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ABSTRACT

The Smoothed Particle Hydrodynamics method (SPH) is a meshfree Lagrangian simulation method
widely applied for fluid simulations due to the advantages presented by this method for solving
problems with free and deformable surfaces. 
In many scientific and engineering applications, surface tension forces play an important or even
dominating role in the dynamics of the system. For instance, the breakage (instability) of a liquid jet
or  film  is  strongly  affected  by  the  strength  of  the  surface  tension  at  the  liquid-air  interface.
Simulating deforming phase interfaces with strong topological changes is still today a challenging
task. As a promising numerical method, here we use SPH to predict the interface instability at a
water-air interface.
With  SPH,  the  main  challenge  in  modelling  surface  tension  at  a  free-surface  is  the  accurate
description of the interface (normal direction and curvature). When only the liquid phase is modelled
(to  decrease  the  computational  cost),  the  standard  SPH approximations  to  calculate  the  normal
direction and curvature of the interface suffer from a lacking “full  support”, i.e.  the omitted and
therefore missing gas particles. Various models for such free surface surface tension corrections were
presented, see e.g. among others Sirotkin et al., Ordoubadi et al. or Ehigiamusoe et al. Many of these
models follow the classical Continuum Surface Force (CSF) approach (Morris, Adami et al.) and
incorporate different corrections/treatments at the surface. 
The objective of our ongoing study is to investigate the influence of different interface descriptions.
We  compare  different  free  surface  particle  detection  schemes,  normal  vector  calculations  and
curvature estimations for the quality of the resulting surface-tension effect. In this work, we focus on
two-dimensional problems and consider a static drop and oscillating drops as test cases.
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I. Introduction

Surface tension plays  an important  role  in many engineering and industrial  applications such as
liquid  atomization.  Usually,  these  phenomena  occur  on  small  length  scales,  therefore  the
development  of  a  proper  surface  tension  model  can  help  greatly  in  physically  developing  these
applications. However, simulating deforming phase interfaces with strong topological changes is still
today a challenging task. 
Among  existing  methods  for  fluid  simulations,  the  Smoothed  Particle  Hydrodynamics  (SPH)
presents  the  advantage  of  simulating  free  surfaces  with  high  deformations.  SPH  is  a  meshfree
Lagrangian  numerical  method that  was  first  introduced independently  in  1977 by  Lucy  [1] and
Gingold and Monaghan  [2] to solve astrophysical problems. The general idea behind SPH lies in
representing the fluid by a series of discretization points/particles each representing a mass of fluid.
The continuity of the fluid and its properties is recovered by the spatial convolution of the physical
properties of each particle by a kernel or smoothing function. 
Three general approaches for modeling surface tension with SPH can be found in the literature. The
first one is the Inter Particle Force (IPF) where an attractive/repulsive force is applied to all the SPH
particles  [3],  [4].  The implementation of the IPF is simple. However, the main drawback of this
method is that the surface tension force needs to be calibrated with experimental results. The second
one  is  the  Continuum Surface  Stress  (CSS),  where  the  surface tension  force is  formulated as  a
gradient of the stress tensor which is calculated from the surface normal with no need to calculate the
curvature [5]. The third one is the Continuum Surface Force (CSF), initially proposed by Brackbill
[6], where the surface tension force is converted to a force per unit volume and is applied only on
particles close to the interface.  The main challenge of this  method is  to accurately calculate the
normal vectors and the curvature at the interface. In this work we are focusing on the CSF method
because it is a general approach that uses the physical properties of the fluid and does not need to be
tuned for each simulation case. Many of the CSF models found in the literature are only valid for
fluid-fluid systems [7], [8]. However, for free surfaces, the standard SPH approximations to calculate
the normal  vector  and curvature of  the interface suffer  from the lack of  “full  support”. ,  i.e.  the
omitted  and  therefore  missing  gas  particles.  To  overcome  this  problem  many  corrections  were
proposed in the literature, see e.g. amongst others [9]–[12]. 
In their model, Sirotkin et al. [9] used the correction matrix proposed by Bonet et al. [13] to adjust
the kernel gradient for the calculation of the density, pressure force, normal vectos and curvature.
This kernel gradient modification allows to obtain accurate normal vectors and curvature estimations,
however a 1.5 times bigger smoothing length is required for more reliable results. Ordoubadi et al.
[10] added imaginary particles near the free surface with a mirroring technique in order to accurately
simulate  the  surface  tension  force.  This  technique  seems  complex  to  implement  and  not
straightforward, but according to the examples shown it significantly improves the normal vectors
and gives more accurate curvatures. However, in all their examples a high fluid viscosity was used
(100 times the viscosity of water).  Ehigiamusoe  et al. [11] used a correction factor for only the
curvature calculation without any additional correction for the normal vectors. This method may give
stable and accurate results for simple examples, but in the cases with sharp corners and high surface
deformation, another correction technique needs to be used for the normal vector calculation and
curvature estimation. Russel  et al. [12] adapted the model proposed by Morris  [7] for free surface
simulations by proposing a correction factor for the normal vectors and curvatures.  However, once
again this correction factor is valid only for simple cases but not for complex geometries with sharp
edges or sudden changes in the curvature. It is worth mentioning that in most of the presented models
the numerical validation examples were conducted at relatively high fluid viscosities. 
The  objective  of  our  ongoing  study  is  to  investigate  the  influence  of  the  interface  properties
estimation in the presented models on the surface tension force. We compare different free surface
particle detection schemes, normal vector calculations and curvature estimations for the quality of the
resulting surface-tension effect. In this work, we focus on two-dimensional problems and consider a
static drop with Laplace law and oscillating drops as representative test cases.

II. Basics of SPH method

In the Lagrangian description, the Navier-Stokes set of equations for viscous flow can be expressed
as
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dρ

dt
=−ρ∇ . v (1)

d v
dt

=g+
1
ρ [−∇ P+F (ν)

+F(s)
] (2)

where ρ, v, g, P, F(ν), F(s) are density, velocity, body force, pressure, viscous force and surface tension
force, respectively.
The idea of SPH is the discretization of the domain with a set of particles and the use of weighted
integrals to approximate the field functions. The value of any function f (e.g. density or velocity) at a
position r can be estimated according to the following summation form

f (r⃗ )≈∑
j

N m j

ρ j

f ( r⃗ j) W (|r⃗ i−r⃗ j|,h ), (3)

where mj and rj are the mass and position of particle j,  respectively. W represents the weighting
kernel  function  with  h  being  the  smoothing  length  that  determines  the  interpolation  domain.  A
suitable kernel function should be normalized, positive and radially symmetric. It should converge to
the Dirac delta function when h tends to 0 and it should have a compact support domain [14]. Here
we  use  the  Spike  3  kernel  function  (with  a  compact  support  of  3h)  because  it  minimizes  the
instability due to compression [9].  
Using Eq. (3), various SPH formulations can be obtained depending on the assumptions and purpose
of the simulation [15]. In our study, we used the formulation proposed by Adami [8].
According to the CSF approach, the surface tension force is applied in the normal direction only on
particles near the free surface to minimize the surface energy. It can be expressed as follows [7]

f (s)
=δsσ k n̂ (4)

where δs is the surface delta function used to smooth the surface tension force over a transition band,
σ is the surface tension coefficient, k the curvature and n̂ the normalized normal vector. 
The accurate representation of the surface tension force at the interface depends on the normal vector
calculation and curvature estimation. 

III. Surface topology characterization

III.1. Surface particle detection

For multi-phase simulations a color function assigned to each particle is used to track the interface.
The smoothing of the color function is defined as 

ci=∑
j

c j
0 V jW ij , (5)

where cj
0 is the color function. For single-phase simulations the color function of all fluid particles is

equal to 1. 
For Eq. (5) the value of ci is theoretically equal to 1 for particles in the bulk with a full  kernel
support, while close to the free surface the number decreases. A threshold value of 0.9 can be defined
for detecting surface particles. This method (Kernel summation) is very simple to implement and
does not  have a  large computational  cost.  It  presents  the  advantage of  detecting a  surface band
instead of only surface particles by adjusting the threshold value. However, in some simulations, low
density regions may appear inside the fluid. In these regions, spurious free surface particles can be
detected due to the lack of neighboring particles, inducing non physical surface tension forces.
To avoid this problem, more accurate surface tracking algorithms were developed. Barecasco et al.
[16] presented a simple method for detecting free-surface particles based on the idea of cover vectors.
For each particle i, the cover vector bi is defined as

bi=∑
j

r⃗ i−r⃗ j

|⃗r i−r⃗ j|
(6)

For detecting surface particles, a cone of angle θi (threshold angle) is considered around each b i. If
one of the neighboring particles j is inside the cone, then particle i is not considered as a surface
particle, otherwise particle i belongs to the free surface. The value of θ i  plays an important role in
boundary particle detection, it is usually chosen equal to π/3. 
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Another accurate surface particle detection algorithm  [17] is to consider a disk, having twice the
length of the supporting domain for good accuracy, around each particle i. This circular area is then
split into sectors (in our case 8 sectors are considered), and each sector is checked for neighboring
fluid particles. If at least one sector does not have any particle, than particle i is considered as surface
particle.
Figure  1 shows  a  comparison  between  the  three  described  methods  for  a  classical  dam  break
simulation. Surface particles can be detected by these methods even when the surface undergoes
major  deformations.  As explained earlier,  with the  first  method,  cavities  inside the fluid can be
wrongly detected as free-surface, see Figure 1 a) (right side).

Because the two last methods are more time-consuming compared to the simple summation (Figure
2), it is interesting to combine these two techniques  [10]. The first  step consists of detecting the
surface particles by the Kernel summation technique and then "Cover vector" (b) or "Disk sectors"
(c) can be performed only on these surface particles. 

III.2. Normal vectors 

Many of the CSF surface tension models are based on the model presented by Morris [7]. The normal
vectors can be estimated as the gradient of the color function

n⃗i=∇⃗ci (7)

with ∇⃗ci=∑
j

V j (c j−ci )∇⃗W ij      "NV-Color gradient" (8)

where ci is calculated according to Eq. (3).
When modeling only one phase, the number of interpolation points decreases near the free surface.
One of the techniques that can be used to overcome this problem is the correction matrix proposed by
Bonet et al. [13] to adjust the kernel gradient. Sirotkin et al. [9] used this correction matrix for the
density, pressure force, normal vector and curvature calculation. For each particle i the matrix L i  is
defined as
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Figure 1: Surface particle detection (red particles represent surface particles): a) Kernel
summation, b) Cover vector and c) Disk sectors
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Figure 2: Computational time as a function of the number of particles
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Li=∑
j

V j(∇⃗W ij)⊗r⃗ij
(9)

∇⃗~W ij=L i
−1 ∇⃗W ij (10)

With this new correction for the kernel gradient, the normal vector for each particle i becomes

∇⃗ci=∑
j

V j (c j−ci )∇⃗
~W ij      "NV-Color gradient corrected" (11)

Based on  Eq. (7), Russel et al. [12] proposed the following normal vector calculation

n⃗i=∑
j

V j(
1
ci

+
1
c j

)∇⃗W ij         "NV-Russel et al.". (12)

Ordoubadi  et  al. [10] proposed  another  method  that  consists  of  adding  imaginary  particles  by
mirroring the particles in the transition band. These particles have the same mass as particle i with a
color function equal to zero. If particle i is a surface particle, then for each particle j located in the
support  domain  of  i  (but  not  a  surface  particle),  a  particle  j'  is  created  by  mirroring  particle  j
according to i. Otherwise, if particle i is not a surface particle, then for each particle j in the support
domain of i and located on the free surface, a particle j' is created by mirroring i according to j.
Another method to calculate the normal vector is to use the cover vectors [16]. In fact, the direction
of the cover vector can be used as an estimation of the direction of the normal vector of the surface.
In SPH, every field variable is evaluated by a smoothing function, thus it seems preferable to apply
the surface tension force over a few smoothing lengths (transition band) and not only on one layer of
surface particles.  Regardless of the interface tracking techniques presented in the previous section,
this transition band can be defined by the normal vectors. In fact, the direction and magnitude of the
normal  vector  are  only  accurate  near  the  interface.  In  the  bulk,  the  normal  vectors  have  small
magnitude with erroneous  directions.  This  may cause a  problem when calculating  the  curvature
because in this case, the normalized normal vectors are used. To address this issue, only well defined
normal vectors are used in the surface tension calculation by applying the following filtering

n⃗i=
n⃗i

0
(13)

where the value of ε is typically 0.01/dx and dx is the initial particle spacing.  

With this condition, a transition band consisting of more than one layer of particles is automatically
detected  near  the  interface.  Thus,  the  surface  tension  force  is  only  applied  on  these  particles.
However, as explained earlier, with this technique voids and cavities inside the fluid will generate
particles inside the transition band which lead to a nonphysical surface tension force. In this case, it
seems important to detect surface particles using an appropriate technique. The transition band will
consist of the particles that are in the support domain of the surface particles and have a well defined
normal vector.

Figure 3 presents a comparison between the different methods presented above. For this comparison,
a disk of radius equal to 5 mm is considered. The particle spacing is equal to 0.3 mm and a total
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Figure 3: Normal vectors: a) NV- Color gradient, b) NV- Color gradient corrected,
c) NV- Russel et al., d) NV- Ordoubadi et al. and e) NV- Cover vector
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number of 865 particles is considered. The normal vector calculated from the method presented by
Russel (c) or from the cover vector (e) are only valid for the first layer of particles. 

III.3. Curvature

The curvature at each particle i is calculated as follows
k i=∇ . n̂i (14)

with n̂i=
n⃗i

|ni|
(15)

Only  the  reliable  normal  vectors  should  be  taken  into  consideration  for  the  calculation  of  the
curvature.  This  means that  the  wrong direction for  the  normal  vectors  create  a  problem also in
calculating the curvature. Moreover, the calculation of the curvature is sensitive because it is based
on two consecutive derivations of the kernel function. 
Here, we are going to compare different methods found in the literature to calculate the curvature
(Figure  4). For this comparison, the same disk of radius equal to 5 mm was considered with 865
particles  For  the  first  test,  and  in  order  to  eliminate  the  effect  of  the  normal  vector  directions,
prescribed normal vectors are used. We impose the normal vector of particle i to be exactly 

n⃗i=r⃗ i−( r⃗)center (16)

Morris [7] added a normalization factor for the curvature calculation, thus the curvature is obtained
by

k i=

∑
j

V j(n̂ j−n̂i ).∇W ij

∑
j

V j W ij

(17)

According to Sirotkin et al.  [8], with the correction matrix used for calculating the gradient of the
kernel function the normalization factor is not required anymore, and the curvature is then calculated
as follows

k i=∑
j

V j (n̂j− n̂i).∇~W ij (18)

Adami  et  al.  [8] proposed  another  divergence  approximation  for  calculating  the  curvature  with
lacking full support by

k i=d
∑

j

V j(n̂ j−n̂i ).∇W ij

∑
j

V j|rij|
dW ij

dr

(19)
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Figure 4: Different methods for curvature estimation
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According to the results presented in Figure 4, it seems that the three methods give acceptable results
for the curvature estimation. We are more interested in the region close to the free surface (r/R>ε0.95)
where the surface delta function is maximum. In Adami and Morris models, the curvature tends to
decrease slightly near the free surface because of the lack of the full support. On the other hand, the
correction matrix used by Sirotkin compensates the missing particles near the free surface and hence
it  gives  more  accurate  results.  Note  that  Ordoubadi  et  al. [10] used  the  imaginary  particles  to
calculate the curvature based on Eq. (17).

IV. Application of surface tension force

When calculating the surface tension force, we should only consider the surface particles and smooth
this  force  by  using  an  appropriate  surface  delta  function  or  a  kernel  function.  For  example,
Ehigiamusoe  et al. [11] set the surface delta function equal to 1/dx at the interface. For the other
methods, the smoothing of the force can be done using the norm of the normal vector, subsequently
the delta function can be approximated as

δs=λ|n| (20)

where λ is a constant calibration parameter.

The surface tension force should be maximum at the surface or at the tip of sharp corners and it must
decrease  in  magnitude  gradually  while  moving  away  from the  free  surface  to  the  interior.  The
comparison between different surface delta functions is presented in Figure  5. In order to compare
them, the normal vectors are normalized to the maximum value depending on each method. The
smoothing over the transition band with and without correction are completely different, knowing
that the direction of the normal vectors are almost the same. 

In  order  to  obtain  a  proper  surface  tension  force,  many  combinations  of  the  different  methods
presented above for surface characterization were tested. For the surface particle detection, the kernel
summation gives good results and it can be combined with the cover vector method for complex
geometries. For the normal vector, all the presented methods give acceptable directions, at least for
the first layer of surface particle. The crucial differences lay in the definition of the transition band
for the curvature calculation and the choice of the smoothing surface delta function. For the curvature
calculation, the three methods give good results. If the correction matrix is already calculated, Eq.
(18) will be used to calculate the curvature because it is the most accurate. Otherwise, Eq. (17) could
be used to minimize the computational cost. 
The calculation of the surface properties and the accurate representation of the surface tension plays
an important role in the stability of the simulation. However, other parameters should be considered,
notably  the  density  evaluation  method  and  the  momentum  equation  discretization.  Many
combinations can be tested, but we decided to work with the formulation proposed by Adami et al.
[8] for the momentum equation and the density integration technique for the density evaluation.
To sum up, Table 1 presents the most promising methods/combinations that we decided to explore
further in our ongoing study.
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Figure 5: Comparison between the different surface delta functions
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ID Normal vector Surface delta function + Smoothing

Sirotkin et al. Cover vector Sirotkin et al. Morris Kernel  

A X X

B X no smoothing

C X no smoothing

Table 1: Methods/Combinations for surface tension force in SPH

In the next section we present both static and dynamic numerical test cases to validate the models.

V. Numerical examples
V.1. Square droplet

One common test case is the transformation of a square droplet into a circular droplet under the effect
of surface tension .  For this example, an initial square of L=l=5 mm is placed in the center of a
square domain (10*L). The particle spacing is equal to 0.1 mm and a total number of 2500 particles
is considered. The physical properties of water were considered except that a higher viscosity (10
times the viscosity of water) was needed for a stable simulation. For all the test cases a smoothing
length of h=3dx is used. Figure 6 presents the initial and final stable shape after t=0.2 s of the droplet.
By comparing the final results, we can deduce that method C does not give a stable circular droplet
even after t>ε0.2s. 

The pressure profile inside the droplet at t=0.2 s is compared to the Laplace pressure drop given by
Eq. (21) (Figure  7). The pressure profile is almost constant inside the droplet and is equal to the
theoretical  pressure with some fluctuations near the free surface.  The calibration coefficient  λ is
found equal  to  3  for  method A.  An overall  coefficient  of  around 6.5  is  used  for  method B to
compensate in part the drop in the curvature estimated values due to the use of only surface particles.
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Figure 6: Particle positions at t=0 and t=0.2 s : a) Method A, b) Method B, and c) Method C

a) b) c)



In methods A and B, this coefficient is independent on the physical size or the initial spacing of the
particles.

P=
σ
R

=
σ√π

L (21)

V.2. Droplet oscillation
An other dynamic test case is the droplet oscillation under the effect of surface tension. Instead of
starting from an elliptic droplet, an initial velocity field was prescribed as follows:

ux=u0
x

rO

(1−
y2

r0 r
)∗exp(

−r
r 0

)
(22)

uy=−u0
y

rO

(1−
x 2

r 0r
)∗exp(

−r
r 0

) (23)

The circular droplet of radius equal to 1.7 mm is placed at the center of the computational square
domain.  The total  number of particles is  equal  to 912 with a particle spacing equal  to 0.1 mm.
Physical properties of water were considered. However, a dynamic viscosity of 0.003 Kg.m -1.s-1  is
considered. In this example u0 and r0 were taken equal to 2 m/s and 0.05 m, respectively. Figure 8
shows the position of the particles at different times for the three methods listed in Table 1. It can be
deduced that the three methods give relatively stable results. However, by comparing the particles
distribution, we can conclude that the first two methods based on the correction matrix are more
accurate. 
The distance between the top particle along the y axis and the center of the droplet is plotted over
time in Figure 9. According to method A, the SPH period of oscillation is TSPH=21.6 ms. We found
good agreement by comparing the SPH period with the theoretical period of oscillations given by:

T theo=2π√ R3
ρ

s(s2
−1)σ

=21.2ms ,
(24)

where R is the droplet radius and s=2 if the shape of the drop remains close to an ellipse.
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Figure 7: Pressure profile of the droplet at t=0.2 s
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Figure 9: Evolution of the droplet size along the y axis

Figure 8: Evolution of the particles position at different time intervals: a) Method A,  b) Method
B and c) Method C
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VI. Conclusions
In this work, we compare methods found in the literature for detecting surface particles, calculating
normal vectors and curvature in order to estimate the proper surface tension force for free surface
simulations.  Other  interesting  methods  can  be  explored  in  the  future,  like  for  example  the
reconstruction of the interface to calculate the normal vector and curvature [18]. 
Basically, once the normal vectors and curvature are correctly obtained the surface tension forces
should be easily calculated. However, the choice of the transition band and the surface delta function
plays an important role in defining the surface tension force. By comparing the three tested methods,
we can conclude that the classical method presented by Sirotkin et al. [9] is the most stable one. The
use of a transition band in method A is necessary for complex geometries. It ensures that a new
surface particle will consider a surface tension force even though the particle is not detected as a
surface particle but has at least one surface particle in its neighborhood. Another advantage of this
method is the accuracy in calculating the curvature of the free surface.  
Moreover, the stability of the simulation depends on many other factors like the pressure force, the
viscosity force and the density calculation. These elements have a huge impact on the stability of the
simulation. More importantly, the calculation of the density for free surface simulation needs to be
adjusted near the free surface. 
The objective of our future work is to improve the existing models to simulate low viscosity fluids
such as water. 
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