 2 3 4 5 6 7 8 9 10

j 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Type 2 1 1 1 1 2 1 2 2 1 1 2 1 1 2 0 1 1 2 1

Pij 21 21 15 15 25 25 24 24 18 18 17 17 32 32 27 0 13 13 24 24
Di 148 148 494 494 290 290 419 419 207 207 156 156 522 522 305 0 80 80 584 584

4. Genetic algorithm

4.1. Genetic algorithms

The principle of GAs was first introduced by J. Holland in the 1960s, and later formalised in Holland
(1992). They are based on the theory of evolution, and the improvement of solutions through repeated
modification and natural selection. Their basic idea is to maintain a population of candidate solutions
that evolves under a selective pressure that favours better solutions. In the application of production
scheduling, a GA is an iterative procedure that operates on a finite population of solutions called
chromosomes. Each chromosome represents a fixed schedule of jobs and machine assignation, and can
be evaluated according to a fitness function, similar to an objective function. The members of the
population are then interbred using various genetic operators like crossover (to select useful traits)
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and mutations (to introduce variety) to produce offspring. These offspring are evaluated based on
the fitness function, and can replace the weaker chromosomes currently present in the population
according to a defined reproduction strategy. This creates a new population of which new offspring
can be created, and so on until a stopping mechanism is activated and the best solution is returned.
GAs can be applied in many fields, including scheduling problems such as flowshops (Reeves, 1995),
job-shops (Croce, 1995), flexible job-shops (Pezzella et al., 2008) and hybrid flowshops (Ruiz and
Maroto, 2006). A good introduction to the use of GAs in scheduling can be found in Reeves (1996).
Multiobjective optimisation is also an important feature of GAs (Konak et al., 2006; Deb et al., 2000),
with studies including environmental concerns (Arbiza et al., 2008; Vaklieva-Bancheva and Kirilova,
2010; El Amraoui and Mesghouni, 2014; Araujo et al., 2014; Golfeto et al., 2009; Malik et al., 2009),
although mostly energy-related (Giret et al., 2015; Dugardin et al., 2010; Liu et al., 2016; Zhang and
Chiong, 2016). While GAs are metaheuristics, and offer no guarantee of optimality, they have the
advantage of requiring less computation time than exact methods, which is particularly relevant when
dealing with large instances.

Le Hesran et al. (2018) reported unpractical computation times for solving instances of our problem
with more than ten jobs using MILP. To address this issue and enable the solving of industrial-size
instances, the development of a meta-heuristic is necessary.

Some meta-heuristics such as PSO and SA (Meziani et al., 2018), tabu-search (Condotta and
Shakhlevich, 2012; Li and Zhao, 2007), as well as various heuristics (Courtad et al., 2017; Amrouche
et al., 2017) have been used to solve coupled-tasks scheduling problems. GAs also have been extensively
used to solve scheduling problems, including problems involving reentrance characteristics which are
similar to the coupled-tasks problem. Additionally, single-objective GAs can be efficiently adapted to
bi-objective solving, either through the use of objective function aggregation or by implementing a
Pareto dominance relationship in the fitness function. For these reasons, and due to their applicability
to both scheduling and multiobjective optimisation as well as effectiveness for solving large instances,
a GA was developed ; its features are detailed in the next section.

4.2. Chromosome representation

A sequence coding was adopted for chromosome representation. A chromosome represents a sequence
of operations, its size being equal to the number of jobs times the maximum number of operations
per job. Since not all jobs have the same number of operations, dummy operations with processing
time zero are added to keep the chromosome size constant. This chromosome is constituted of genes,
where a gene’s position corresponds to the job it belongs to and its order within this job. The value
of a gene represents its rank in the global operations sequence. Figure 3 features a Gantt chart of a
problem and Table 1 its associated instance data. Table 2 is the corresponding chromosome, C giving
the operations sequence, and the starting times sij in increasing order. As an example, operation 1
of job 9 is processed first, while operation 2 of job 1 is processed sixth, and operation 2 of job 8 is a
dummy operation.

Table 2. Example chromosome sequence

i 1 2 3 4 5 6 7 8 9 10

j 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

C 4 6 13 17 8 10 12 14 2 9 5 7 15 18 11 20 1 3 16 19

sij 36 49 67 80 104 118 139 164 189 189 207 278 344 380 395 419 451 475 560 584

Once a sequence is known, the corresponding starting times are obtained using Algorithm 2. Here,
L is the minimum drying time, sk is the starting time of the kth operation in the sequence, Dk its due
date, and Pk its processing time. slast refers to the starting time of the last operation to be scheduled,
while snext(k) is the starting time of the operation scheduled right after operation k.

The fitness of a chromosome corresponds to the objective value (α × zinventory + β × zsetup) of its
associated schedule, making it a single-objective GA. It can be shown (see Appendix A for proof) that
this algorithm returns minimal inventory for a given operations order.

4.3. Initialisation

The initialisation step refers to the creation of the initial population. While randomisation is a common
method for generating initial solutions, it is usually used for binary encoding and when constraints
are not so severe as to generate many unfeasible solutions. In our particular case, the due date and
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Algorithm 2 Chromosome to starting times conversion
1: Input: chromosome giving a sequence of operations

2: Output: starting time sk for each operation k

3: slast = Dlast − Plast (schedule the last operation in a “just-in-time” policy)
4: for each operation k to be scheduled, in decreasing sequence order, do

5: if k is the only operation or the last operation of its job then

6: sk = min(Dk − Pk; snext(k) − Pk)
7: else k is an operation followed by k′ in its job, with drying time L in between:

8: sk = min(sk′ − Pk − L; snext(k)− Pk)

9: end if
10: end for

operations order constraints as well as the encoding used would make the use of a randomisation
method unefficient. For this reason, we use the following method. Based on the instance data, a single
initial solution is created. An algorithm sorts the jobs by increasing due date. The operations of
jobs with the lowest due dates are scheduled first, and operations of other jobs can be introduced
whenever the job with the lowest due date is in the drying inventory. Once the initial solution is
created, two mutation operators are applied in order to generate a sufficient number of new offspring.
These constitute the initial population introduced into the GA.

4.4. Mutation operators

Two different mutation operators are considered, namely the swap (Sevaux and Dauzère-Pérès, 2003)
and insertion operators. The swap picks two random genes within the chromosome and exchanges
them. The insertion picks a random gene and inserts it somewhere else in the chromosome. Since
the chromosome size may vary depending on the number of jobs, the mutation scales accordingly by
applying a number of swaps or large swaps equal to the number of jobs |I| divided by ten. Figure 4
shows an example of how both operators work on a ten-jobs chromosome.

Figure 4. Swap (creates offspring D1) and insertion (creates offspring D2) operators and generated off-

spring

4.5. Crossover operators

Two types of crossovers are tested, namely the standard two-point crossover (Sevaux and Dauzère-
Pérès, 2003) and the Linear Order Crossover (LOX) (Portmann, 1996).

The first parents are chosen using fitness proportionate selection, also known as roulette wheel
selection, where the population of parent chromosomes is sorted by increasing fitness values (ascending
order of objective function), meaning the chromosome with the lowest objective value is ranked first.
Each parent is then assigned a probability from Reeves (1995) equal to

p(k) =
2(W + 1− k)

W (W + 1)

where k is the rank of the chromosome and W is the population size. The first parent is chosen using
this discrete probability distribution. The fittest chromosomes thus have a higher probability of being
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chosen as parents. The second parent is then selected randomly from the remaining population, thus
maintaining diversity.

The standard two-point crossover chooses two random genes in the first parent and swaps them
with the corresponding genes of the second parent, as represented in Figure 5 where offspring D1 and
D2 are created from parents P1 and P2. Similarly to the way mutation operators scale, this operator
is designed to execute this swapping manoeuvre a number of time equal to the number of jobs divided
by ten.

Figure 5. Two point standard crossover and generated offspring

The other crossover operator used is the LOX operator, which also chooses two random genes
as crossover points. The partial sequence contained between those two points is transmitted to the
offspring. The rest of the offspring is then filled with the missing genes from the other parent starting
from the beginning of the chromosome, as shown in Figure 6. This operator has the merit of keeping

Figure 6. LOX operator and generated offspring

a part of the first parent intact, as well as the relative order from the second one, which is important
in a problem where due dates severely constrain the ordering possibilities.

4.6. Unfeasible solutions

It is often useful in a GA to allow for unfeasible solutions to be part of the chromosome pool. Since
optimal solutions are oftentimes found near the border of the search space, allowing for solutions
located outside (but not too far from) these borders is a reasonable strategy.

To this end, a penalty is applied to the objective value of solutions that have one or more late
job. This penalty is calculated with the following formula: penalty = max

i∈I
(Di)× max

i∈I,j∈J
(Pij), and is

large enough to always favour feasible solutions over unfeasible ones. This makes sure that unfeasible
solutions will be replaced over time by fitter feasible solutions. Additionally, a parameter tolerance
defines the maximum total lateness allowed and removes the solutions that are too far from the search
space. The value of tolerance decreases over time and unfeasible solutions are ultimately not allowed.

4.7. Reproductive strategy

Sevaux and Dauzère-Pérès (2003) refer to two specific methods for the reproductive strategy, i.e. how
new populations are created during the application of a GA:

• Incremental replacement: each time a new offspring is generated, its fitness is evaluated and
compared to the one of the current chromosomes in the population. If its fitness value is better
than one or several chromosomes of the current population, it is inserted and the chromosome
with the lowest fitness removed.

• Population replacement: a new generation of offspring is created which replaces the previous
population, at the risk of losing more efficient chromosomes in the process.
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Our reproductive strategy is hybrid, i.e. 20% of the best solutions are kept in the new population
regardless of its status as offspring or parent. The rest of the population is then filled with random
offspring. This helps maintain a pool of high fitness solutions in the population (which improves the
quality of the offspring) while still allowing for diversity through the introduction of new offspring.

4.8. Stopping mechanism

The stopping mechanism is twofold. The algorithm stops if the best objective function value has not
improved after threshold generations. This provides a good compromise between objective function
improvement and computation time. Additionally, the algorithm stops when Iteration number pairs
of parents have been selected, without creating any new population. This avoids spending too much
time generating new solutions when it is too computationally demanding. It is especially relevant for
large population sizes where producing enough feasible solutions can be difficult.

4.9. Genetic algorithm structure

As all components of this GA have been defined in the previous paragraphs, its overall structure,
represented in Figure 7, is now explained.

After the initialisation phase in which the initial population is created, the GA iterations start. A
pair of chromosomes is selected, and has a probability p1 of being subjected to the swap operator (each
chromosome is mutated independently). The insertion operator is then applied with a probability p2

(meaning that any given pair of chromosome can be subjected to either zero, one or two mutations).
The resulting chromosomes then have a probability p3 of being subjected to a standard two-point
crossover (as parents), followed by a probability p4 of being subjected to the LOX operator.

If those new chromosomes are considered feasible (which depends on the tolerance allowed), they
are kept in the offspring generation. If more offspring need to be generated to complete the population,
the iteration counter NbIterations is incremented and a new pair of parents is selected and submitted
to the operators. If the iteration counter reaches Iteration number before a new population has been
created, the algorithm stops and the best current solution is returned.

Once a number of offspring equal to the population size have been accepted, the reproductive strat-
egy is applied and the new population is created. The iteration counter is reset, and the best objective
value of the new population is compared to the previous one. If it has improved, the generation counter
is reset and a new loop begins. If not, it is incremented and a new loop begins, until the generation
counter reaches the threshold described in subsection 4.8 and the best solution is returned.

5. Numerical experiments and results

5.1. Instances generation

An instance generator has been coded in C++. The data required to generate an instance consists of:

• the number of jobs n;
• the maximum number of operations per job m;
• the number of different types of operations |J |.
• the distribution from which the number of operations Ni of each job i are drawn.
• the minimum drying time L;

The rest of the instance data is generated as follow:

• Using the chosen distribution, each job between 1 and n is assigned a number of operations Ni

between 1 and m. Each operation is then assigned an operation type represented by an integer
between 1 and |J | using a second discrete distribution. The result is a matrix of size n ×m
containing the details of each job.

• Qi is drawn following a normal distribution N (20, 5).
• Processing time Pij of operation j of job i is assumed to be a linear function of lot size Qi,

and all the operations of one job are assumed to have the same length : Pij = γiQi for all
j ∈ {1, ..., Ni}. We set γi = 1 for all jobs i without a loss of generality.

• A lower and upper bound are then calculated for the determination of the due dates. The
lower bound lbi of job i is defined as lbi = 2 ×

∑
j∈J

Pij + (Ni − 1) × L for all i in I, which is

twice the sum of the processing and drying times necessary for job i. A time horizon for the
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Figure 7. Genetic algorithm structure representation

problem is then set as: M = 1.5

(∑
i∈I

Ni∑
j=1

Pij + L×
∑
i∈I

Ni

)
. This value was chosen big enough

to ensure that a sufficient number of instances would be solvable, but would remain sufficiently
constrained. The due dates Di are then generated using a uniform distribution U(lbi,M).

While this ensures that the first operation of a schedule is always feasible, note that it does not
guarantee that every generated instance can be solved. A screening is done to remove unsuitable
instances until the targeted number of solvable ones has been reached.

Sets of instances were generated with a maximum of two operations per job. Parameters were set
at n ∈ 10, 30 and m=2 with an even repartition between both types (meaning that each operation
has a fifty percent chance of being of type 1 or type 2). Different combinations for the distribution of
variables Ni led to different configurations detailed in Table 3. For example, an 80%-20% distribution
for Ni means that 80% of the jobs will consist of only one operation, while 20% will have two.

Table 3. Instance configurations

|I| n m L Distribution of Ni

2
10

2 4

80%-20%

30
50%-50%

20%-80%
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5.2. MILP model experiments

First experiments are carried out on the MILP model using the IBM ILOG CPLEX solver 12.6.2.0
version, in order to verify and validate it. A total of 110 instances are solved, namely thirty instances
with ten jobs for each configuration and twenty instances of 30 jobs with the 80-20 configuration.
Maximum solving time for a point is set to thirty minutes; in case the optimum is not reached after
this time, a lower bound is returned by CPLEX. This experiment is carried-out on a bi-objective
model and thus returns a Pareto front. Experiments results are shown in Table 4 for the case of the
zpercent point.

Table 4. MILP experiments results - average values for the zpercent point

n Distrib of Ni Waste reduc. (%) Inventory inc. (%) Pareto size CPU time (s)
10 80-20 14.4% 6.6% 3.34 0.1
10 50-50 37.4% 11.1% 4.55 118
10 20-80 36.2% 12.1% 5.6 595
30 80-20 25.9% 12.3% 9.05 1680

Table 4 shows that it is possible to significantly reduce waste generation with a relatively low in-
crease in inventory. However, computation times increase exponentially with the number of operations,
resulting in impractical computation times for instances of 30 or more jobs, where it can take more
than a half hour to get a point of the Pareto front.

5.3. GA parameters definition

These experiments were designed in order to find the parameter values that ensure that the algorithm
is efficient in terms of computation time and solution quality. From the seven main parameters affecting
the algorithm performance, a Taguchi table (Roy, 2001) is constructed.

These parameters were considered in 8 experiments sets, switching between two extreme values
and applied to instances of each configuration of 10 jobs. Table 5 detail these experiments values and
the obtained results. Since decision-makers tend to prioritise the economic criterion when adjusting
the schedule, the parameters were adjusted based on the resultant inventory values only.

Experimental values for each parameter were chosen after initial experiments and in order to
consider a large possible range. The effect of each parameters on algorithm results is supposed to
be linear, and only interactions of the first order between parameters are considered. The resulting
parameters values are the one kept for the following experiments.

Table 5. Taguchi table parameter values

State 1 State 2 Results
Population size 10 30 10
Swap rate 0.5 0.8 0.8
Insertion rate 0.5 0.8 0.8
Crossover rate 0.1 0.5 0.1
LOX rate 0.1 0.5 0.1
Threshold 1000 3000 3000
Iteration number 1000 3000 3000

5.4. Results

30 problems of each configuration with ten jobs were solved with both MILP and GA, using a computer
with an Intel i5 6200 2.3 GHz processor and 8 GB of RAM. Additionally, ten instances with thirty
jobs of each configuration were solved with the GA, resulting in a total of 120 instances tested. Each
instance was solved three consecutive times, and the average value of these three rounds was kept as
the result for the instance. Results for a single objective problem (with inventory only) are compared

in Table 6. The gap for any given instance is gap =
zGA
inventory−zMILP

inventory

zMILP
inventory

and the CPU time gain is

calculated similarly. Table 6 gives the average results over 30 instances; the last column indicates for
how many instances (over the 30 considered) the GA found the optimal solution. For 30 job instances
where no MILP result is available for comparison, the GA average CPU time and standard deviation
are presented.

Results show that the GA reaches the optimal solution a majority of the time, with an average gap
from the optimal not exceeding 2%. The GA is outperformed by the MILP regarding computation
time for small instances, but becomes more efficient timewise as the number of jobs and operations
increases.
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Table 6. Single objective value and CPU time comparison for thirty instances

n Distrib of Ni Average gap (%) Average CPU time gain (%) Nb opt/nb total

10 80-20 1% 10000% 27/30
10 50-50 1,8% 800% 24/30
10 20-80 1% -161% 20/30
n Distrib of Ni Average CPU time (s) Standard deviation
30 80-20 48,2 40,5
30 50-50 58,5 34,5
30 20-80 50,0 47,2

Regarding the biobjective problem, the same set of 10 job instances is solved by both MILP and
GA, as well as twenty 30 jobs instances with the 80%-20% configuration. The MILP is tested using
the ε-constraint approach described in algorithm 1, and the GA with a weighted sum. Both methods
allow to use a single-objective optimization method to solve a bi-objective one through successive
algorithm runs. Each instance is solved twenty consecutive times in which an increasing setup cost
is applied, i.e. the fitness of a chromosome becomes not only based on the inventory, but also on
the number of setups. The increasing setup cost allows for the GA to find solutions with gradually
decreasing numbers of setups, thus forming a Pareto front. Note that the reduced computing time of
the GA is even more impactful when determining Pareto fronts, since multiple solvings need to be
carried out for a same instance. When the total number of operations is greater than 40, obtaining
a Pareto front using the MILP can result in computing times of several hours per instance, which is
no longer suitable for any practical application. The GA is able to solve instances of a hundred jobs,
which is the size of an industrial instance for a day of production, in less than an hour.

Table 7 contains the mean values and standard deviation for the trade-off points that were ob-
tained from each instance using both MILP (ε-constraint method) and GA (weighted sum). Column
“distance” contains the average distance to the ideal point previously defined, and column “CPU
time” shows the average CPU time in seconds consumed for obtaining this particular point. Both
the number of setups and inventory increase when the number of jobs with two operations increases
(i.e. when the distribution switches from 80% - 20% towards 20% - 80%), which is a result of an
increased number of operations, regardless of the solving method used. Similarly, table 8 shows the
same results for the zpercent point. The results are consistent over the different configurations tested,
and the obtained trade-off points all provide effective alternative schedules for both MILP and GA.
The lower inventory observed for the GA trade-off and zmin

inventory points are due to its shorter Pareto
front. Since they are located farther to the right than the points obtained with the exact methods,
a larger number of setups occurs in the GA solutions, which allows for a better solution in terms of
inventory.

Table 7. Characteristics of the trade-off point (standard deviation in parenthesis)

n Distrib of Ni ztrade-off
setup ztrade-off

inventory Setup %

reduc.

Inventory

% inc.

CPU time (s) Pareto size

MILP 10
80-20 3.13 3056 27.1 (22.7) 69.9 (95.5) 0.45 (1.2) 3.34
50-50 3.82 5560 42.5 (19) 51.7 (62.1) 215 (539) 4.55
20-80 4.38 7150 46.1 (19.2) 106.8 (286) 638 (737) 5.6

30 80-20 8.9 16764 38.5 (16.1) 54.8 (73.2) 1714 (384) 9.05

GA 10
80-20 4 2360 12.27 (17.2) 25.3 (59.2) 16.1 (8.5) 2.55
50-50 4.7 4052 20.6 (20.9) 12.2 (20.8) 24 (12) 3.34
20-80 5.75 5981 28.5 (19.48) 41.4 (136) 28.3 (12.18) 3.85

30 80-20 11.5 18518 22.4 (16) 25.5 (35.6) 95 (55.5) 5.35

Table 8. Characteristics of the zpercent point (standard deviation in parenthesis)

n Distrib of Ni zpercent
setup zpercent

inventory Setup %
reduc.

Inventory %
inc.

CPU time (s) Pareto size

MILP 10
80-20 3.86 2215 14.4 (20.66) 6.6 (11.4) 0.10 (0.67) 3.34
50-50 4.3 4385 37.4 (16.8) 11.1 (9) 118 (371) 4.55
20-80 5.4 5852 36.2 (22.9) 12.1 (11.4) 595 (762) 5.6

30 80-20 11 13179 25.9 (13.7) 12.3 (8.9) 1680 (392) 9.05

GA 10
80-20 3.9 2194 16.58 (7.9) 6.6 (10.5) 15.3 (7.9) 2.55
50-50 4.2 4063 31.9 (19.1) 10.45 (9.65) 24 (19) 3.34
20-80 5.2 6095 36.4 (23.8) 11.9 (11.9) 26.9 (12.2) 3.85

30 80-20 12.8 16537 15.2 (17.1) 5.9 (9.34) 88.4 (58) 5.35

Figure 8 shows the average values of the four points (zmin
inventory, z

0
setup), (z0

inventory, z
min
setup),

(ztrade−off
inventory , z

trade−off
setup ) and (zpercent

inventory, z
percent
setup ) for the MILP (full line) and GA (dashed line) and for

each configuration. As can be seen, the number of setups can be reduced to a certain extent with a
relatively low increase in inventory. When reaching the trade-off point, any additional reduction of
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Figure 8. Average trade-off and extreme points for 30 instances of ten jobs

setups results in a greater increase. This is visible in the rising steepness of the curve when reaching
the trade-off point. Tracing the same curves for larger instances or different drying times yields similar
results. The additional zpercent point also provides an efficient schedule for decision-makers since it
is based on direct waste reduction and inventory increase percentages. Thus, it might be beneficial
for the decision-maker to consider this trade-off schedule (or other solutions located between this one
and the (zmin

inventory, z
0
setup) point on the Pareto front, such as the zpercent point) when planning the

production, in accordance with the respective prices of inventory-keeping and waste treatment.

5.5. Managerial implications

As this paper deals with industrial manufacturing and is based on a realistic production plant, it is
important to discuss the implication of the results for the decision-maker. Besides the two extreme
points minimising inventory or setup waste, two points of interest are proposed. When using a distance
to the ideal point criteria, the ztrade-off point is the most efficient. However, when looking at the actual
percentage increase and decrease regarding inventory and waste, the zpercent point is more suited to
managerial needs. While the ztrade−off point tends to produce less waste (10% more setups reduction
than the zpercent point on average), it also substantially increases inventory (a 71% inventory increase
on average using MILP data), which might be unacceptable for decision-makers. On the other hand,
the zpercent point increases inventory by only 10% on average for a 28% waste reduction, making it
more suited to real-life decisions. If waste-management costs are accounted for, using a schedule based
on the zpercent point could actually reduce overall costs. Instances of 100 jobs, which is the size of a
daily schedule in real cases, have been solved using the GA, with a possible decrease of waste of 5%
for an increase in inventory of 1.5%.

6. Conclusion

This paper investigates a single-machine scheduling problem with coupled-tasks aiming at reducing
waste generation due to setups and costs induced by inventory, under the constraint of due dates. This
problem has been shown to be NP-Hard, and the MILP model present excessive computation times
for industrial-sized instances. Therefore, a GA is proposed and tested, and performances from both
GA and MILP are compared. The multiobjective aspect of the problem is accounted for through the
ε-constraint method as well as a weighted sum method, and the proposition of trade-off solutions to
the decision-maker. Results show that the GA performs well on large instances that the MILP cannot
solve in reasonable time, as well as in providing trade-off points out of a Pareto front. Regardless
of the solving method used, we show that taking the waste criteria into account when designing the
production schedule is an effective lever to improve the environmental performance of the production
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system without compromising too much on economical criteria such as inventory costs. Generated
waste can be decreased by a significant percentage at the expense of higher inventory costs via the
proposed trade-off and percent point. Alternatively, all points of the Pareto front can be considered de-
pending on the decision-makers priorities. To assess the actual cost of waste management, alternatives
schedules reducing waste generation can be economically beneficial to companies.

For future work, several developments can be considered. Developing a fully fledged multiobjective
GA will be the topic of future research to make full use of the GA potential for multiobjective optimi-
sation, without using the ε-constraint or weighted sum methods. Calculating accurate lower bounds
for large instances, using e.g. a lagrangian relaxation, would also allow for a better knowledge about
the performance of the GA compared to the MILP when the number of jobs increases. Additionally,
the proposed model and GA can easily be adapted to tackle other cases of coupled-tasks scheduling
problems. while the experiments considered in this paper are limited to a maximum of two opera-
tions per job and two operation types, the developed model and GA can be used for higher values
of m and |J |. Similarly, new distributions regarding the operation type could be experimented on,
as well as higher drying times compared to the mean processing time, or specific minimum drying
times Lij to better represent the reality and variety of industrial production plants. An extension to a
multi-machine environment could also be useful for cases with multiple painting lines sharing common
operation types.
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Appendix A. Starting time definition algorithm optimality proof

Our aim is to prove that algorithm 2 returns starting times si that minimise the inventory objective
function zinventory for a given sequence of operations input.

Let us define two subsets K1 and K2 from the set K of all operations, such that:

• K1 is the set of operations that are the only ones in their job and operations that are the last
of their job;

• K2 is the set of operations after which a drying time is needed.

We have K1 ∪ K2 = K and K1 ∩ K2 = ∅
The inventory objective function

zinventory =
∑
i∈I

Qi ∗ ei +
∑

i∈I|Ni>1

Ni∑
j=1

Qi(tij − L)

can be rewritten as:

zinventory =
∑
k∈K1

Qk ∗ ek +
∑
k∈K2

Qk(tk − L)

with ek = Dk − sk −Dk and tk = sk′ − sk − Pk − L.
Similarly, constraints (1), (3) and constraint set (4) and (5) can be rewritten as:

(1)⇒ sk′ − sk − Pk ≥ L ∀k ∈ K2 (12)
(3)⇒ sk + Pk ≤ Dk ∀k ∈ K1 (13)

(4) + (5)⇒ sk ≤ snext − Pk ∀k ∈ K (14)

where k′ is the next operation of the same job.
We wish to prove that for a given operations sequence, assigning the starting times sk so that:

sk =


Dlast − Plast if k is the last operation

min
(
Dk − Pk; snext(k) − Pk

)
if k ∈ K1

min
(
sk′ − Pk − L; snext(k) − Pk

)
if k ∈ K2

minimizes zinventory. Since Qk is always positive, minimising zinventory means minimising ek and
(tk − L)

For each option, we have:

• If it is the last operation, we have elast = Dlast − slast − Plast. If slast = Dlast − Plast, ek = 0,
which is the minimum possible value (since ek is always positive).

• If k ∈ K1, constraints (13) and (14) apply. The value assigned to sk is min(Dk−Pk; snext(k)−Pk):
◦ If Dk − Pk ≤ snext(k) − Pk, then sk = Dk − Pk and ek = 0, which is the minimum value.
◦ If Dk −Pk ≥ snext(k)−Pk, then sk = snext(k)−Pk. Since ek = Dk − sk −Pk and Dk and
Pk are fixed, minimising ek is equivalent to maximising sk. Since sk ≤ snext(k) − Pk due
to constraint (14), ek is at its minimum possible value.

• If k ∈ K2, constraints (12) and (14) apply. The value assigned to sk is min(snext(k) − Pk; sk′ −
Pk − L):
◦ If snext(k)−Pk ≤ sk′ −Pk−L, then sk = snext(k)−Pk and tk = L, which is the minimum

value.
◦ If snext(k)−Pk ≥ sk′−Pk−L, then sk = sk′−Pk−L. Since tk = sk′−sk−Pk−L, and Pk,
sk′ and L are fixed, minimising tk is equivalent to maximising sk. Since sk ≤ sk′ −Pk−L
due to constraint (12), tk is at its minimum possible value.

Additionally, since by definition any previously scheduled operation next(k) is scheduled with the
maximum possible snext(k), the starting time sk can also be set as high as possible (since sk ≤ snext−Pk

)
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