N. Koga, Y. Goshi, M. Yoshikawa, and T. Tatsuoka, Physico-Geometrical Kinetics of Solid-State Reactions in an Undergraduate Thermal Analysis Laboratory, J. Chem. Educ, vol.91, pp.239-245, 2014.

W. D. Spencer, B. Topley, and . Cccliv, ? Chemical KinePcs of the System Ag2CO3 ? Ag2O + CO2, J. Chem. Soc, 1929.

A. F. Benton and L. C. Drake, Kinetics of Reaction and Adsorption in the System Silver?Oxygen, J. Am. Chem. Soc, vol.56, pp.255-263, 1934.

J. Zawadzki and S. Bretsznajder, Some Remarks on the Mechanism of Reactions of the Type: Solid = Solid + Gas, Trans. Faraday Soc, vol.34, pp.951-959, 1938.

E. P. Hyatt, I. B. Cutler, and M. E. Wadsworth, Calcium Carbonate Decomposition in Carbon Dioxide Atmosphere, J. Am. Ceram. Soc, vol.41, pp.70-74, 1958.

P. Barret, Expression Theorique en Fonction de la Pression de la Loi de Vitesse de Croissance d'une Couche non Protectrice Formee par Decomposition Thermique d'un Solide, C. R. Acad. Sci. Paris, Ser. C, vol.266, pp.856-859, 1968.

B. Delmon, Introduction a la Cinetique Heterogene; Editions Technip, 1969.

A. W. Searcy and D. Beruto, Kinetics of Endothermic Decomposition Reactions. 2. Effects of the Solid and Gaseous Products, J. Phys. Chem, vol.82, pp.163-167, 1978.

P. C. Barret and . Heterogene,

-. Gauthier, G. Bertrand, M. Lallemant, and G. Watelle, Propos sur l'Interpretation de l'Energie d'Activation Experimentale, J. Therm. Anal, vol.13, issue.13, pp.525-542, 1973.

M. Maciejewski and J. Badyga, The Influence of the Pressure of the Gaseous Product on the Reversible Thermal Decomposition of Solids, Thermochim. Acta, vol.92, pp.105-108, 1985.

M. Reading, D. Dollimore, and R. Whitehead, The Measurement of Meaningful Kinetic Parameters for Solid State Decomposition Reactions, J. Therm. Anal, vol.37, pp.2165-2188, 1991.

B. V. L'vov, Role of Vapour Oversaturation in the Thermal Decomposition of Solids, J. Therm. Anal. Calorim, vol.96, pp.321-330, 2009.

N. Koga, J. M. Criado, and H. Tanaka, Apparent Kinetic Behavior of the Thermal Decomposition of Synthetic Malachite, Thermochim. Acta, pp.340-341, 1999.

N. Koga, J. M. Criado, and H. Tanaka, Kinetic Analysis of the Thermal Decomposition of Synthetic Malachite by CRTA, J. Therm. Anal. Calorim, vol.60, pp.943-954, 2000.

N. Koga, A Comparative Study of the Effects of Decomposition Rate Control and Mechanical Grinding on the Thermal Decomposition of Aluminum Hydroxide, J. Therm. Anal. Calorim, vol.81, pp.595-601, 2005.

N. Koga, T. Tatsuoka, and Y. Tanaka, Effect of Atmospheric water Vapor on the Kinetics of Thermal Decomposition of Copper(II) Carbonate Hydroxide, J. Therm. Anal. Calorim, vol.95, pp.483-487, 2009.

S. Yamada and N. Koga, Kinetics of the Thermal Decomposition of Sodium Hydrogen Carbonate Evaluated by Controlled Rate Evolved Gas Analysis Coupled with Thermogravimetry, Thermochim. Acta, vol.431, pp.38-43, 2005.

N. Koga, S. Maruta, T. Kimura, and S. Yamada, Phenomenological Kinetics of the Thermal Decomposition of Sodium Hydrogencarbonate, J. Phys. Chem. A, pp.115-14417, 2011.

S. Yamada, E. Tsukumo, and N. Koga, Influences of Evolved Gases on the Thermal Decomposition of Zinc Carbonate Hydroxide Evaluated by Controlled Rate Evolved Gas Analysis Coupled with TG, J. Therm. Anal. Calorim, vol.95, pp.489-493, 2009.

N. Koga, T. Tatsuoka, Y. Tanaka, and S. Yamada, Catalytic Action of Atmospheric Water Vapor on the Thermal Decomposition of Synthetic Hydrozincite, Trans. Mater. Res. Soc. Jpn, vol.34, pp.343-346, 2009.

M. Nakano, T. Fujiwara, and N. Koga, Thermal Decomposition of Silver Acetate: Physico-Geometrical Kinetic Features and Formation of Silver Nanoparticles, J. Phys. Chem. C, vol.120, pp.8841-8854, 2016.

N. Koga and S. Yamada, Influences of Product Gases on the Kinetics of Thermal Decomposition of Synthetic Malachite Evaluated by Controlled Rate Evolved Gas Analysis Coupled with Thermogravimetry, Int. J. Chem. Kinet, vol.37, pp.346-354, 2005.

B. Topley and M. L. Smith, Function of Water Vapour in theDissociation of a Salt Hydrate, Nature, vol.128, pp.302-302, 1931.

B. Topley and M. L. Smith, Kinetics of Salt-Hydrate Dissociations: MnC 2 O 4 ·2H 2 O=MnC 2 O 4 +2H 2 O, J. Chem. Soc, pp.321-324, 1935.

M. Volmer and G. Seydel, Uber die Entwasserungsgeschwindigkeit des Manganooxalat-Dihydrats, Z. Phys. Chem, vol.179, pp.153-171, 1937.

B. V. L'vov, A. V. Novichikhin, and A. O. Dyakov, Computer Simulation of the Topley?Smith Effect, Thermochim. Acta, vol.315, pp.169-179, 1998.

J. Sestak, Diagnostic Limits of Phenomenological Kinetic Models Introducing the Accommodation Function, J. Therm. Anal, vol.36, 1990.

N. Koga, Physico-Geometric Kinetics of Solid-State Reactions by Thermal Analyses, J. Therm. Anal, vol.49, pp.45-56, 1997.

N. Koga, Ozawa's Kinetic Method for Analyzing Thermoanalytical Curves, J. Therm. Anal. Calorim, vol.113, pp.1527-1541, 2013.

N. Koga, J. Sestak, and P. Simon, Some Fundamental and Historical Aspects of Phenomenological Kinetics in the Solid State Studied by Thermal Analysis, Thermal Analysis of Micro, 2013.

N. Koga, Physico-Geometric Approach to the Kinetics of Overlapping Solid-State Reactions, Handbook of Thermal Analysis and Calorimetry, vol.6, pp.213-251, 2018.

C. K. Clayton and K. J. Whitty, Measurement and Modeling of Decomposition Kinetics for Copper Oxide-Based Chemical Looping with Oxygen Uncoupling, Appl. Energy, vol.116, pp.416-423, 2014.

J. Khinast, G. F. Krammer, C. Brunner, and G. Staudinger, Decomposition of Limestone: The Influence of CO 2 and Particle Size on the Reaction Rate, Chem. Eng. Sci, vol.51, pp.623-634, 1996.

J. Yin, X. Kang, C. Qin, B. Feng, A. Veeraragavan et al., Modeling of CaCO 3 Decomposition under CO 2 /H 2 O Atmosphere in Calcium Looping Processes, Fuel Process. Technol, vol.125, pp.125-138, 2014.

J. M. Criado, F. Gonzalez, and M. Gonzalez, Influence of the CO 2 Pressure on the Kinetics of Thermal Decomposition of Manganese Carbonate, J. Therm. Anal, vol.24, pp.59-65, 1982.

J. M. Criado, M. Gonzalez, and M. Macias, Influence of CO 2 Pressure on the Kinetics of Thermal Decomposition of CdCO 3, Thermochim. Acta, vol.113, pp.31-38, 1987.

J. M. Criado, M. Gonzalez, and M. Macías, Influence of CO 2 Pressure on the Kinetics of Thermal Decomposition of PbCO 3, Thermochim. Acta, vol.113, pp.39-47, 1987.

J. Criado, M. Gonzalez, J. Malek, and A. Ortega, The Effect of the CO 2 Pressure on the Thermal Decomposition Kinetics of Calcium Carbonate, Thermochim. Acta, vol.254, pp.121-127, 1995.

T. Liavitskaya and S. Vyazovkin, Discovering the Kinetics of Thermal Decomposition during Continuous Cooling, Phys. Chem. Chem. Phys, vol.18, pp.32021-32030, 2016.

T. Liavitskaya and S. Vyazovkin, Delving into the Kinetics of Reversible Thermal Decomposition of Solids Measured on Heating and Cooling, J. Phys. Chem. C, pp.121-15392, 2017.

M. Deutsch, F. Birkelbach, C. Knoll, M. Harasek, A. Werner et al., An Extension of the NPK Method to Include the Pressure Dependency of Solid State Reactions, Thermochim. Acta, vol.654, pp.168-178, 2017.

T. R. Ingraham and P. Marier, Kinetic Studies on the Thermal Decomposition of Calcium Carbonate, Can. J. Chem. Eng, vol.41, pp.170-173, 1963.

N. Koga, L. Favergeon, and S. Kodani, Impact of Atmospheric Water Vapor on the Thermal Decomposition of Calcium Hydroxide: A Universal Kinetic Approach to a Physico-Geometric Consecutive Reaction in Solid ? Gas System under Different ParPal Pressures of Gas, Phys. Chem. Chem. Phys, vol.21, pp.11615-11632, 2019.

M. Fukuda and N. Koga, Kinetics and Mechanisms of the Thermal Decomposition of Copper(II) Hydroxide: A Consecutive Process Comprising Induction Period, Surface Reaction, and Phase Boundary-Controlled Reaction, J. Phys. Chem. C, vol.122, pp.12869-12879, 2018.

H. Tanaka and N. Koga, Preparation and Thermal Decomposition of Basic Copper(II) Sulfates, Thermochim. Acta, vol.133, pp.221-226, 1988.

H. Tanaka and N. Koga, The Thermal Decomposition of Basic Copper(II) Sulfate: An Undergraduate Thermal Analysis Experiment, J. Chem. Educ, vol.67, pp.612-614, 1990.

H. Tanaka, M. Kawano, and N. Koga, Thermogravimetry of Basic Copper(II) Sulphates Obtained by Titrating NaOH solution with CuSO 4 solution, Thermochim. Acta, vol.182, pp.281-292, 1991.

N. Koga and H. Tanaka, Thermal Decomposition of Copper(II) and Zinc Carbonate Hydroxides by Means of TG ? MS, J. Therm. Anal. Calorim, vol.82, pp.725-729, 2005.

H. Tanaka and T. Sadamoto, The Simultaneous Determination of the Kinetics and Thermodynamics of Cu(OH) 2 Decomposition by Means of TG and DSC, Thermochim. Acta, vol.54, pp.273-280, 1982.

N. Koga, J. M. Criado, and H. Tanaka, Reaction Pathway and Kinetics of the Thermal Decomposition of Synthetic Brochantite, J. Therm. Anal, vol.49, pp.1467-1475, 1997.

R. L. Frost, Z. Ding, J. T. Kloprogge, and W. N. Martens, Thermal Stability of Azurite and Malachite in Relation to the Formation of Mediaeval Glass and Glazes, Thermochim. Acta, vol.390, pp.133-144, 2002.

N. Koga and T. Kimizu, Thermal Decomposition of Indium(III) Hydroxide Prepared by the Microwave-Assisted Hydrothermal Method, J. Am. Ceram. Soc, vol.91, pp.4052-4058, 2008.

H. R. Oswald, A. Reller, H. W. Schmalle, and E. Dubler, Structure of Copper(II) Hydroxide, Cu(OH)2, Acta Crystallogr., Sect. C: Cryst. Struct. Commun, vol.46, pp.2279-2284, 1990.

Y. Cudennec and A. Lecerf, The Transformation of Cu(OH) 2 into CuO, Revisited, Solid State Sci, vol.5, pp.1471-1474, 2003.

T. Arii and A. Kishi, The Effect of Humidity on Thermal Process of Zinc Acetate, Thermochim. Acta, vol.400, pp.175-185, 2003.

H. Yokokawa, S. Yamauchi, and T. Matsumoto, The Thermodynamic Database MALT. CALPHAD: Comput. Coupling Phase Diagrams Thermochem, vol.23, pp.357-364, 1999.

H. Yokokawa, S. Yamauchi, and T. Matsumoto, Thermodynamic Database MALT for Windows with gem and CHD, CALPHAD: Comput. Coupling Phase Diagrams Thermochem, vol.26, pp.155-166, 2002.

L. D. Hansen, D. J. Eatough, E. A. Lewis, R. G. Bergstrom, D. Degraft-johnson et al., Shelf-Life Prediction from Induction Period Calorimetric Measurements on Materials Undergoing Autocatalytic Decomposition, Can. J. Chem, vol.68, pp.2111-2114, 1990.

T. Kimura and N. Koga, Thermal Dehydration of Monohydrocalcite: Overall Kinetics and Physico-Geometrical Mechanisms, J. Phys. Chem. A, pp.115-10491, 2011.

H. Ogasawara and N. Koga, Kinetic Modeling for Thermal Dehydration of Ferrous Oxalate Dihydrate Polymorphs: A Combined Model for Induction Period ? Surface ReacPon ? Phase Boundary Reaction, J. Phys. Chem. A, vol.118, pp.2401-2412, 2014.

P. Simon, Induction Periods, J. Therm. Anal. Calorim, vol.84, pp.263-270, 2006.

S. Kitabayashi, M. Nakano, K. Nishikawa, and N. Koga, Model Experiment of Thermal Runaway Reactions Using the Aluminum?Hydrochloric Acid ReacPon, J. Chem. Educ, vol.93, pp.1261-1266, 2016.

N. Koga and H. Tanaka, A Kinetic Compensation Effect Established for the Thermal-Decomposition of a Solid, J. Therm. Anal, vol.37, pp.347-363, 1991.

N. Koga and J. Sestak, Kinetic Compensation Effect as a Mathematical Consequence of the Exponential Rate Constant, Thermochim. Acta, vol.182, 1991.

N. Koga and J. Sestak, Further Aspects of the Kinetic Compensation Effect, J. Therm. Anal, vol.37, pp.1103-1108, 1991.

N. Koga, A Review of the Mutual Dependence of Arrhenius Parameters Evaluated by the Thermoanalytical Study of Solid-State Reactions: The Kinetic Compensation Effect, Thermochim. Acta, vol.244, 1994.

A. K. Galwey and M. Mortimer, Compensation Effects and Compensation Defects in Kinetic and Mechanistic Interpretations of Heterogeneous Chemical Reactions, Int. J. Chem. Kinet, vol.38, pp.464-473, 2006.

P. J. Barrie, The Mathematical Origins of the Kinetic Compensation Effect: 1. The Effect of Random Experimental Errors, Phys. Chem. Chem. Phys, vol.14, pp.318-326, 2012.

P. J. Barrie, The Mathematical Origins of the Kinetic Compensation Effect: 2. The Effect of Systematic Errors, Phys. Chem. Chem. Phys, vol.14, pp.327-336, 2012.

D. Xu, M. Chai, Z. Dong, M. M. Rahman, X. Yu et al., Kinetic Compensation Effect in Logistic Distributed Activation Energy Model for Lignocellulosic Biomass Pyrolysis, Bioresour. Technol, vol.265, pp.139-145, 2018.

H. L. Friedman, Kinetics of Thermal Degradation of Cha-Forming Plastics from Thermogravimetry, Application to a Phenolic Plastic, J. Polym. Sci., Part C: Polym. Symp, vol.6, pp.183-195, 1964.

T. Ozawa, Applicability of Friedman Plot, J. Therm. Anal, vol.31, pp.547-551, 1986.

N. Koga, Kinetic Analysis of Thermoanalytical Data by Extrapolating to Infinite Temperature, Thermochim. Acta, vol.258, pp.145-159, 1995.

F. J. Gotor, J. M. Criado, J. Malek, and N. Koga, Kinetic Analysis of Solid-State Reactions: The Universality of Master Plots for Analyzing Isothermal and Nonisothermal Experiments, J. Phys. Chem. A, vol.104, pp.10777-10782, 2000.

J. M. Criado, L. A. Perez-maqueda, F. J. Gotor, J. Malek, and N. Koga, A Unified Theory for the Kinetic Analysis of Solid State Reactions under any Thermal Pathway, J. Therm. Anal. Calorim, vol.72, pp.901-906, 2003.

J. Malek, The Kinetic Analysis of Non-Isothermal Data, Thermochim. Acta, pp.257-269, 0200.

T. Ozawa, A New Method of Analyzing Thermogravimetric Data, Bull. Chem. Soc. Jpn, vol.38, pp.1881-1886, 1965.

T. Ozawa, Non-Isothermal Kinetics and Generalized Time, Thermochim. Acta, vol.100, pp.109-118, 1986.

J. Sestak and G. Berggren, Study of the Kinetics of the Mechanism of Solid-State Reactions At Increasing Temperatures, Thermochim. Acta, vol.3, pp.1-12, 1971.

J. Sestak, Rationale and Fallacy of Thermoanalytical Kinetic Patterns, J. Therm. Anal. Calorim, vol.110, pp.5-16, 2012.

K. L. Mampel, Time Conversion Formulas for Heterogeneous Reactions at the Phase Boundaries of Solid Bodies, I: The Development of the Mathematical Method and the Derivation of Area Conversion Formulas, Z. Phys. Chem., Abt. A, vol.187, pp.43-57, 1940.

L. Favergeon, M. Pijolat, and M. Soustelle, Surface Nucleation and Anisotropic Growth Models for Solid-State Reactions, Thermochim. Acta, vol.654, pp.18-27, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01523651