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Liminar considerations

This book is presented as a collection of tutorials. Each chapter presents differ-
ent objectives, usually with practical applications, in order to develop the image
processing and analysis skills by its own. For each tutorial, you will first find in
the statement different questions that will guide you to the complete results. Our
suggestion is to start by the first tutorials, that acts as a round-up stage. Then,
choose the topic that interests and motivates you, and start to work on your code.

The statements does not always contain the necessary theoretical background
that you need to answer to the questions. Find resources on the net. Wikipedia is
usually a very good start. Go to the university library!

The correction gives you a proposition of solution: it is not unique and it might
not be perfect (or it might unfortunately contain errors). This correction is also
available in a dedicated website (links will be provided along with the tutorials),
we suggest you have a look at it only when you encounter blocking problems or
fastidious lines of code to program. Moreover, you can evaluate the processing time
of your version of the code and compare it to our proposed version, which usually
uses fast and optimal functions, except for readibility purposes.

With Python, you can use the following code:

1 import time

3 time_start = time. clock ()
# run your code

5 time_elapsed = (time. clock () - time_start )

CC-By license?

If you manage to code a drastically faster method, if you notice errors or mistakes,
if you want to add precisions, remember that this book as well as the code is
published under a FREE CC-BY license (as in FREE speech). Contact us and we will
be really happy to introduce modifications and insert you in the credits, or more...

The book is available in a high quality printed format, obviously not for free,
but the pdf format is free (as in FREE beer). This is due to the fact that we (Johan
Debayle and Yann Gavet) are employed by the French government, and we are paid
to teach and disseminate informations to students. Our work is thus belongs to the
society, and it seems a normal process to give the results back to the society. Feel
free to use, modify and distribute these tutorials as you wish. Just remember to
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keep the appropriate credits (our names and MINES Saint-Etienne). If you want to
express your gratitude, send us a postcard at:

Yann GAVET or Johan Debayle

MINES Saint-Etienne

CS 62362

42023 SAINT-ETIENNE cedex 2 - FRANCE

You can also buy the printed version of the book, which will make our editor
really happy.

Images

The images belong to their authors, unless otherwise stated. If by mistake we used
images without giving the appropriate credit, please contact us.

So�wares

This book is available for two programming languages, MATLAB® and Python.
MATLAB® is a proprietary software dedicated to scientific computing. Functions
are grouped into so-called toolboxes. The documentation and the compatibility of
the functions are very good, but the price is a consequence of this. Python is built
upon open-source and Free softwares. Scientific modules are numerous, but other
general purposes functions can also be found. Documentation and code may be of
inequal qualities, but major scientific modules (numpy, scipy, opencv...) are really
well presented and optimized.

Portions of code will be highlighted by the use of special boxes, like:

% this is matlab code

1 # this is python code

Time to spend on a tutorial

The tutorials are almost independent. To evaluate the difficulty of the tutorial, stars
are present at the header of each one. Depending on your knowledge, you will have
to spend between 2 hours and 10 hours per tutorial.

• One star tutorial should be a relatively easy tutorial,
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• two stars tutorials introduce some difficulties, either in programming or in
the theoretical concepts,

• three stars tutorials are difficult both in theory and in programming.

They are divided into 6 parts, namely:

• Enhancement and Restoration: dedicated to image processing methods em-
ployed to eliminate noise and improve vision of data.

• Mathematical Morphology: introduction to basic operations of mathematical
morphology.

• Registration and Segmentation: methods to segment, i.e. detect objects in
images.

• Stochastic Analysis: method based on random processes.

• Characterization and Pattern Analysis: measures performed on objects in
order to perform analysis and recognition.

• Exams: uncorrected problems and questions.

Enjoy!

Youwill find online corrections on the editorwebsite and at page: http://iptutorials.science.
You will also find qrcodes for each correction that points to code and images.





Part I Enhancement andRestora-

tion





1 Introduction to image processing

In this tutorial, you will discover the basic functions in order to load, ma-
nipulate and display images. The main informations of the images will be
retrieved, like size, number of channels, storage class, etc. Afterwards, you
will be able to perform your first classic filters.

The different processes will be realized on the following images:

Figure 1.1: Image examples.

(a) Retinal vessels. (b) Muscle cells.
(c) Cornea cells (BIIGC, Univ. Jean Mon-
net, Saint-Etienne, France).

1.1 First manipulations

Image loading can be made by the use of the python function
imageio.imread. The visualization of the image in the screen is realized
by using the module matplotlib . pyplot.

• Load and visualize the first image as below. Notice the differences.

• Look at the data structure of the image I such as its size, type. . . .

• Visualize the green component of the image. Is it different from the
red one? What is the most contrasted color component? Why?

• Enumerate some digital image file formats. What are their main
differences? Try to write images with the JPEG file format with
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different compression ratios (0, 50 and 100), as while as the lossless
compression, and compare.

1.2 Color quantization

Color quantization is a process that reduces the number of distinct colors used in
an image, usually with the intention that the resulting image should be as visually
similar as possible to the original image. In principle, a color image is usually
quantized with 8 bits (i.e. 256 gray levels) for each color component.

• By using the gray level image ’muscle’, reduce the number of gray
levels to 128, 64, 32, and visualize the different resulting images.

• Compute the different image histograms and compare.

1.3 Image histogram

An image histogram represents the gray level distribution in a digital image. The
histogram corresponds to the number of pixels for each gray level.

The python function has the following prototype:

def histogram(I ) :

Compute and visualize the histogram of the image ’muscle.jpg’.

1.4 Linear mapping of the image intensi-

ties

The gray level range of the image ’cellules_cornee.jpg’ can be enhanced by a linear
mapping such that the minimum (resp. maximum) gray level value of the resulting
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image is 0 (resp. 255). Mathematically, it consists in finding a function f(x) = ax+b
such that f(min) = 0 and f(max) = 255.

• Load the image and find its extremal gray level values.

• Adjust the intensities by a linear mapping into [0, 255].

• Visualize the resulting image and its histogram.

1.5 Aliasing effect

• Create an image (as right) that contains
rings as sinusoids. The function takes
two input parameters: the sampling fre-
quency and the signal frequency.

• Look at the influence of the two vary-
ing frequencies. What do you observe?
Explain the phenomenon from a theo-
retical point of view.

1.6 Low-pass filtering

The different processes will be realized on the following images:

(a) osteoblast cells (b) blood cells
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Low-pass filtering aims to smooth the fast intensity variations of the image to
be processed.

Test the low-pass filters ’mean’, ’median’, ’min’, ’max’ and ’gaussian’ on the
noisy image ’blood cells’.

The module scipy .ndimage. filters contains a lot of classical filters.

Which filter is suitable for the restoration of this image?

1.7 High-pass filtering

High-pass filtering aims to smooth the low intensity variations of the image to be
processed.

• Test the high-pass filtersHP on the two initial images in the following
way: HP (f) = f − LP (f) where LP is a low-pass filtering (see the
previous exercise).

• Test the Laplacian (high-pass) filter on the two initial images with the
following convolution mask:






−1 −1 −1
−1 +8 −1
−1 −1 −1






1.8 Derivative filters

Derivative filtering aims to detect the edges (contours) of the image to be processed.
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• Test the Prewitt and Sobel derivative filters (corresponding to first or-
der derivatives) on the image ’blood cells’ with the use of the following
convolution masks:






−1 0 +1
−1 0 +1
−1 0 +1











−1 −1 −1
0 0 0

+1 +1 +1











−1 0 +1
−2 0 +2
−1 0 +1











−1 −2 −1
0 0 0

+1 +2 +1






• Look at the results for the different gradient directions.

• Define an operator taking into account the horizontal and vertical
directions.

Remark : the edges could be also detected with the zero-cressings of the Lapla-
cian filtering (corresponding to second order derivatives).

1.9 Enhancement filtering

Enhancement filtering aims to enhance the contrast or accentuate some specific
image characteristics.

• Test the enhancement filter E on the image ’osteoblast cells’ defined
as: E(f) = f +HP (f) where HP is a Laplacian filter (see tutorial
2.).

• Parameterize the previous filter as: E(f) = αf + HP (f), where
α ∈ R.

1.10 Open question

Find an image filter for enhancing the gray level range of the image ’osteoblast
cells’.
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1.11. Python correction

# display images
2 import matplotlib . pyplot as plt
# ndimage defines a few filters

4 from scipy import misc, ndimage
# numeric calculation

6 import numpy as np
# measure time

8 import time
# read and save images

10 import imageio

1.11.1 First manipulations

Open, write images

The following file loads the ascent image and display it. The print function is
optional.

# load file ascent
2 ascent = misc. ascent ()
# load file cerveau. jpg

4 brain = imageio.imread( ’cerveau. jpg ’ )
print (type( brain ) )

6 print ( brain . shape, brain .dtype)
# save file

8 imageio.imwrite( ’ test .png’ , brain )

Display images

You can modify to previous example to add the following lines:

plt . imshow(ascent)
2 plt . show()

Notice that you have to close the image window to write commands again. Also,
the colormap is not the good one by default (see Fig. 1.2).
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plt . figure ( figsize =(10, 3.6) )
2 # first subplot
plt . subplot (131)

4 plt . imshow(ascent)
# second subplot

6 plt . subplot (132)
plt . imshow(ascent, cmap=plt.cm.gray)

8 plt . axis ( ’ off ’ )
# third subplot (zoom)

10 plt . subplot (133)
plt . imshow(ascent[200:220, 200:220], cmap=plt.cm.gray, interpolation =’nearest ’ )

12 plt . subplots_adjust (wspace=0, hspace=0.,
top =0.99, bottom=0.01,

14 left =0.05, right =0.99)
plt . show()

Figure 1.2: Displaying images with an adapted colormap.

Color channels

A color image is constituted of (generally) three channels. This representation
follows the human visual perception principles: in the human retina, the sensitive
cells (the cones) react to specific wavelength that correspond to red, green and blue.
The sensors technology adopted the same characteristics and a so-called Bayer filter
has 2 green filters for 1 red and 1 blue. Consequently, the green channel presents a
better resolution than the other channels.
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Figure 1.3: The green channel presents the best contrasts in the case of retina
images.

(a) Color image. (b) Red channel. (c) Green channel (d) Blue channel.

Image Resizing

The number of pixels is reduced by subsampling the image. Notice that there is
no anti-aliasing filter applied to the image before reducing its size. The result is
presented in Fig.1.4 with images of the same size, and in Fig.1.5 with images at the
same resolution.

Figure 1.4: Reduction of the scale of the image on each axis, showing a so-called
pixellisation effect. Represented at the same size, the density of pixels is thus
reduced.

(a) Scale divided by 20. (b) Scale divided by 10. (c) Scale divided by 5.

Figure 1.5: At a constant resolution, imageswith different definitions are represented
with different sizes.

(a) (b) (c)
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Color quantization

The following code uses the properties of integer operations to round values to the
nearest integer. Illustration is presented Fig. 1.6.

1 q4 = ascent // 4∗4;
q16= ascent //16∗16;

3 q32= ascent //32∗32;

Figure 1.6: Reduction of the number of gray levels (quantization).

(a) q4. (b) q16. (c) q32.

JPEG file format

In order to test the effect of jpeg compression, one can use the parameter quality .
For the lowest quality, the loss of informations is really important (see Fig.1.7).

# test jpeg quality
2 imageio.imwrite("a_25.python.jpeg" , ascent , quality =25) ;
imageio.imwrite("a_100.python.jpeg" , ascent , quality =100) ;

4 imageio.imwrite("a_50.python.jpeg" , ascent , quality =50) ;
imageio.imwrite("a_75.python.jpeg" , ascent , quality =75) ;

6 imageio.imwrite("a_1.python.jpeg" , ascent , quality =1) ;
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Figure 1.7: Different quality used to compress jpeg files.

(a) Quality 1. (b) Quality 25. (c) Quality 75.

1.11.2 Histogram

To plot the histogram of an image, you can use the hist function (see result in Fig.
1.8).

plt . hist ( ascent . flatten () , 256)
2 plt . show()

Figure 1.8: Histogram of ascent image.

You can also write your own code. The execution time is higher for these two
functions than for the previous one.
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# Histogram function with 2D image
2 def compute_histogram(image):

tab = np.zeros ((256, ) , dtype=’I ’ )
4 X, Y = image.shape

for i in range(X):
6 for j in range(Y) :

tab[image[i , j]]+=1
8

return tab

1 # Histogram function with flatten image ( vector )
def compute_histogram2(image):

3 im = image. flatten ()
tab = np.zeros ((256, ) , dtype=’I ’ )

5 for i in im:
tab[ i]+=1

7 return tab

The following code presents a comparison of the different method for histogram
computation.
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1 # load ascent image and compute histograms
ascent = misc. ascent ()

3 t0 = time. clock ()
h = compute_histogram(ascent)

5 t1 = time. clock ()
h2=compute_histogram2(ascent)

7 t2 = time. clock ()
# .... plots

9 print "execution time 2D:%g" %(t1- t0 )
plt . subplot (131)

11 plt . plot (h)
plt . title ( ’2D function ’ )

13

print "execution time 1D:%g" %(t2- t1 )
15 plt . subplot (132)

plt . plot (h2)
17 plt . title ( ’1D function ’ )

# last plot : with matplotlib function
19 plt . subplot (133)

t3 = time. clock ()
21 plt . hist ( ascent . flatten () , 256)

t4 = time. clock ()
23 print "execution time matplotlib :%g" %(t4- t3 )

# display
25 plt . show()

The console outputs the following computation durations:

1 execution time 2D: 1.40284 s
execution time 1D: 1.27649 s

3 execution time matplotlib : 0.261095 s

1.11.3 Linear mapping of the image intensities

The linear mapping is a simple method that stretches linearly the histogram. If
displayed with matplotlib , the images is linearly stretched, thus the modification
cannot be observed.
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def image_stretch (image):
2 # return image with new maximum and minimum at 255 and 0

minimum = image.min();
4 maximum = image.max();

a = 255/(maximum-minimum);
6 b = -255∗minimum/(maximum-minimum);

return a∗image+b;

1.11.4 Aliasing effect

1 # aliasing effect (Moire)
def circle ( fs , f ) :

3 # Generates an image with aliasing effect
# fs : sample frequency

5 # f : signal frequency
t = np.arange (0,1,1./ fs ) ;

7 ti , tj = np.meshgrid(t , t ) ;
C = np.sin (2∗np.pi ∗ f ∗np. sqrt ( ti ∗∗2+ tj ∗∗2) ) ;

9 return C

The image of Fig. 1.9 is generated with the following code.

1 C = circle (300,50) ;
plt . imshow(C, cmap=plt.cm.gray);

3 plt . show()
imageio.imwrite( ’moire.png’ , C);
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Figure 1.9: Moiré effect, generated with fs = 300 and f = 50.

1.11.5 Low-pass filtering

The module scipy .ndimage. filters contains the usual filter functions.

The mean filter is illustrated in Fig. 1.10.

# mean on a 3x3 neighborhood
2 m3 = ndimage. filters . uniform_filter ( ascent )
m25= ndimage. filters . uniform_filter ( ascent , 25)

4

plt . subplot (121)
6 plt . imshow(m3, cmap=plt.cm.gray)
plt . axis ( ’ off ’ )

8 plt . title ( ’3x3 mean filter ’ )

10 plt . subplot (122)
plt . imshow(m25, cmap=plt.cm.gray)

12 plt . axis ( ’ off ’ )
plt . title ( ’25x25 mean filter ’ )

14

plt . show()
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Figure 1.10: Mean filters.

(a) Neighborhood of size 3x3. (b) Neighborhood of size 25x25.

Gaussian filter

The gaussian filter is presented in Fig. 1.11.

1 # ascent image
ascent = misc. ascent ()

3

# Gaussian filter
5 gaussian = ndimage. filters . gaussian_filter ( ascent , 5)

Figure 1.11: Gaussian filter of size 5.

1.11.6 Derivative filters

Derivative filters (Prewitt, Sobel...) use a finite derivation approximation. They are
very sensitive to noise (as every system using a derivation). The gradient is defined
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as a vector, and a norm should be used to display a resulting image. Notice that
with these filters, the connexity of the contours is not preserved. Illustration is
proposed in Fig. 1.12.

1 # ascent image
ascent = misc. ascent ()

3 ascent . astype( ’ int32 ’ ) ;

5 # Prewitt filter
prewitt0 = ndimage. filters . prewitt ( ascent , axis=0)

7 prewitt1 = ndimage. filters . prewitt ( ascent , axis=1)

9 # Sobel filter
dy = ndimage. filters . sobel ( ascent , axis=0) # vertical

11 dx = ndimage. filters . sobel ( ascent , axis=1) # horizontal
mag = np.hypot(dx, dy) # magnitude

13 sobel = mag ∗ 255.0 / mag.max() # normalize (Q&D)

15 # display results
plt . subplot (131)

17 plt . imshow(prewitt0, cmap=plt.cm.gray)
plt . axis ( ’ off ’ )

19 plt . title ( ’ Prewitt filter axis 0’ )

21 plt . subplot (132)
plt . imshow(prewitt1, cmap=plt.cm.gray)

23 plt . axis ( ’ off ’ )
plt . title ( ’ Prewitt filter axis 1’ )

25

plt . subplot (133)
27 plt . imshow(sobel, cmap=plt.cm.gray)

plt . axis ( ’ off ’ )
29 plt . title ( ’Sobel filter ’ )

31 plt . show()
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Figure 1.12: Prewitt filter.

(a) Prewitt filter for axis x. (b) Prewitt filter for axis y.





2 Image Enhancement

The objective of this tutorial is to implement some image enhancement
methods, based on intensity transformations or histogram modifications.
It will make use of statistical notions like probability density functions or
cumulative distribution functions.

Figure 2.1: The different processes of this tutorial will be applied on these images.

(a) Osteoblasts. (b) Phobos (ESA/DLR/FU Berlin, CC-By-SA).

2.1 Intensity transformations (LUT)

Two transformations will be studied: the γ correction and the contrast stretching.
They enable the intensity dynamics of the gray tone image to be changed. These
two operators are based on the following Look Up Tables (LUT):

γ = 25
γ = 10
γ = 5
γ = 2
γ = 1.5
γ = 1
γ = 0.5
γ = 0.25
γ = 0.1
γ = 0.04

(c) γ correction LUT.
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(d) Contrast stretching LUT.
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1. Test the transformation ’γ correction’ on the image ’osteoblast’.

2. Implement the operator ’contrast stretching’ with the following LUT
(also called cumulative distribution function cdf), withm being the
mean gray value of the image, and r being a given gray value:

s = T (r) =
1

1 + (m/r)E

3. Test this transformation with different values of E on the image
’osteoblast’.

The module skimage.exposure contains different methods for contrast
enhancement, among them adjust_gamma.

2.2 Histogram equalization

The objective is to transform the image so that its histogram would be constant
(and its cumulative distribution function would be linear). The notations are:

• I is the image of n pixels, with intensities between 0 and L.

• h is the histogram, defined by:

hI(k) = p(x = k) =
nk

n
, 0 ≤ k < L

The following transformation T (I) is called histogram equalization.

T (xk) = (L− 1)
k∑

j=0

p(xj)

where

cdfI(k) =
k∑

j=0

p(xj)

is the cumulative distribution function (cumulative histogram).

1. Compute and visualize the histogram of the image ’osteoblast’.
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2. Test this histogram equalization transformation on the image ’os-
teoblast’ (with builtin functions) and visualize the resulting histogram.

3. Code your own function.

4. The corresponding LUT to this transformation is the cumulative sum
of the normalized histogram. Evaluate and visualize this intensity
transformation.

See the numpy.histogram and skimage.exposure functions.

2.3 Histogram matching

The objective is to enhance the original image by matching its histogram with a
modeled one. The principle is to transform the gray value x1 of first image into x2:
T (x1) = x2 (see Fig.2.2). Based on the fact that cdf1(x1) = cdf2(x2), the formula
to find x2 is:

x2 = cdf−1
2 (cdf1(x1)) .

As x1 and x2 are discrete values, this requires an interpolation.

Figure 2.2: Histogram matching principle.
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1. Visualize the histogram of the image ’phobos’.

2. Make the histogram equalization and visualize the resulting image.

3. Construct a bi-modal histogram (for example) and code your own
function for histogram matching.
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See numpy.interp for interpolation and LUT application.
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2.4. Python correction

from scipy import misc
2 import matplotlib . pyplot as plt
from skimage import exposure

4 import numpy as np
import sys

2.4.1 Intensity transformations

γ correction

The function skimage. exposure .adjust_gamma is used in order to adjust the gamma of the
image. It is before normalized (values are float between 0 and 1). The results are illustrated
in Fig.2.3.

I=imageio.imread(" osteoblaste .png")
2 I = I / np.max(I) ;

4 gamma=2;
I2= exposure.adjust_gamma(I, gamma);

6 plt . imshow(I2);
plt . show();
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Figure 2.3: Gamma transforms.

(a) Original image. (b) γ = 1.

(c) γ = 2. (d) γ = 0.5.

Contrast stretching

The LUT look-up-table is simply a function applied to the original image. In order
to avoid division by zero, the smallest float value is introduced. Fig.2.4 illustrates
the results.

1 def contrast_stretching ( I , E) :
epsilon = sys . float_info . epsilon ;

3 m = np.mean(I) ;
I = I . astype( " float " ) ;

5 Ar = 1. / (1.+( m/(I+epsilon ) ) ∗∗E) ;
return Ar;

2.4.2 Histogram equalization

The histogram is displayed with the following function:
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Figure 2.4: Constrast stretching.

(a) Original image. (b) E = 10.

(c) E = 20. (d) E = 1000.

def displaySaveHisto ( I , filename=None):
2 """

Display and save pdf ( if filename provided) of histogram of image I
4 If values are between 0 and 1, they are multiplied by 255

"""
6 if np.max(I)<=1:

I = 255 ∗ I ;
8 hist , bins = np.histogram(I . flatten () , 256, range =(0,255) )

fig = plt . figure ()
10 plt . bar( bins [: - 1], hist , width=1);

plt . show();
12 if filename!=None:

fig . savefig (filename , bbox_inches=’ tight ’ )

The histogram equalization is done via the skimage.exposure. equalize_hist function.
The results are illustrated in Fig.2.5.
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# histogram equalization
2 I2 = exposure. equalize_hist ( I ) ;
plt . imshow(I2);

4 plt . show()

The look-up-table (LUT) or cumulative distribution function (cdf) is computed
and used in the next function:

def histeq ( I ) :
2 """

histogram equalization , version with look−up−table
4 I : original image, with values in 8 bits integer

"""
6 hist , bins=np.histogram(I . flatten () , 256, range =(0,255) )

cdf = hist . cumsum();
8 cdf = ( cdf / cdf[- 1]) ;

return cdf[ I ];
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Figure 2.5: Histogram equalization.

(a) Original image. (b) Histogram equalization.

(c) Histogram of original image.
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2.4.3 Histogram matching

This method is only an approximate method. It requires an interpolation of the
cumulative distribution functions in order to find the transformation. Results are
shown in Fig.2.6
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1 def hist_matching( I , cdf_dest ) :
"""

3 Histogram matching of image I , with cumulative histogram cdf_dest
This should be normalized, between 0 and 1.

5 This version uses interpolation
"""

7 imhist , bins = np.histogram(I . flatten () , len ( cdf_dest ) , density=True)
cdf = imhist . cumsum() #cumulative distribution function

9 cdf = ( cdf / cdf[- 1]) #normalize between 0 and 1
# first : histogram equalization

11 im2 = np. interp ( I . flatten () , bins [: - 1], cdf )
# 2nd: reverse function

13 im3 = np. interp (im2, cdf_dest , bins [: - 1])
# reshape into image

15 imres = im3.reshape( I . shape)
return imres ;
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Figure 2.6: Histogram matching.

(a) Original image. (b) Histogram equalization. (c) Histogram matching.

(d) Histogram of original image.
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(e) Histogram after equalization.
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(f) Target histogram (cumulative dis-
tribution function).
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(g) Histogram after histogram match-
ing.
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3 2DFourier Transform

The main objective of this tutorial is to study image filters applied in the
frequencial or spatial domain with the Fourier transform.

Use module np. fft for Fourier Transform functions (function fft2 ), phase
and abs for phase and amplitude.

The image to be used comes from a human cornea endothelium observed ex vivo
by optical microscopy.

Figure 3.1: Image of human cornea endothelium observed by optical microscopy.
The ophthalmologists would like to know the cell density, without manually count-
ing all the cells.

(a) Human corneal endothelium, extracted
from a donor and observed here before graft-
ing.

(b) Human eye (from Wikipedia, authors:
Rhcastilhos and Jmarchn, CC-By-SA).
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3.1 Fourier transform

1. Load an image and visualise it.

2. Compute the Fourier Transform by the fft algorithm.

3. Visualise the images of the phase and amplitude of the Fourier Trans-
form.

3.2 Inverse Fourier transform

In this exercise, it can be interesting to consider different images, like a Lena picture
for example.

1. Apply the inverse Fourier transform on the Fourier transform to find
the original image.

2. Now, apply the inverse Fourier transform on the phase information
only (without using the frequency informations).

3. In a same spirit, apply the inverse Fourier transform on the frequency
informations only (without the phase).

3.3 Low-pass and high-pass filtering

1. Modify the Fourier transform of the image to

• keep only low frequencies,

• keep only high frequencies.

2. Apply the inverse Fourier transform on both and comment.
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3.4 Application: evaluation of cellular den-

sity

The ophthalmologists would like to evaluate the cell density of the cornea endothe-
lium observed in Fig. 3.1.

1. Compute the Fourier transform of the image. If one considers that
the cells constitute a repeated pattern on the whole image, locate the
repetition frequency on the amplitude image.

2. Can this frequency be linked to the cell density ?

The answer to this last question is obviously yes. Here follows a simple method
to evaluate the cell density (or the mean cell radius), if these cells a considered as
circular [37].

1. The amplitude information is very noisy. First of all, a gaussian filter
should be applied (see functions fspecial and imfilter ).

2. Find a simple way to evaluate the mean radius of the cells.
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3.5. Python correction

import numpy as np
2 from scipy import misc, ndimage #read/write images
import matplotlib . pyplot as plt # plots

3.5.1 Introduction and utilities

To display a spectrum, the following function can be useful:

1 # Displays spectrum and phase in an image ( grayscale )
def viewSpectrumPhase(amplitude, phase) :

3 plt . figure ()
plt . subplot (1,2,1)

5 plt . imshow(np.log(1+amplitude), plt . cm.gray) ;

7 plt . subplot (1,2,2)
mmax = np.max(phase);

9 mmin = np.min(phase);
if (mmax == mmin):

11 B=0;
else :

13 B = 255∗(phase-mmin)/(mmax-mmin);

15 plt . imshow(B, cmap=plt.cm.gray);

3.5.2 Fourier transform

Results (amplitude and phase) are represented in Fig. 3.4.

cornea = imageio.imread( ’cornee.png’)
2 print type(cornea)
print cornea.shape, cornea.dtype

4

plt . subplot (131)
6 plt . imshow(cornea, cmap=plt.cm.gray)
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## Fourier transform
2 # result is complex
# fftshift is used by convention the get frequency 0 at center of image

4 spectre = np. fft . fftshift (np. fft . fft2 (cornea) ) ;

6 A = abs( spectre ) ;
G = np.angle( spectre ) ;

8

viewSpectrumPhase(A, G);

3.5.3 Inverse Fourier Transform

1 ## inverse Fourier transform
cornee2 = np. real (np. fft . ifft2 (np. fft . fftshift ( spectre ) ) ) ;

3 plt . figure ()
plt . imshow(cornee2, cmap=plt.cm.gray) ;

5 plt . title ( ’ inverse FT’) ;

The Fourier transform, although very powerful, is really difficult to interpret in
2D. The main information is not contained in the amplitude, but in the phase. The
following reconstructions will illustrate it (see Fig.3.2).

1 ## inverse Fourier transform, without the phase
cornee_amplitude= np. real (np. fft . ifft2 (np. fft . fftshift (A)) ) ;

3 plt . figure () ;
plt . imshow(cornee_amplitude, cmap=plt.cm.gray);

5 plt . title ( ’ inverse FT on amplitude’ ) ;

1 ## inverse Fourier transform on phase only
complex_phase = np.exp(1j ∗G);

3 cornee_phase=np.real (np. fft . ifft2 (np. fft . fftshift (complex_phase))) ;
plt . figure ()

5 plt . imshow(cornee_phase, cmap=plt.cm.gray);
plt . title ( ’ inverse FT on phase’ ) ;



2D Fourier Transform 52

Figure 3.2: Reconstruction of partial informations (phase or amplitude only).

(a) Reconstruction with amplitude only. (b) Reconstruction with phase only.

3.5.4 Low-pass and high-pass filtering

The results are illustrated in Fig. 3.3. Two functions are defined.

A low pass-filter consists in the suppression of values for frequencies lower
than a cut-off frequency.

Figure 3.3: Fourier basic filtering of cornea image.

(a) High Pass filter. (b) Low Pass filter.
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def LowPassFilter (spectrum, cut ) :
2 """ Low pass filter of the FFT (spectrum)

The shape of this filter is a square . fftshift has been applied so that
4 frequency 0 lays at center of spectrum image

@param spectrum: FFT2 transform
6 @param cut : cut value of filter (no physical unit , only number of pixels )

"""
8 X,Y = spectrum.shape;

mask = np.zeros (( X,Y) , " int " ) ;
10 mx = X/2; my = Y/2;

mask[mx-cut:mx+cut, my-cut:my+cut] = 1;
12 f = spectrum ∗ mask;

plt . figure
14 plt . imshow(abs(f) ) ; plt . title ( ’Low pass filter ’ )

return f ;

A high pass filter is exactly the opposite: suppression of the values under the
cut-off frequency.

1 def HighPassFilter (spectrum, cut ) :
""" High pass filter of the FFT (spectrum)

3 The shape of this filter is a square . fftshift has been applied so that
frequency 0 lays at center of spectrum image

5 @param spectrum: FFT2 transform
@param cut : cut value of filter (no physical unit , only number of pixels )

7 """
X,Y = spectrum.shape;

9 mask = np.ones ((X,Y) , " int " ) ;
mx = X/2; my = Y/2;

11 mask[mx-cut:mx+cut, my-cut:my+cut] = 0;
f = spectrum ∗ mask;

13 plt . figure
plt . imshow(abs(f) ) ; plt . title ( ’High pass filter ’ )

15 return f ;

In the following application, the image is loaded and the effects of a low-pass
and high-pass filters are illustrated.
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1 # FT of original image
cornea = imageio.imread( ’cornee.png’)

3 spectre = np. fft . fftshift (np. fft . fft2 (cornea) ) ;
# low pass filter

5 L = LowPassFilter ( spectre , 30)
viewSpectrumPhase(abs(L), np.angle(L) )

7 corneaLP = np. real (np. fft . ifft2 (np. fft . fftshift (L) ) )
# high pass filter

9 H = HighPassFilter ( spectre , 30)
viewSpectrumPhase(abs(H), np.angle(H))

11 corneaHP = np.real (np. fft . ifft2 (np. fft . fftshift (H)))
# display results and filters

13 plt . figure () ;
plt . subplot (1,2,1)

15 plt . imshow(corneaLP, plt . cm.gray) ; plt . title ( ’ reconstruction after LP filtering ’ )
plt . subplot (1,2,2)

17 plt . imshow(corneaHP, plt.cm.gray) ; plt . title ( ’ reconstruction after HP filtering ’ )

3.5.5 Application: evaluation of cellular density

The cells can be considered as a pattern, and its frequency repetition can found
in the Fourier transform. More precisions on this application can be found in
[33, 14, 34, 37] on the relation between the real cellular density and the image
pixels.

cornea = imageio.imread( ’cornee. tif ’ )
2 # Fourier Transform
spectre = np. fft . fftshift (np. fft . fft2 (cornea) ) ;

4 amplitude = abs( spectre ) ;
# Filter amplitude

6 Blurred = ndimage. filters . gaussian_filter (amplitude, 5) ;
plt . figure

8 plt . subplot (1,2,1) ;
plt . imshow(np.log(1+Blurred) , plt . cm.gray) ;

10 plt . title ( ’ filtered amplitude’ )
# Observe frequency peaks

12 plt . subplot (1,2,2) ;
plt . plot (np.log(1+Blurred [:, Y /2]) ) ;

14 plt . title ( ’peak observation and cells frequency’ )

The results are illustrated in Fig. 3.4.



3.4 Application: evaluation of cellular density 55

Figure 3.4: The two peaks represent the frequency of repetition of the cellular
pattern, i.e. it can be used to compute the cellular density.

(a) Amplitude of Fourier Transform.
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(b) Filtering of amplitude.





4 Introduction towavelets

This tutorial introduces practically the basic wavelet decomposition and
reconstruction algorithms. The objectives are to code some basic programs
that will decompose and reconstruct 1D and 2D signals.

4.1 Introduction

Wavelets are based on a mother wavelet Ψ (s is a scale parameter, τ is the time
translation factor (s, τ) ∈ R∗

+ × R):

∀t ∈ R, ψs,τ (t) =
1√
s

Ψ

(
t− τ
s

)

The continuous wavelet transform is written as follows, where ψ∗ means the
complex conjugate of ψ and < ., . > is the complex scalar product (Hermitian
form):

g(s, τ) =

∫ ∞

−∞
f(t)ψ∗

s,τ (t)dsdτ =< f, ψs,τ >

The reconstruction is defined by:

f(t) =
1

C

∫ ∞

−∞

∫ ∞

−∞

1

|s|2 g(s, τ)ψs,τ (t)ds dτ

with

C =

∫ ∞

−∞

|Ψ̂(ω)|2
|ω| dω

and Ψ̂ is the Fourier Transform of Ψ.
The discrete wavelet transform corresponds to a sampling of the scales. To

compute the different scales, one has to introduce a “father” wavelet, that similarly
defines a family of functions orthogonal to the family ψs,τ .

4.2 Fast discrete wavelet decomposition /

reconstruction

A simple algorithm (cascade algorithm, from Mallat) is defined as two convolutions
(by a lowpass ld filter for the projection on the ψ family, and a high pass hd filter
for the orthogonal projection) followed by a subsampling (see Fig. 4.1).
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Figure 4.1: Algorithm for wavelet decomposition. First, a convolution is performed
(square node), then, a subsampling. ai stands for decomposition at scale i, di stands for
detail at scale i.

4.2.1 Simple 1D example

Let’s consider the signal [4; 8; 2; 3; 5; 18; 19; 20]. We will use the Haar wavelets
defined by ld = [1; 1] and hd = [−1; 1]. Basically, these filters perform a mean and
a difference (see Table 4.1). The result of the decomposition in 3 scales with these
wavelets is the concatenation of the details and the final approximation

C = {[−4;−1;−13;−1]; [7;−16]; [−45]; [79]}

Scale i Approximation ai Details di

0 (original signal) [4; 8; 2; 3; 5; 18; 19; 20]
1 [12; 5; 23; 39] [−4;−1;−13;−1]
2 [17; 62] [7;−16]
3 [79] [−45]

Table 4.1: Illustration of Haar decomposition in a simple signal.

In the case of these Haar wavelets, code a function that performs the de-
composition for a given number of scales. The prototype of this function
will be:

1 def simpleWaveDec(signal, nb_scales ) :
"""

3 wavelet decomposition of <signal> into <nb_scales> scales
This function uses Haar wavelets for demonstration purposes.

5 """
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4.2.2 Reconstruction

To reconstruct the original signal (see Fig. 4.2), we need the definition of two
reconstruction filters, hr and lr. For the sake of simplicity, we use lr = ld/2 and
hr = −hd/2. These filter will perform an exact reconstruction of our original
signal.

Figure 4.2: Reconstruction algorithm. The oversampling is done by inserting zeros.
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Using this algorithm, you can now go on to the next exercise.

Code a function that performs the reconstruction of the signal. The proto-
type of this function will be, with the previous definition of C:

1 def simpleWaveRec(C):
"""

3 wavelet simple reconstruction function of a 1D signal
C: Wavelet coefficients

5 """

4.3 2D wavelet decomposition

Let A be the matrix of an image. We consider that A is of size 2n × 2n, n ∈ N. We
consider, as for the 1D transform, the filters ld and hd.

The wavelet decomposition is as follows:

• Apply ld and hd on rows of A. Results are denoted ldrA and hdrA, of size
2n × 2n−1, with r standing for row.

• Then, apply ld and hd again, to get the four new matrices: ldcldrA, ldchdrA,
hdcldrA and hdchdrA, of sizes 2n−1×2n−1, with c standing for column. The
matrix ldcldrA is the approximation, and the other matrices are the details.
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• Code a function to perform the wavelet decomposition and for a given
number of scales (lower than n). Test it on images of size 2n × 2n.

• Code the reconstruction function.

4.4 Built-in functions

Let us explore some built-in functions.

4.4.1 Continuous wavelet decomposition

One has to make the difference between the continuous wavelet transform and the
discrete transform.

Informations

In scipy . signal you can find function to perform wavelets decomposition, and
among them cwt for the continuous wavelet transform. There is also the
module pywt that may be more developped (see also cwt).

Figure 4.3: Continuous wavelet transform.
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4.4.2 Discrete decomposition

1. Generate the signal sin(2π ∗ f1 ∗ t) + sin(2π ∗ f2 ∗ t), with f1 = 3Hz
and f2 = 50Hz.

2. Apply the wavelet transformation for a given wavelet (like ’db4’).

3. Display the 5th approximation of the wavelet decomposition.

4. Display the 4th detail coefficients of the wavelet decomposition.

Look at pywt.downcoef for the decomposition at a given level and
pywt.wavedec for the entire decomposition.
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4.5. Python correction

import numpy as np
2 from scipy import misc
import matplotlib . pyplot as plt

4.5.1 1D signals

Two functions are required: a function (simpleWaveDec) that loops over the different
scales and calls the second function (waveSingleDec) that performs the single step
wavelet decomposition. Notice that the Haar wavelet is defined here with integer
values (see Fig.4.4), so that the mental computation can be done easily.

Figure 4.4: Haar wavelets. From wikipedia, author Omegatron.
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Simple 1D decomposition

def simpleWaveDec(signal, nb_scales ) :
2 """

wavelet decomposition of <signal> into <nb_scales> scales
4 This function uses Haar wavelets for demonstration purposes.

"""
6 # Haar Wavelets filters for decomposition and reconstruction

ld = [1, 1];
8 hd = [- 1, 1];

10 # transformation
C=[];

12 A = signal ; # approximation
for i in range(nb_scales ) :

14 A, D = waveSingleDec(A, ld , hd) ;
#get the coefficients

16 C.append(D);

18 C.append(A);
return C;

1 def waveSingleDec(signal , ld , hd) :
"""

3 1D wavelet decomposition into
A: approximation vector

5 D: detail vector
ld : low pass filter

7 hd: high pass filter
"""

9 # convolution
A = np.convolve( signal , ld , ’same’) ;

11 D = np.convolve( signal , hd, ’same’) ;
# subsampling

13 A = A [1::2];
D = D [1::2];

15 return A, D;

Simple 1D reconstruction

The reconstruction starts from the highest scale and computes the approximation
signal with the given details.
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1 def simpleWaveRec(C):
"""

3 wavelet simple reconstruction function of a 1D signal
C: Wavelet coefficients

5 The Haar wavelet is used
"""

7 ld = np.array ([1, 1]) ;
hd = np.array ([ - 1, 1]) ;

9 lr = ld /2;
hr = -hd/2;

11

A = C[- 1];
13 for scale in reversed (C[: - 2]) :

A = waveSingleRec(A, scale , lr , hr) ;
15 return A;

1 def waveSingleRec(a, d, lr , hr) :
"""

3 1D wavelet reconstruction at one scale
a : vector of approximation

5 d: vector of details
lr : low pass filter defined by wavelet

7 hr: high pass filter defined by wavelet
This is Mallat algorithm .

9 NB: to avoid side effects , the convolution function does not use the
’same’ option

11 """
approx = np.zeros (( len (a) ∗2,) ) ;

13 approx [::2] = a;
approx = np.convolve(approx, lr ) ;

15

detail = np.zeros (( len (a) ∗2,) ) ;
17 detail [::2] = d;

detail = np.convolve( detail , hr) ;
19 # sum up approximation and details to reconstruct signal at lower scale

approx = approx + detail ;
21 #get rid of last value

approx = np. delete (approx, - 1)
23 return approx

Results

This is the result for the decomposition of the vector with 3 scales.
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1 s = [4, 8, 2, 3, 5, 18, 19, 20];
print (s )

3 C = simpleWaveDec(s, 3) ;
print (C)

5 srec = simpleWaveRec(C);
print ( srec ) ;

[4, 8, 2, 3, 5, 18, 19, 20]
2 [array ([ - 4, - 1, - 13, - 1]) , array ([ 7, - 16]) , array ([ - 45]) , array ([79]) ]

4.5.2 2D signals

Decomposition

The simpleImageDec function is the main interface. It takes the image as first parame-
ter, and the number of scales of decomposition. It makes a call to decWave2D for the
decomposition at one given scale. The latter uses the previous 1D decomposition
method.
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def decWave2D(image, ld, hd) :
2 """

% wavelet decomposition of a 2D image into four new images.
4 % The image is supposed to be square , the size of it is a power of 2 in the

% x and y dimensions.
6 """

8 # Decomposition on rows
sx , sy = image.shape;

10

LrA = np.zeros (( sx , int (sy /2) ) ) ;
12 HrA = np.zeros (( sx , int (sy /2) ) ) ;

14 for i in range(sx) :
A, D= waveSingleDec(image[i ,:], ld , hd) ;

16 LrA[i ,:]= A;
HrA[i ,:]= D;

18

# Decomposition on cols
20 LcLrA = np.zeros (( int (sx /2) , int (sy /2) ) ) ;

HcLrA = np.zeros (( int (sx /2) , int (sy /2) ) ) ;
22 LcHrA = np.zeros (( int (sx /2) , int (sy /2) ) ) ;

HcHrA = np.zeros(( int (sx /2) , int (sy /2) ) ) ;
24 for j in range( int (sy /2) ) :

A, D= waveSingleDec(LrA[:,j ], ld , hd) ;
26 LcLrA [:, j ] = A;

HcLrA[:, j ] = D;
28

A, D= waveSingleDec(HrA[:,j ], ld , hd) ;
30 LcHrA[:, j ] = A;

HcHrA[:,j] = D;
32

return LcLrA, HcLrA, LcHrA, HcHrA
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1 def simpleImageDec(image, nb_scales ) :
"""

3 wavelet decomposition of <image> into <nb_scales> scales
This function uses Haar wavelets for demonstration purposes.

5 """

7 #Haar Wavelets filters for decomposition and reconstruction
ld = [1,1];

9 hd = [- 1, 1];

11 #transformation
C=[];

13 A = image; # first approximation

15 coeffs = [];
for i in range(nb_scales ) :

17 [A, HcLrA, LcHrA, HcHrA] = decWave2D(A, ld, hd);
coeffs .append( HcLrA);

19 coeffs .append(LcHrA);
coeffs .append(HcHrA);

21 #set the coefficients
C.append(coeffs . copy() ) ;

23 coeffs . clear () ;
C.append(A);

25 return C;

2D reconstruction

The simpleImageRec function performs the reconstruction of a multiscale wavelet
decomposition. The recWave2D performs the reconstruction of one scale.
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def recWave2D(LcLrA, HcLrA, LcHrA, HcHrA, lr, hr) :
2 """

Reconstruction of an image from lr and hr filters and from the wavelet
→֒ decomposition.

4 A: resulting ( reconstructed ) image

6 NB: This algorithm supposes that the number of pixels in x and y dimensions is
→֒ a power of 2.

"""
8

sx , sy = LcLrA.shape;
10

# Allocate temporary matrices
12 LrA = np.zeros (( sx ∗2, sy) ) ;

HrA = np.zeros (( sx ∗2, sy) ) ;
14 A = np.zeros (( sx ∗2, sy ∗2) ) ;

16 #Reconstruct from cols
for j in range(sy) :

18 LrA [:, j ] = waveSingleRec(LcLrA[:, j ], HcLrA[:, j ], lr , hr) ;
HrA[:, j ] = waveSingleRec(LcHrA[:,j ], HcHrA[:,j ], lr , hr) ;

20

# Reconstruct from rows
22 for i in range(sx ∗2) :

A[i ,:] = waveSingleRec(LrA[i ,:], HrA[i ,:], lr , hr) ;
24

return A;

1 def simpleImageRec(C):
"""

3 wavelet reconstruction of an image described by the wavelet coefficients C
"""

5 #The Haar wavelet is used
ld = np.array ([1, 1]) ;

7 hd = np.array ([ - 1, 1]) ;
lr = ld /2;

9 hr = -hd/2;
A = C[- 1];

11 for scale in reversed (C[: - 1]) :
A = recWave2D(A, scale [0], scale [1], scale [2], lr , hr) ;

13

return A;
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Results

The illustration Fig. 4.5 is obtained by the following code. The useful functions are
presented below.

I = imageio.imread( ’ lena256 .png’) ;
2 C = simpleImageDec(I, 3) ;
Irec = simpleImageRec(C);

4 plt . imshow(Irec) ;
plt . show()

The image is recursively split into 4 areas, where the left upper corner is the
approximation, and the three others are the details. As the details can have negative
values, the intensities are adjusted in order to display the image correctly.

1 def displayImageDec( C ) :
"""

3 Construct a single image from a wavelet decomposition
C: the decomposition

5 """
n, m = C [0][0]. shape;

7 A = np.zeros ((2∗ n, 2∗m));
prev = C[- 1];

9 for s , scales in reversedEnumerate(C[:- 1]) :

11 ns = n / 2∗∗( s- 1) ;
ms = m / 2∗∗( s- 1) ;

13 T = imdec2im(prev, scales ) ;
A[0: int (ns) , 0: int (ms)] = T;

15 prev = A[0: int (ns) , 0: int (ms)];
return prev

These two functions adjust and reversedEnumerate are used to simplify the nota-
tions. The first one performs a linear stretching of the image intensities, and the
second one allows an enumeration of a list in a reverse order.
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def adjust ( I ) :
2 """

simple image intensity stretching
4 return I

"""
6 I = I - np.min(I ) ;

I = I / np.max(I) ;
8 return I ;

10 def reversedEnumerate(l ) :
"""

12 Utility function to perform reverse enumerate of a list
returns zip

14 """
return zip (range(len ( l ) - 1, - 1, - 1) , l [:: - 1]) ;

1 def imdec2im(LcLrA, lvlC) :
"""

3 constructs a single image from:
LcLrA: the approximation image

5 lvlC : the wavelet decomposition at one level

7 for display purposes
"""

9

HcLrA=lvlC[0];
11 LcHrA=lvlC[1];

HcHrA=lvlC[2];
13 n, m = HcLrA.shape;

15 A = np.zeros ((2∗ n, 2∗m));

17 # Approximation image can be with high values when using Haar coefficients
A[0:n, 0:m] =adjust (LcLrA);

19

# details are low, and can be negative
21 A[0:n, m:2∗m] = adjust (HcLrA);

A[n:2∗n, 0:m] = adjust (LcHrA,);
23 A[n:2∗n, m:2∗m] = adjust (HcHrA);

25 return A;
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Figure 4.5: (Haar) Wavelet decomposition of the Lena image.

4.5.3 Built-in functions

An interesting module is pywt. This is illustrated by the following example. This
gives the same results as previously, with the multiplication by 1/

√
2.

import pywt
2 cA, cD = pywt.dwt(s, ’haar’ ) ;
print (cA, cD);

1 [ 8.48528137 3.53553391 16.26345597 27.57716447]
[-2.82842712 -0.70710678 -9.19238816 - 0.70710678]

The continuous wavelet transform is applied in the following code and the
result is displayed in Fig.4.6.



Introduction to wavelets 72

t = np. linspace ( - 1, 1, 1000, endpoint=False)
2 f1 = 3;
f2 = 50;

4 sig = np.sin (2 ∗ np.pi ∗ f1 ∗ t ) + np.sin (2∗np.pi ∗ f2 ∗ t ) ;
widths = np.arange (1, 129)

6 coef , freqs=pywt.cwt(sig ,widths, ’morl’ )
fig = plt . figure () ;

8 plt . imshow(coef, extent=[- 1, 1, 1, 31], cmap=’PRGn’, aspect=’auto’ ,
vmax=abs(coef).max(), vmin=-abs(coef) .max())

10 plt . show()
fig . savefig ( ’cwt.python.pdf’ , bbox_inches=’ tight ’ )

Figure 4.6: Continuous wavelet decomposition of the sum of sinusoids.
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5 Image restoration: denoising

This tutorial aims to study some random noises and to test different image
restoration methods (image denoising).

The different processes will be applied on the following MR image.

Figure 5.1: Leg.

5.1 Generation of random noises

Some random noises are defined with the given functions (corresponding to specific
distributions):

• uniform noise: R = a+ (b− a) ∗ U(0, 1).

• Gaussian noise: R = a+ b ∗N(0, 1).

• Salt and pepper noise: R :







0 ≤ U(0, 1) ≤ a 7→ 0
a < U(0, 1) ≤ b 7→ 0.5
b < U(0, 1) ≤ 1 7→ 1

• Exponential noise : R = −1

a
∗ ln(1− U(0, 1))

Generate sample images with the four kinds of random noise and visualize
their histograms with the built-in functions. Pay attention to the intensity
range of the resulting images when calculating the histograms
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5.2 Noise estimation

The objective is to evaluate the characteristics of the noise in a damaged/noisy
image (in a synthetic manner in this tutorial).

1. Visualize the histogram of a Region Of Interest (ROI) of the image
of Fig.5.1. The ROI should be extracted from a uniform (intensity)
region.

2. Add an exponential noise to the original image and visualize the
histogram of the selected ROI.

3. Add a Gaussian noise to the original image and visualize the histogram
of the selected ROI.

5.3 Image restoration by spatial filtering

1. Add a salt-and-pepper noise to the image of Fig.5.1.

2. Test the ’min’, ’max’, ’mean’ and ’median’ image filters.

See the module scipy .ndimage

The median filter is efficient in the case of salt-and-pepper noise. However, it
replaces every pixel value (first problem) by the median value determined at a given
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scale (second problem). In order to avoid these two problems, Gonzalez and Woods
proposed an algorithm [11].

Data: Input (noisy) image I
Data: Maximal scale Smax

Result: Filtered image F

Main Function amf(I , Smax):

forall pixels (i, j) do
S ← 1
while isMedImpulseNoise(I , i, j, S) AND S ≤ Smax do

S ← S + 1
med← Med(I, i, j, S)

end

if I(i, j) =Min(I , i, j, S) OR I(i, j) =Max(I , i, j, S) OR

S = Smax then

F (i, j)← Med(I , i, j, S)
else

F (i, j)← I(i, j)
end

end

Algorithm 1: Adaptive median filter [11]. The main function takes two
arguments: the image I to be filtered and the maximal size of neighborhood
Smax. For each pixel (i, j), the good scale is the scale where the median
value is different from the min and the max (median value is thus not an
impulse noise). Then, if the pixel value is an impulse noise or the maximal
scale has been reached, it must be filtered. Otherwise, it is kept untouched.
Min, Max and Med functions compute the minimum, maximum and the
median value in a neighborhood of size S centered at a pixel (i, j) in image
I .

Function isMedImpulseNoise(I , i, j, S):
med← Med(I, i, j, S)
if med=Max(I , i, j, S) OR med=Min(I , i, j, S) then

return True
else

return False
end

Algorithm 1: End.
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Implement the adaptive median filter from the following algorithm (Alg.1)
based on two steps (the operator acts on an operational window of size k×k
where different statistics are calculated: median, min or max).
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5.4. Python correction

import matplotlib . pyplot as plt
2 import numpy as np
from scipy import ndimage

4 from scipy import misc

5.4.1 Generation of random noises

In order to convert stretch the images into the range [0;1], the following function
can be used:

def hist_stretch ( I ) :
2 # histogram stretching

# returns values of I linearly stretched to range [0;1]
4 I = I - np.min(I ) ;

I = I / np.max(I) ;
6 return I ;

Random noise illustrations are proposed in Figs.5.2 and 5.3, and a size S = 32
is used to generate the noisy images.

Uniform noise

The python rand function generates values between 0 and 1 with uniform distribu-
tion.

S=32
2 a=0; b=255;
R1 = a + (b-a) ∗ np.random.rand(S, S) ;

Gaussian noise

The python randn function generates values with normal centered distribution.
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Figure 5.2: Resulting noise images.

(a) Uniform noise. (b) Gaussian noise.

(c) Salt and pepper noise. (d) Exponential noise.

a=0; b=1;
2 R2 = a + (b-a) ∗np.random.randn(S, S) ;
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Salt and pepper noise

a = 0.05; b = 0.1;
2 R3 = 0.5 ∗ np.ones ((S ,S) ) ;
X = np.random.rand(S,S) ;

4 R3[X<=a] = 0;
R3[(X>a) & (X <= b)] = 1;

6 R3 = hist_stretch (R3) ;

Exponential noise

a=1;
2 R4 = -1/a ∗ np.log(1 -np.random.rand(32, 32) ) ;
R4 = hist_stretch (R4) ;

Figure 5.3: Histograms of the noise images generated with 32× 32 pixels.

(a) Uniform noise.
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5.4.2 Noise estimation

In order to estimate the noise, a ROI of visually constant gray level is chosen, and
its histogram is displayed. This is simulated by the following code, the result is
displayed in Fig.5.4:

1 # noise estimation
fig = plt . figure ()

3 A = imageio.imread( ’ jambe.png’) ;
roi = A[160:200, 200:240];

5 plt . hist ( roi . flatten () ,255) ;
fig . savefig ( " histo_roi_leg .pdf" , bbox_inches=’ tight ’ ) ;

Then, some noise is added to the image, and the histogram of the ROI is displayed.
The results are observed in Figs.5.5 and 5.6.

# add exponential noise to image
2 nx, ny = A.shape;
expnoise = - 1/.5 ∗ np.log(1 -np.random.rand(nx, ny)) ;

4 expnoise = expnoise / np.max(expnoise);
B = A + 255∗expnoise ;

6 B = hist_stretch (B) ;
fig = plt . figure ()

8 plt . imshow(B, cmap=’gray’);
imageio.imwrite(" leg_exponential .png", B) ;

10 #plt . show()

# add gaussian noise to image
2 nx, ny = A.shape;
gaussnoise = 50∗np.random.rand(nx, ny) ;

4 B = A + gaussnoise ;
B = hist_stretch (B) ;

6 fig = plt . figure ()
plt . imshow(B, cmap=’gray’);

8 imageio.imwrite(" leg_gaussian .png", B) ;
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Figure 5.4: Histogram of the Region of Interest.

(a) ROI. (b) Histogram.
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In the case of exponential and Gaussian noise added to the image, The his-
tograms are displayed in Figs.5.5 and 5.6.

Figure 5.5: Exponential noise.

(a) Addition of exponential noise to the
original image of the leg. (b) Histogram of the ROI.
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Figure 5.6: Gaussian noise.

(a) Addition of Gaussian noise to the orig-
inal image of the leg. (b) Histogram of the ROI.
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5.4.3 Image restoration by spatial filtering

The following code is used to filter the images. The results are displayed in Fig.5.7.
Salt and Pepper noise is added to the image.

Figure 5.7: Different filters applied to the noisy image. The median filter is particu-
larly adapted in the case of salt and pepper noise (impulse noise), but still destroy
the structures observed in the images.

(a) Original image. (b) Noisy image (salt and pepper).

(c) Maximum filter. (d) Minimum filter.

(e) Mean filter. (f) Median filter.
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a = 0.05; b = 0.05;
2 spnoise = 0.5 ∗ np.ones ((nx,ny)) ;
X = np.random.rand(nx,ny);

4 B = A.copy() ;
B[X<=a] = 0;

6 B[(X>a) & (X <= (a+b)) ] = 255;
fig = plt . figure ()

8 plt . imshow(B, cmap=’gray’);
imageio.imwrite(" leg_sp .png", B) ;

10 #plt . show()

Then, different filters are illustrated. Notice that the contours informations are
somehow damaged. The median filter corresponds to the best filter in this case.

### filtering by convolution
2 #average filtering
B1 = ndimage. uniform_filter (B ,5) ;

4 imageio.imwrite("leg_uniform.png", B1) ;
B2 = ndimage.minimum_filter(B,3) ;

6 imageio.imwrite("leg_minimum.png", B2);
B3 = ndimage.maximum_filter(B,3) ;

8 imageio.imwrite("leg_maximum.png", B3);
B4 = ndimage.median_filter (B, 7) ;

10 imageio.imwrite("leg_median.png", B4) ;
B5 = amf(B, 7) ;

12 plt . imshow(B5, cmap=’gray’);
imageio.imwrite("leg_amf.png", B5) ;

What can be noticed is that min and max filters are unable to restore the image
(opening and closing filters, from the mathematical morphology, could be a solution
to explore). The mean filter is a better solution, but an average value is highly
modified by an impulse noise. The median filter is the optimal solution is order to
suppress the noise, but fine details are lost. An interesting solution is to apply an
adaptive median filter.

Adaptive median filter

The following code is a simple implementation of the algorithm previously pre-
sented. It has not been optimized in order to have a simple presentation. A more
sophisticated version can be found in [11]. The results are illustrated in Fig.5.8 for
Smax = 7.
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1 def amf(I , Smax):
"""

3 Adaptive median filter
I : grayscale image

5 Smax: maximal size of neighborhood. Limits the effect of median filter
"""

7 f = np.copy(I ) ;
nx, ny = I . shape;

9 sizes = np.arange (1, Smax, 2) ;
zmin = np.zeros (( nx, ny, len ( sizes ) ) ) ;

11 zmax = np.zeros (( nx, ny, len ( sizes ) ) ) ;
zmed = np.zeros (( nx, ny, len ( sizes ) ) ) ;

13 for k, s in enumerate(sizes ) :
zmin [:,:, k] = ndimage.minimum_filter(I , s ) ;

15 zmax [:,:, k] = ndimage.maximum_filter(I, s ) ;
zmed [:,:, k] = ndimage.median_filter ( I , s ) ;

17 isMedImpulse = np. logical_or (zmin==zmed,zmax==zmed);

19 for i in range(nx) :
for j in range(ny) :

21 k = 0;
while k<len( sizes ) -1 and isMedImpulse[i , j , k] :

23 k+=1;

25 if I [ i , j ] == zmin[i , j , k] or I [ i , j]==zmax[i, j , k] or k==len( sizes ) :
f [ i , j ] = zmed[i, j , k ];

27 return f ;
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Figure 5.8: Illustration of the adaptive median filter.

(a) Original image. (b) Noisy image (salt and pepper).

(c) Median filter of size 7 × 7. (d) Adaptive median filter, Smax = 7.





6 ImageRestoration: deconvolution

This tutorial aims to study and test different image restoration methods
for blurred and noisy images. Altough the different software tools contain
functions for each filter the objective is to exhaustively code these methods
to fully understand their principles. The reader can refer to [36] for more
informations on the algorithms.
Some of the images are based on observations made with the NASA/ESA
Hubble Space Telescope, and obtained from the Hubble Legacy Archive,
which is a collaboration between the Space Telescope Science Institute
(STScI/NASA), the Space Telescope European Coordinating Facility (ST-
ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA).
You may access to these resources at https://hla.stsci.edu/

The different processes will be applied on the following images.

6.1 Damage modeling

A damage process can be modeled by both a damage function D and an additive
noise n, acting on an input image f for producing the damaged image g.

g = D(f) + n (6.1)

Knowing g, the objective of restoration is to get an estimate f̂ (the restored image)
of the original image f . IfD is a linear process, spatially invariant, then the equation
can be simplified as:

g = h ∗ f + n (6.2)

where h is the spatial representation of the damage function (called the Point Spread
Function - PSF), and ∗ denotes the convolution operation. In general, the more
knowledge you have about the function H and the noise n, the closer f̂ is to f .

This equation can be written in the frequency domain:

G = H.F +N (6.3)

where the letters in uppercase are the Fourier transforms of the corresponding
terms in the eq. 6.2.
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Figure 6.1: Images that can be used for testing the different restoration algorithms.
Intensity levels are represented in false colors.

(a) Jupiter, from Hubble Space Telescope,
ads/Sa.HST#ic3g01qlq.

(b) PSF for Jupiter im-
age

(c) Saturn, HST. (d) PSF for Saturn image

• Generate the ’chessboard’ image.

• Generate a PSF corresponding to a blur (motion or isotropic).
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Figure 6.2: Chessboard image.

• Create a damaged image (a circular option is used, because the FFT
implies that functions are periodical) and add a Gaussian noise.

• Visualize the different images.

6.2 Simple case: no noise

The objective is now to restore the damaged image.
For the first steps, no noise will be added. The degradation functions is g = h∗f .

Knowing H (Fourier Transform of the psf h) and ignoring the noise in the damage
model, a simple estimate of the initial image can be done by the inverse filtering:

f = FT−1
(
G

H

)

(6.4)

where FT−1 denotes the inverse Fourier transform.

• Try the inverse filter in the Fourier space. Why is this filter not
working?

• Try to prevent division by 0, with f = FT−1
(

G
H+α

)

, α being a small

constant value (e.g. α = 0.1).

6.3 Wiener filter

The Wiener filter is an optimal filter that minimizes the following error:

e2 = E{(f − f̂)2}
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where E denotes the expected (mean) value, f is the original image and f̂ is the
restored image.

The solution to this expression, within the frequency domain, is given by:

F̂ =

(

1

H

|H|2
|H|2 +R

)

︸ ︷︷ ︸

Hw

G

The value of R can be arbitrarily fixed. Another way is to define R = Sn/Sf ,
where Sn and Sf denote the power spectrum of the noise n and the original image
f , i.e. |N |2 and |F |2 (matrices), respectively. This ratio can be defined globally
(as the constant) or locally (i.e. it is computed for each pixel). If the ratio Sn/Sf

(function) is non null, it can be passed to the Wiener filtering process.

6.3.1 Simple case: no noise

In the noiseless case, the Wiener filter reduces to the inverse filter:

Hw =







1

H(u, v)
if |H(u, v)| 6= 0

0 otherwise

Try a Wiener filter for the noiseless case.

6.3.2 Noisy images

Generally, the ratio Sn/Sf used in the Wiener filter is replaced by a constant value
equal to the ratio of the mean power spectrum:

R =

1

PQ
.
∑

u

∑

v

Sn(u, v)

1

PQ
.
∑

u

∑

v

Sf (u, v)
(6.5)

where PQ denotes the matrix size (the number of elements).

1. Calculate the constant ratio R and code the Wiener filter .
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2. Test the different algorithms on the image ’brain’ damaged by a blur
and an additive noise.

6.4 Iterative filters for noisy images

6.4.1 Van Ci�ert iterative filter

The VanCittert iterative filter is based on the following iterative relation :

fk+1 = fk + β(g − h ∗ fk)

with f0 = g, the damaged image.

Code and test on different cases a function that performs the VanCittert
restoration filter.

It should have the following prototype:

function [ fr ] = vca( g, psf , n_iter )
2 % Van Cittert iteration algorithm for deconvolution
%

4 % g: degraded image
% psf : point spread function

6 % n_iter : number of iterations

def vca(g, psf , n_iter , beta =.01) :
2 """

Van Cittert iterative filter
4 g: noisy image

psf : point spread function
6 n_iter : number of iterations

beta : Jansson parameter
8 """
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6.4.2 Lucy-Richardson filtering

We are now going to use the nonlinear restoration filtering of Lucy-Richardson that
is based on a maximum likelihood formulation in which the image is modeled by
Poisson statistics. This optimization leads to the solution if the following iterative
equation converges:

fk+1(x, y) = fk(x, y) ·
(

h(−x,−y) ∗ g(x, y)

h(x, y) ∗ fk(x, y)

)

(6.6)

Code and test your own function for the Lucy-Richardson filtering process.
It should have the same prototype as the VanCittert function. Remember that
· is the classical multiplication (point to point) and that ∗ is the convolution
operation. You then have the choice to make a direct call to the convolution
function, or to perform this operation in the Fourier space.

6.5 Blind deconvolution: restorationwith

no a priori

If the PSF is unknown, one of the main difficulties in image restoration is to get
an accurate estimate of this PSF in order to use it in the deconvolution algorithms.
These methods are called blind deconvolution methods. Generally, the PSF is
estimated in an iterative way from an initial PSF.

1. Generate a damaged image of ’chessboard’ with a Gaussian blur and
an additive Gaussian noise.

2. Restore from a blind deconvolution the damaged image and compare
the results with the previous ones.

Informations

Use the function skimage. restoration .unsupervised_wiener for example.
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6.6 Astronomy images

A classical file format used in astronomy is the FITS format.

With python, fits images can be manipulated with the astropy module.
You can use the following code to display an image.

hdu_list = fits .open(’ ic3g01qlq_drz . fits ’ ) ;
2 image = hdu_list [1]. data ;
image = np.nan_to_num(image);

4 plt . imshow(image, cmap=’gray’)
plt . show()
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6.7. Python correction

from astropy . io import fits
2 import matplotlib . pyplot as plt
import numpy as np

4 from scipy .misc import imresize
from scipy import signal

6 import progressbar

6.7.1 Damage modeling

There is no built-in function to generate the checkerboard image. A simple code can be
used.

def checkerboard() :
2 arr = np.zeros ((8,8) ,dtype=int )

arr [::2,::2] = 1
4 arr [1::2,1::2] = 1

out = imresize ( arr ,8∗ np.array( arr . shape) , interp=’nearest ’ ) /255;
6 return out ;

The psf can be generated as a Gaussian psf, or a motion psf. In this tutorial, the
motion psf is loaded from a file that comes from the MATLAB® function fspecial .

C = checkerboard() ;
2 psf = np.load( ’psf_motion.npy’) ;

In order to add Gaussian noise, the following function is used:
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def addGaussianNoise(I , sigma=1000):
2 """ Adds Gaussian noise to an image

I : original image
4 sigma: signal /noise ratio

"""
6 I2 = I . copy() ;

m=np.min(I);
8 M=np.max(I);

N = (M-m)/sigma∗np.random.randn(I.shape[0], I . shape[1]) ;
10 I2 = I2 + N;

I2 [ I2>M] = M;
12 I2 [ I2<m]=m;

return I2 , I - I2 ;

The image is blurred and noise is then added.

1 Cb = signal . convolve2d(C, psf , boundary=’wrap’, mode=’same’);
Cbn, noise = addGaussianNoise(Cb);

3 plt . imshow(Cbn, cmap=’gray’)
plt . title ( ’Motion blur + Gaussian noise on checkerboard’ )

5 plt . show();

Optical Transfer Function: OTF

The OTF is the centered Fourier Transform of the PSF (Point Spread Function). The
following function is used to get the OTF from the PSF:
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1 def psf2otf ( psf , s ) :
"""

3 Get OTF (Optical Transfer Function) from PSF (Point Spread Function)
OTF is basically the Fourier Transform of the PSF, centered

5 psf : PSF
s : shape of the result , zero−padding is used to center is Fourier Transform

7 """
sh = psf . shape;

9 sh = np.array (sh) ;
s = np.array (s ) ;

11 pad = s - sh;
h = np.pad(psf , ((0, pad[0]) , (0, pad[1]) ) , mode=’constant’) ;

13 shift = ( int (pad[0]/2+1) , int (pad[1]/2+1) ) ;
h_centered = np. roll (h, tuple ( shift ) , axis =(0,1) ) ;

15 h_centered = np. fft . fftshift (h_centered) ;
H = np. fft . fft2 (h_centered, s ) ;

17 H = np. real (H);
return H;

6.7.2 Simple case: no noise

For the direct reconstruction, just ensure that there is no division by 0. The different
results are illustrated in Fig.6.3.

H = psf2otf ( psf , C.shape) ;
2 G = np. fft . fft2 (Cb);
alpha = 0.001;

4 F = G / (H+alpha);
fr = np. real (np. fft . ifft2 (F) ) ;

6 plt . imshow(fr) ;
plt . title ( ’ Noiseless (only motion blur ) direct reconstruction ’ )

8 plt . imsave(" cb_reconstruction .png", fr , cmap=’gray’) ;
plt . show()

In the presence of noise, the reconstructed image is not perfect.

1 H = psf2otf ( psf , C.shape) ;
G = np. fft . fft2 (Cbn);

3 alpha = 0.001;
F = G / (H+alpha);

5 fr = np. real (np. fft . ifft2 (F) ) ;

The automatic evaluation of the noise parameter is done in the Wiener filter by:
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1 SpecPuissNoise=np.abs(np. fft . fft2 (noise ) ) ∗∗2;
PuissMoyNoise=np.mean(SpecPuissNoise);

3 SpecPuissImageOrig=np.abs(np. fft . fft2 (C)) ∗∗2;
PuissMoyImageOrig=np.mean(SpecPuissImageOrig);

5 ratio =PuissMoyNoise/PuissMoyImageOrig;
Hw = np.conjugate(H)/(np.abs(H)∗∗2+ ratio ) ;

7 fr = np. fft . ifft2 ( Hw ∗ np. fft . fft2 (Cbn)) ;

6.7.3 Iterative filters

Van-Ci�ert iterative filter

The parameter (Jansson parameter) controls the precision of convergence, but a
small value requires a high number of iterations (and thus a high computation
time).

1 def vca(g, psf , n_iter , beta =.01) :
"""

3 Van Cittert iterative filter
g: noisy image

5 psf : point spread function
n_iter : number of iterations

7 beta : Jansson parameter
"""

9 H = psf2otf ( psf , g.shape) ;

11 # init iterations
fr = g.copy() ;

13 bar = progressbar . ProgressBar () ;
for iter in bar(range( n_iter ) ) :

15 estimation = np. real (np. fft . ifft2 (H ∗ np. fft . fft2 ( fr ) ) ) ;
fr= fr + beta∗ ( g - estimation ) ;

17

return fr ;

Richardson-Lucy iterative filter

This algorithm is probably the most famous one in the domain. Remember that
the symmetry in the space domain becomes the complex conjugate in the spectral
domaine (after Fourier transform).
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def rla (g, psf , n_iter ) :
2 """

Richardson Lucy algorithm
4 g: noisy image

psf : point spread function
6 n_iter : number of iterations

"""
8 H = psf2otf ( psf , g.shape) ;

# init iterations
10 fr = g.copy() ;

12 bar = progressbar . ProgressBar ()
for iter in bar(range( n_iter ) ) :

14 estimation = np. fft . ifft2 (H ∗ np. fft . fft2 ( fr ) ) ;
M = np. real (np. fft . ifft2 (np.conjugate(H) ∗ np. fft . fft2 (g / estimation ) ) ) ;

16 fr= fr ∗ M;
fr [ fr<0] = 0;

18

return fr ;
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Figure 6.3: Different deconvolution methods applied on the synthetic image
’checkerboard’.

(a) Damaged checkerboard im-
age, with motion blur and
Gaussian noise.

(b) Reconstruction of the che-
ckerboard without noise.

(c) Reconstruction of the che-
ckerboard with noise.

(d) Wiener deconvolution.

(e) Van-Cittert iterative decon-
volution with 100 iterations,
and Jansson parameter at 0.01.

(f) Richardon-Lucy iterative
deconvolution with 1000 itera-
tions.

(g) Landweber iterative decon-
volution with 1000 iterations
and Jansson parameter at 1.

(h) Poisson Maximum A Pos-
teriori iterative deconvolution
with 1000 iterations.
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6.7.4 Astronomy images

These real images come from the Hubble Space Telescope (HST, see credits), shown
in Fig.6.4. The results for the Richardson-Lucy, Van-Cittert and Landweber al-
gorithms are shown in Fig.6.5. The direct deconvolution does not give a correct
result.

Figure 6.4: Original images and PSF, from the HST.

(a) Jupiter. (b) PSF for the observation of Jupiter.

(c) Saturn. (d) PSF for the observation of Saturn.
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Figure 6.5: Different deconvolution methods applied for the astronomy images.

(a) Direct deconvolution. (b) Direct deconvolution.

(c) Richardon-Lucy iterative
deconvolution with 10 itera-
tions.

(d) Van-Cittert iterative decon-
volution with 10 iterations.

(e) Landweber iterative decon-
volution with 200 iterations
and Jansson parameter at 1.

(f) Richardon-Lucy iterative
deconvolution with 10 itera-
tions.

(g) Van-Cittert iterative decon-
volution with 10 iterations.

(h) Landweber iterative decon-
volution with 200 iterations
and Jansson parameter at 1.





7 Shape FromFocus

This tutorial introduces the basic shape from focus concepts. The objective
is to reconstruct a focused image from a serie (generally a stack) of images
with inhomogene focus (see Fig. 7.1).

Figure 7.1: Different images of the stack, from a corneal endothelium in optical
microscopy (with 3D microscope).

(a) Layer 1 (b) Layer 9

(c) Layer 18 (d) Layer 24

7.1 Introduction to classical methods

An optic system has a limited depth of field. When observing non plane surfaces
with a microscope, some parts of the observation may be blurred as well as some
others may be correctly focused.
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To overcome this problem and reconstruct an all-focused image as well as a
surface (see Fig. 7.2), an algorithm will look at every pixel of the images in the
stack and select the most focused one, by the way of a focus measure. This tutorial
proposes to test some classical focus measures. You can have a look at [7] and [8]
to see real applications.

Figure 7.2: Reconstruction of the surface and the texture.

Practically, TIF files can handle stacks of images. Here is a way to open such a
file:

1 from skimage import io

3 I = io . imread( ’volume. tif ’ ) ;
I = I . astype( ’ float ’ ) ;

% load a stack of images in file
2 info = imfinfo ( stackfile ) ;
num_images = numel(info);

4 % store the images into stack
stack=zeros( info (1) .Height, info (1) .Width, num_images);

6 for k = 1:num_images
stack (:,:, k)=imread( stackfile , k) ;

8 % you can now do something with each image
end

In the following, each of the proposed methods will compute a focus measure
layer by layer, and will maximize this measure over the stack to find the most
focused layer.
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7.1.1 Sum of Modified Laplacian

One of the first methods had been proposed by [25]. It is based on the second
derivatives, specifically the Laplacian operator:

△2I =
∂2I

∂x2
+
∂2I

∂y2

The problem with this operator is that the second derivatives in the x and
y dimensions can have opposite signs. One way to overcome this problem is to
introduce the modified Laplacian as follows:

△2
MI =

∣
∣
∣
∣
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∣
∣
+
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The discrete approximation of the modified Laplacian is computed as:

ML(x, y) = |2I(x, y)− I(x− 1, y)− I(x+ 1, y)|
+ |2I(x, y)− I(x, y − 1)− I(x, y + 1)| (7.1)

Then, the focus measure based on the modified Laplacian is:

FML =
∑

(x,y)∈ω

ML(x, y)

7.1.2 Variance

Themeasure of focus based on the variance is today the mainly used method [15, 41].
It is based on the computation of the variance in a window ω, with N = #ω being
the size of the window:

Fv =
∑

ω









I − 1

#ω

∑

ω

I

︸ ︷︷ ︸

Mean of I









2

7.1.3 Tenengrad

In [21], we can find the definition of the tenengrad [42]. Let S(x, y) be the norm of
the Sobel gradient of image I .

Ft(I) =
∑

ω

S2

Notice that the original definition requires a threshold value that requires heuristic
choices, which is out of the topic of this tutorial.
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7.1.4 Variance of Tenengrad

We define the variance of Tenengrad measure of focus by:

Fvt(I) = Fv(S)

.

7.2 Texture and surface reconstruction

A set of images (Vickers indentation test [7], and a human corneal endothe-
lium [8]) are proposed. For all the detailed methods:

• reconstruct the surface and the texture of the image (an image focused
on its all field of view).

7.2.1 Open question

Several methods have been implemented in order to perform the 3D surface/-
texture reconstruction. Propose a numerical measure that could compare
the results and measure the effciciency of these methods? What is the best
method?
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7.3. Python correction

1 import numpy as np
import matplotlib . pyplot as plt

3 from mpl_toolkits .mplot3d import Axes3D
from skimage import io

5 from scipy import ndimage
from matplotlib import cm

7.3.1 Main function

This code is used as the main function to perform shape-from-focus reconstruction.

volumes = [ ’cornee’ , ’ vickers ’ ];
2 for v in volumes:

I = io . imread( ’volume_’+v+’. tif ’ ) ;
4 I = I . astype( ’ float ’ ) ;

F = np.zeros ( I . shape)
6 N = 11;

8 myfunctions = [variance , tenengrad, sml];
for f in myfunctions:

10 for i , im in enumerate(I) :
F[ i ] = f (im, N);

12

# Evaluates altitudes and textures
14 Z = np.argmax(F, axis=0) ;

Z = ndimage.minimum_filter(Z, size =5) ;
16 T = extractTexture ( I , Z) ;

The extraction of the texture from the altitudes (indexes) in the stack of images
is performed by the following function:
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def extractTexture ( I , Z) :
2 """

Extract texture from stack of images I , where Z is the index ( altitude )
4 I : stack of images, of shape (n, X, Y)

Z: index of SFF maximum (of shape (X,Y)) , values are between 0 and n−1
6 returns basically I [Z(i , j ], i , j ) ] for all ( i , j )

"""
8 m,n = I . shape [1:]

ii , jj = np.ogrid [:m,:n]
10 T = I [Z, ii , jj ];

return T;

7.3.2 Sum of Modified Laplacian

Results are illustrated in Fig.7.3.

1 def sml( I , N):
"""

3 SFF measure, SUM of modified Laplacian
I : image

5 N: neiborhood size
returns : SFF measure for each pixel

7 """
h=np.array ([[ - 1, 2, - 1]]) ;

9 ML=np.abs(ndimage.convolve(I,h) )+np.abs(ndimage.convolve(I ,np.transpose (h) ) ) ;
S=ndimage. uniform_filter (ML, N);

11 return S;
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Figure 7.3: Texture and altitude reconstruction with the SML method.

(a) Texture. (b) Altitudes.

(c) Texture. (d) Altitudes.

7.3.3 Variance

The focus measure based on the variance i a really simple method that works in
most cases, see Fig.7.4.

1 def variance ( I , N):
"""

3 SFF measure
I : image

5 N: neighborhood size
returns : SFF measure for each pixel , results is the same shape as I

7 """
M = ndimage. uniform_filter ( I , N);

9 D2 = ( I - M) ∗∗ 2;
V = ndimage. uniform_filter (D2, N);

11 return V;

7.3.4 Tenengrad

The tenengrad method is base on a Sobel filter, see Fig.7.5.



Shape From Focus 110

Figure 7.4: Texture and altitude reconstruction with the variance method.

(a) Texture. (b) Altitudes.

(c) Texture. (d) Altitudes.

1 def tenengrad( I , N):
"""

3 SFF measure, Tenengrad method
I : image

5 N: neighborhood size
returns : SFF measure for each pixel , results is the same shape as I

7 """
Sx = ndimage.sobel( I , axis=0) ;

9 Sy = ndimage.sobel( I , axis=1) ;
S = np.hypot(Sx, Sy) ;

11 T = ndimage. uniform_filter (S , N);
return T;

7.3.5 Variance of Tenengrad

The variance of Tenengrad is an improvement of the Tenengrad method, see Fig.7.6.
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def varianceTenengrad(I , N):
2 """

SFF measure, variance of Tenengrad
4 I : image

N: neiborhood size
6 returns : SFF measure for each pixel

"""
8 Sx = ndimage.sobel( I , axis=0) ;

Sy = ndimage.sobel( I , axis=1) ;
10 S = np.hypot(Sx, Sy) ;

vt = variance (S , N);
12 return vt ;

Figure 7.5: Texture and altitude reconstruction with the SML method.

(a) Texture. (b) Altitudes.

(c) Texture. (d) Altitudes.
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Figure 7.6: Texture and altitude reconstruction with the variance of Tenengrad
method.

(a) Texture. (b) Altitudes.

(c) Texture. (d) Altitudes.



8 Logarithmic Image Processing
(LIP)

This tutorial aims to study the LIP model, which is a vector space of gray-level
images, consistent with the physical laws of Weber and Fechner as well with
the visual perception laws. More particularly, the LIP dynamic expansion,
used for image enhancement, will be implemented as well as the Sobel LIP
filter for edge detection.

The different processes will be applied on a mammographic image.

Figure 8.1: Breast

8.1 Introduction

The LIP model (Logarithmic Image processing) has been introduced in the mid 1980s.
It defines a mathematical framework for image processing in a bounded interval. It
is mathematically rigorous and physically justified. For more informations, refer to
[28, 16, 29].

An image is represented by its gray-tone function f , defined on a spatial domain
D ⊂ R2, and with values into [0,M [, whereM > 0. For all gray-tone functions
S defined on D, a vector space is defined by the operations of addition and
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multiplication , and by extension with the operations of subtraction and
negation:

∀f, g ∈ S, f g = f + g − fg

M
(8.1)

∀f ∈ S,∀λ ∈ R, λ f = M −M
(

1− f

M

)λ
(8.2)

∀f ∈ S, f =
−Mf

M − f (8.3)

∀f, g ∈ S, f g = M
f − g
M − g (8.4)

The vector space S of gray-tone functions is algebrically and topologically
isomorph to the classical vector space, defined by the isomorphism ϕ:

∀f ∈ S, ϕ(f) = −M ln
(

1− f

M

)

(8.5)

The inverse isomorphism ϕ−1 is then defined by:

f = ϕ−1(ϕ(f)) = M
(

1− exp
(

− ϕ(f)

M

))

(8.6)

This fundamental isomorphism allows the definition of the following operations
on gray-tone functions:

• Dot product: ∀f, g ∈ S,< f, g > =
∫
ϕ(f)ϕ(g)

• Euclidean norm: ∀f ∈ S, ‖f‖ = |ϕ(f)|R, with |·|R is the classical absolute

value.

8.2 Elementary LIP operations

Classically, gray-tones are coded with 8 bits, and thus one can chooseM = 256. Be
careful that there might exist sampling issues, and it might be required to considere
images in the LIP space with a double precision.

1. Implement the elementary LIP operations , and .

2. Test these operators on the image ’breast’.
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8.3 LIP dynamic expansion

The LIP model enables to define an image transformation that expanses, in an
optimal way, the overall dynamic range (gray-tones) while preserving a physical or
visual sense. Let a graytone function denoted f be defined on the spatial support
D ⊂ R2. Its upper and lower bounds are denoted fu = sup

x∈D
f(x) and fl = inf

x∈D
f(x),

with 0 < fl < fu < M0.
The dynamic range of f on D is defined by R(f) = fu − fl. The LIP scalar

multiplication of f by a real number λ > 0 yields to the following dynamic :

R(λ f) = λ fu − λ fl (8.7)

It has been shown [17] that there exists an optimal value λ0(f) that maximizes
the dynamic range, i.e.:

R(λ0(f) f) = max
λ>0

R(λ f). (8.8)

1. Determine the explicit (analytic) expression of the parameter λ0(f).

2. Calculate the value of the parameter λ0(f) for the image ’breast’.

3. Enhance the image and compare the result with the histogram equal-
ization.

In python, one can use the scikit-image module, and the
skimage.exposure . equalize_hist function.

8.4 LIP edge detection

1. Implement the Sobel filter within the LIP framework.

2. Compare the results with the classical Sobel filter.
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8.5. Python correction

8.5.1 Elementary operations

The most important function to code is the graytone transformation function. It
considers M as the maximum value (the absolute white). This code means that the
absolute white cannot be reached, and thus f ∈ [0;M [. After discretizing the gray
values, F ∈ [0;M − 1].

"""
2 file LIP .py
LIP simple module

4 USAGE: import LIP

6 """
import numpy as np

8

def graytone(F, M):
10 # graytone function transform

# M: maximal value
12 # F: image function

f = M-np.finfo ( float ) . eps-F;
14 return f ;

def phi( f , M):
2 # LIP isomorphism

# f : graytone function
4 # M: maximal value

l = -M ∗ np.log ( - f /M+1);
6 return l

def invphi ( l , M):
2 # inverse isomorphism

f = M∗(1-np.exp(- l /M));
4 return f
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def plusLIP (a , b, M):
2 # LIP addition

z = a+b-(a∗b) /M;
4 return z ;

def timesLIP(alpha , x, M):
2 # LIP multiplication by a real

z = M-M∗(np.ones(x.shape)-x/M)∗∗alpha;
4 return z ;

8.5.2 LIP dynamic expansion

The optimal value for dynamic expansion is given by λ0:

λ0(f) = arg max
λ
{max(λ f)−min(λ f)}

Let A(λ) = max(λ f) − min(λ f) = λ max(f) − λ min(f) and
B = ln(1−min(f)/M) et C = ln(1−max(f)/M).

A′(λ) = 0 ⇐ [(M −M exp(λC))− (M −M exp(λB))]′ = 0

⇐ [exp(λB)− exp(λC)]′ = 0

⇐ B exp(λB)− C exp(λC) = 0

⇐ ln(B) + λB = ln(C)− λC

⇐ λ =
ln(C)− ln(B)

B − C
⇐ λ =

ln(C/B)

B − C

Thus, yielding to:

λ0(f) =

ln

(
ln(1−max(f)/M)

ln(1−min(f)/M)

)

ln

(
M −min(f)

M −max(f)

)

This is coded in python by:
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def computeLambda(f, M):
2 # compute optimal value for dynamic expansion

B = np.log(1 - f .min()/M);
4 C = np.log(1 - f .max()/M);

l = np.log (C/B) /(B-C);
6 return l ;

8.5.3 Complete code

This code uses a transform called histogram equalization. This version proposes
our own code for the histogram equalization (see also 2.

import LIP
2 import numpy as np
from scipy import misc

4 import matplotlib . pyplot as plt
import skimage

6 """ Histogram equalization
"""

8 def histeq (im,nbr_bins=256) :
#get image histogram

10 imhist , bins = np.histogram(im. flatten () ,nbr_bins ,normed=True)
cdf = imhist . cumsum() #cumulative distribution function

12 cdf = 255 ∗ cdf / cdf[-1] #normalize
#use linear interpolation of cdf to find new pixel values

14 im2 = np. interp (im. flatten () , bins [: - 1], cdf )

16 return im2.reshape(im.shape) , cdf

It is compared to the LIP dynamic enhancement. The results are illustrated in
Fig. 8.2.
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M = 256.
2

# reads original image
4 B = imageio.imread(" breast . jpg" ) ;

6 # conversion to gray−tones (see LIP definition )
tone = LIP .graytone(B, M);

8 D = LIP .graytone(LIP . timesLIP (.5, tone , M), M);

10 # compute optimal enhancement value
l = LIP .computeLambda(tone, M);

12 print "lambda: %f" % l
# apply enhancement and get back into classical space

14 E = LIP .graytone(LIP . timesLIP( l , tone , M), M);

16 # histo equalization , for comparison purposes
heq,cdf = histeq (B) ;

18

# display results
20 plt . figure () ;

plt . subplot (1,3,1) ; plt . imshow(E/M, cmap=plt.cm.gray, vmin=0, vmax=1); plt . title ( ’
→֒ dynamic expansion’) ;

22 plt . subplot (1,3,2) ; plt . imshow(B/M, cmap=plt.cm.gray, vmin=0, vmax=1); plt . title ( ’
→֒ original image’) ;

plt . subplot (1,3,3) ; plt . imshow(heq/M, cmap=plt.cm.gray, vmin=0, vmax=1); plt . title
→֒ ( ’ after histo equalization ’ ) ;

8.5.4 Edge detection

When applying an operator in the LIP framework, it is better to apply first the
isomorphisme, then the operator, and then get back into the classical space. This is
applied for example for an edge detection operator.

The method applied here is the Sobel gradient. The results are presented in Fig.
8.3.



Logarithmic Image Processing (LIP) 120

Figure 8.2: Comparison of the LIP enhancement with the classical histogram equal-
ization method.

(a) Original image (b) LIP enhancement.

(c) Histogram equalization.
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1 # contours detection
# Sobel detection

3 def Sobel ( I ) :
sobx=cv2.Sobel ( I , - 1, 1, 0) ;

5 soby=cv2.Sobel( I , - 1, 0, 1) ;
sob = np. sqrt (sobx∗∗2 + soby ∗∗2) ;

7 return sob;

9 # go into LIP space
tonelip = LIP .phi(tone , M);

11

# apply Sobel filter
13 sobellip = LIP .graytone(LIP . invphi (Sobel ( tonelip ) , M), M);

imageio.imwrite(" sobellip .png", sobellip ) ;
15 plt . figure () ;

plt . subplot (1,2,1) ; plt . imshow(sobellip , cmap=plt.cm.gray) ;
17 plt . title ( ’LIP Sobel edge detection ’ )

19 # apply Sobel filter in the classic space
sobel = 255-Sobel (B) ;

21 plt . subplot (1,2,2) ; plt . imshow(sobel, cmap=plt.cm.gray) ;
plt . title ( ’Sobel edge detection ’ )

23 imageio.imwrite(" sobel .png", sobel ) ;

Figure 8.3: Sobel edge detection

(a) LIP Sobel edge detection. (b) Classic Sobel edge detection.





9 Color Logarithmic Image Process-
ing (CoLIP)

The objective of this tutorial is to have an overview of the Color Logarithmic
Image Processing (CoLIP) framework [12, 13, 9, 10]. The CoLIP is a mathe-
matical framework for the representation and processing of color images. It
is psychophysically well justified since it is consistent with several human
visual perception laws and characteristics. It allows to consider color images
as vectors in an abstract linear space, contrary to the classical color spaces
(e.g., RGB and L∗a∗b∗). The purpose of this tutorial is to present the math-
ematical fundamentals of the CoLIP by manipulating the color matching
functions and the chromaticity diagram.

9.1 Definitions

This diagram summarizes the transitions between the classical RGB space and the
CoLIP space. The transfer matrices are presented in the following.

(L,M,S) (l,m, s) (l̃, m̃, s̃)

(X,Y, Z)

sRGB: (R,G,B)

(a, rg, yb)

(â, r̂g, ŷb)

(ã, r̃g, ỹb)

(â, r̂g, ŷb)

LIP operations:
, ,
, ,

Classical
operations

E/2 illuminant

MHPE

tones ϕ

P · P × ·
ϕ−1

9.1.1 RGB to XYZ

Here, we choose to keep the conventions of the CIE 1931, i.e. a 2◦ 1931 observer, with
the equal energy illuminant E and the sRGB space. Depending on the illuminant,
there exist many conversion matrices.

Use the module skimage.color .
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9.1.2 XYZ to LMS

The matrixMHP E (Hunt, Pointer, Estevez) is defined by:






L
M
S




 = MHPE ×






X
Y
Z




 , (9.1)

with

MHPE =






0.38971 0.68898 −0.07868
−0.22981 1.18340 0.04641

0.00000 0.00000 1.00000




 . (9.2)

9.1.3 LMS to lms

∀c ∈ {l,m, s}, C ∈ {L,M,S}, c = M0

(

1− C

C0

)

, (9.3)

with C0 is the maximal transmitted intensity value. M0 is arbitrarily chosen at
normalized value 100. Notice that C ∈]0;C0] and c ∈ [0;M0[.

9.1.4 CoLIP homeomorphisme

∀f ∈ S, ϕ(f) = −M0ln
(

1− f

M0

)

.

The logarithmic response of the cones, as in the LIP theory, is modeled through
the isomorphism ϕ:

for c ∈ {l,m, s}, c̃ = ϕ(c) = −M0 ln

(

1− c

M0

)

, (9.4)

where (l̃, m̃, s̃) are called the logarithmic chromatic tones.

9.1.5 Opponent process





ã
r̃g

ỹb




 = P ×






l̃
m̃
s̃




 , (9.5)

with

P =






40/61 20/61 1/61
1 −12/11 1/11

1/9 1/9 −2/9




 . (9.6)



9.2 Applications 125

9.1.6 Bounded vector space

Three channels f̂ = (â, r̂g, ŷb) are defined by:
â = a (9.7)

r̂g =

{

rg if rg ≥ 0
− rg if rg < 0

(9.8)

ŷb =

{

yb if yb ≥ 0
− yb if yb < 0

(9.9)

9.2 Applications

9.2.1 CMF

Represent the classical chromaticity by using the color matching functions.

The color matching functions in the different spaces, as well as the
wavelength and the purple line, are provided in the matrix ’cmf.npz’.
Load it with numpy.load.
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9.2.2 CoLIP chromaticity diagram

Represent the chromaticity diagram in the plane (r̂g, ŷb) as well as the
Maxwell triangle of the RGB colors, as in Fig.9.1.

Figure 9.1: Chromaticity diagram in the plane (r̂g, ŷb).
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9.3. Python correction

import numpy as np
2 import matplotlib . pyplot as plt
import skimage.color as color

First of all, the maximal valueM0 is arbitrarily fixed at 100.

1 def getColipM0() :
# return M0 value

3 return 100;

9.3.1 LMS tones

This is the difficult part of LIP and CoLIP. Be careful with the use of the function
eps that returns the precision at a given double value.

def lmstone(LMS):
2 M0= getColipM0();

return (M0-np.finfo ( float ) . eps) ∗(1 -LMS/M0);

9.3.2 Isomorphism

The isomorphism is the conversion into/back from the logarithmic space.

1 def phi( f , M):
# LIP isomorphism

3 # f : graytone function
# M: maximal value

5 l = -M ∗ np.log ( - f /M+1);
return l
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def invphi ( l , M):
2 # inverse isomorphism

f = M∗(1-np.exp(- l /M));
4 return f

9.3.3 XYZ to LMS

This conversion uses the HPE matrix (Hunt, Pointer, Estevez).

def XYZ2LMS(XYZ):
2 """

conversion function
4 XYZ: data in XYZ space

"""
6 U=np.array ([[0.38971, 0.68898, - 0.07869],

[ - 0.22981,1.18340, 0.04641],
8 [0, 0, 1 ]]) ;

m, n = XYZ [:,:,0]. shape;
10 print (m,n)

XYZ = XYZ.reshape((m∗n, 3)) . transpose () ;
12 print (XYZ.shape)

LMS = np.matmul(U, XYZ);
14

return LMS.transpose() . reshape ((m, n, 3) ) ;

9.3.4 Conversions into Colip space

The conversion into (â, r̂g, ŷb) goes first into (ã, r̃g, ỹb). It consists on a conversion
matrix followed by the absolute value and the operation to get symmetric channels
in the colip space.

1 def LMS2ARGYBhat(LMS):
ARGYBtilde = LMS2ARGYBtilde(LMS);

3 return ARGYBtilde2ARGYBhat(ARGYBtilde);
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1 def LMS2ARGYBtilde(LMS):
"""

3 conversion function
LMS: data in LMS space

5 """
M0 = getColipM0();

7 m, n, p = LMS.shape;
LMStone = lmstone(LMS);

9 LMStilde= phi(LMStone, M0);
P = [[40/61,20/61,1/61], [1, - 12/11,1/11], [1/9,1/9, -2/9 ]];

11

LMStilde = LMStilde.reshape ((m∗n, 3) ) . transpose () ;
13 ARGYBtilde = np.matmul(P, LMStilde) . transpose () ;

return ARGYBtilde.reshape((m, n, 3) ) ;

1 def ARGYBtilde2ARGYBhat(ARGYBtilde):
"""

3 conversion into ARGYB tilde space
ARGYBtilde: data in ARGYB tilde space

5

"""
7 M0 = getColipM0();

9 ARGYBhat = np.zeros(ARGYBtilde.shape);
ARGYBhat[:,:,0] = invphi (ARGYBtilde [:,:,0], M0);

11

for c in (1,2) :
13 tmp = np.abs(ARGYBtilde [:,:, c ]) ;

15 ARGYBhat[:,:,c] = np.sign (ARGYBtilde [:,:, c ]) ∗ invphi (tmp, M0);

17 return ARGYBhat;

9.3.5 CMF

The color matching functions are provided for convenience. There exist many
resources on the internet where they can be found. The classical diagram in the xy
space (the horseshoe) is shown in Fig.9.2.
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with np.load( ’cmf.npz’ ) as data :
2 cmap = data[ ’cmap’];

pourpresLMS = data[’pourpresLMS’];
4 SpecXYZ = data[’SpecXYZ’];

SpecLMS = data[’SpecLMS’];
6 SpecRGB = data[’SpecRGB’];

l = data[ ’ l ’ ];
8

# display classical CMF in xy
10 xn = SpecXYZ [:,:,0]/ np.sum(SpecXYZ, axis=2);

yn = SpecXYZ [:,:,1]/ np.sum(SpecXYZ, axis=2);
12 zn = 1-xn-yn;

plt . scatter (xn, yn, c=cmap);

Figure 9.2: Color matching functions in the xy space.
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To display the CMF and the cube of all RGB colors in the (r̂g, ŷb) space, the
following code is used: The result is shown in Fig.9.3.

1 #Color matching functions in colip space
ARGYB_hat = LMS2ARGYBhat(SpecLMS);

3 plt . figure () ;
plt . scatter (ARGYB_hat[:,0,1], ARGYB_hat[:,0,2], c = cmap);

5 # purple line
purple_ARGYB_hat = LMS2ARGYBhat(pourpresLMS);

7 plt . scatter (purple_ARGYB_hat[:,0,1], purple_ARGYB_hat[:,0,2], c=’black ’ ) ;
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The RGB cube is first generated and then converted into the colip space.

1 # number of color in each direction
N=10;

3 cols = np. linspace (0, 255, num=N);
R, G, B = np.meshgrid(cols , cols , cols ) ;

5

# reshape the cube for manipulation
7 R = R.reshape (( R. size , 1) ) ;
G = G.reshape ((G. size , 1) ) ;

9 B = B.reshape (( B. size , 1) ) ;
NN = R. size ;

11 colRGB = np.concatenate (( R, G, B) , axis=1) ;
cubeRGB = colRGB.reshape((NN, 1, 3) ) ;

13 colRGB = colRGB / 255;

15 # conversions
cubeXYZ = color.rgb2xyz(cubeRGB);

17 cubeLMS = XYZ2LMS(cubeXYZ);
cubeARGYBhat = LMS2ARGYBhat(cubeLMS);

19 plt . scatter (cubeARGYBhat[:,0,1], cubeARGYBhat[:,0,2], c=colRGB);

The color matching functions in the colip space are represented in Fig.9.3. A lot
could be said about this diagram. For examples, one can notice the approximations
in the high (red) wavelengths: this comes from the numerical approximations and
the lack of data of the original CMFs. Moreover, the purple line (represented here
in black) is not a line in this diagram. This raises the question of the choice of this
line in (xy), which was made only by simplicity.

Figure 9.3: Color matching functions in the (r̂g, ŷb) space.

80 60 40 20 0 20 40 60
100

80

60

40

20

0

20

40

60





10 GANIP

This tutorial aims to test the elementary operators of the GANIP framework.
The General Adaptive Neighborhood Image Processing (GANIP) is a mathe-
matical framework for adaptive processing and analysis of gray-tone and
color images. An intensity image is represented with a set of local neigh-
borhoods defined for each pixel of the image to be studied. Those so-called
General Adaptive Neighborhoods (GANs) are simultaneously adaptive with
the spatial structures, the analyzing scales and the physical settings of the
image to be addressed and/or the human visual system.

The following figure illustrates the GANs of two points on an image of retinal
vessels.

The GANs are then used as adaptive operational windows for local image
transformations (morphological filters, rank/order filters...) and for local image
analysis (local descriptors, distance maps...).

The different processes will be applied on the following gray-tone images:

10.1 GAN

Let f be a gray-tone image. The GAN of a point x using the luminance criterion
and the homogeneity tolerancem within the CLIP framework is defined as:

V f
m(x) = C{y;|f(y)−f(x)|≤m}(x) (10.1)

where CX(x) denotes the connected component of X holding x.
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Figure 10.1: Two example images for testing the GAN framework.

(a) lena
(b) cement paste (2-D section / X-ray tomog-
raphy)

1. Load the image ’lena’ and compute the GAN of a selected point in the
image.

2. Look at the influence of the homogeneity tolerance.

3. Compute the GAN of different points and comment.

10.2 GAN Choquet filtering

The Choquet filters generalize the rank-order filters. In this exercise, we are going
to implement some GAN Choquet filters such as the GAN mean operator. For each
point x of the image, the mean value of all the intensities of the points inside the
GAN of x is computed. So, a first algorithm consists in making a loop on the image
points for computing the different GAN and the mean intensity values, but it is
time consuming. Nevertheless, by using some properties of the GAN (particularly
the one giving that iso-valued points can have exactly the same GAN), it is possible
to create a second algorithm by making a loop on the gray-tone range:
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Data: original (8-bit) image f , homogeneity tolerancem
Result: GAN mean filtered image g
for s = 0 to 255 do

seed = points x with intensity f(x) = s;
thresh = points y with intensity satisfying s−m ≤ f(y) ≤ s+m;
threshGAN = connected components of thresh holding seed;
foreach label of threshGAN do

currentLabel = current connected component of threshGAN ;
meanV alue = intensity mean value of the image points inside
currentLabel;
set g(x) = meanV alue to the points x of seed belonging to
currentLabel;

end

end

1. Implement the proposed algorithm.

2. Test this operator on the ’lena’ image with different homogeneity
tolerances.

3. Compare the result with a classical mean filtering.

See scipy .ndimage. filters .
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10.3 GAN morphological filtering

As previously explained, it is also possible to compute the GAN dilation and GAN
erosion by making a loop on the gray-tone range. The algorithm for the GAN
dilation is:

Data: original (8-bit) image f , homogeneity tolerancem
Result: GAN dilated image g
set g(x) = 0 for all points x;
for s = 0 to 255 do

seed = points x with intensity f(x) = s;
thresh = points y with intensity satisfying s−m ≤ f(y) ≤ s+m;
threshGAN = connected components of thresh holding seed;
foreach label of threshGAN do

currentLabel = current connected component of threshGAN ;
maxV alue = intensity maximum value of the image points inside
currentLabel;
set g(x) = max(g(x),maxV alue) to the points x belonging to
currentLabel;

end

end

Algorithm 2: GAN dilation
The algorithm for the GAN erosion is similar.

1. Implement the GAN dilation and GAN erosion.

2. Test this operator on the ’lena’ image with different homogeneity
tolerances.

3. Compare the results with the classical morphological dilation and
erosion..

4. Compute, test, compare and check the properties (idempotence, ex-
tensivity/anti-extensivity) of the GAN opening and GAN closing.

Compare with the functions dilation and erosion from
skimage.morphology.
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10.4. Python correction

import numpy as np
2 import skimage.morphology
import skimage.io

4 import skimage.measure
import matplotlib . pyplot as plt

6 import scipy .ndimage. filters

10.4.1 GAN

In order to show the General Adaptive Neighborhood (GAN) of one image point,
the following function is implemented. Note that the function is given within the
Classical Linear Image Processing (CLIP) framework, i.e. with the usual addition,
subtraction and scalar multiplication. But the function could be generalized to other
models such as the Logarithmic Image Processing (LIP).

def GAN(A, p, m):
2 """

GAN construction
4 A: grayscale image

p: point
6 m: tolerance

"""
8 RES = np.zeros (A.shape) ;

RES[p[0], p[1]] = 1;
10 s = A[p[0], p [1]];

thresh = np. logical_and (A>= s-m, A<=s+m);
12 SE = np.ones ((3,3) ) ;

RES = skimage.morphology.reconstruction(RES, thresh , selem=SE);
14 return RES;

In this way, we can visualize the GAN of any point of the ’Lena’ image:

I = skimage.io . imread( ’ lena .png’) ;
2 p =[100,200];
for m in 5,50,75:

4 RES = GAN(I, p, m);
plt . imshow(RES, cmap=’gray’);

6 plt . show()
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10.4.2 GAN Choquet filtering

In order to compute the GAN mean filtering, the basic idea is to make a loop on the
image points, compute the GAN of the current point and then calculate the mean
intensity of the points within the GAN. But this is time computing in the sense
that two points with the same intensity can have exactly the same GAN (when one
point is included in the GAN of the second point with same intensity). Therefore,
a more effective way is to make a loop on the gray levels of the image. The GAN
mean filtering is then implemented as:

Figure 10.2: GAN of a specific point of the ’Lena’ image using different homogeneity
tolerancesm within the CLIP framework.

(a) Original image. (b) Point location.

(c) GAN (m=5). (d) GAN (m=50). (e) GAN (m=75).
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def GANmean(A, m):
2 """

GAN mean filter
4 Apply mean value of the adaptive neighborhood to result

A: original image
6 m: homogeneity tolerance

return : GAN mean filter
8 """

RES = np.zeros (A.shape) . astype( ’ float ’ ) ;
10 SE = np.ones ((3,3) ) ;

for s in np.arange(256) :
12 thresh = np. logical_and (A>=s-m, A<=s+m);

seed = A==s;
14 thresh = skimage.morphology.reconstruction(seed , thresh , selem=SE);

L,n = skimage.measure. label ( thresh , connectivity =2, return_num=True);
16 for l in np.arange (1, n+1):

currentLabel = L==l;
18 values = A[currentLabel ];

meanValues = np.mean(values);
20 result = meanValues ∗ np. logical_and (seed , currentLabel ) . astype( ’ float ’

→֒ ) ;
RES = RES + result ;

22 return RES;

Looking at this function, for the first loop on the gray levels s, we detect the GANs
of the pixels with gray level s. So ’thresh’ contains all these connected components
(GANs), where some points with identical gray levels s can have the same GAN.
’label’ enables the different GANs to be labeled. For the second loop on these GANs,
we extract for each GAN its gray levels which are stored in ’values’. Afterwards, we
take the mean value ’meanVaue’ that is stored as the resulting gray level for pixels
inside the GAN with the same gray level s.

We can compare this GAN filtering with the classical one using a fixed opera-
tional window.

B=scipy.ndimage. filters . uniform_filter ( I , size =5) ;
2 m=30;
C = GANmean(I, m);

You can see the blurring effect caused by the classical filtering, contrary to the
adaptive GAN filtering where the transitions are much more preserved while
smoothing the image.
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Figure 10.3: Classical (r = 5) vs. GAN (m = 30) mean filtering of the ’Lena’ image.

(a) Original image. (b) Classical filtering (r = 5). (c) GAN filtering (m = 30).

GAN morphological filtering

The following codes enable the GAN dilation and erosion to be computed. As
previously mentioned, it is based on a loop on the gray levels and not on the image
points. Note that the GANs ae computed on the criterion image (it is important for
satisfying the good properties of opening and closing, such as idempotence). Please
notice that this function as well as the following will have the same parameters:

1 """
A: original image

3 criterion : criterion image
m: tolerance

5 """

1 def GANdilation(A, criterion , m):
RES = np.zeros (A.shape) . astype( ’ float ’ ) ;

3 SE = np.ones ((3,3) ) ;
for s in np.arange(256) :

5 thresh = np. logical_and ( criterion >=s-m, criterion <=s+m);
seed = criterion ==s;

7 thresh = skimage.morphology.reconstruction(seed , thresh , selem=SE);
L,n = skimage.measure. label ( thresh , connectivity =2, return_num=True);

9 for l in np.arange (1, n+1):
currentLabel = L==l;

11 values = A[currentLabel ];
values . sort () ;

13 result = currentLabel . astype( ’ float ’ ) ∗ values[- 1];
RES = np.maximum(RES, result);

15 return RES;
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def GANerosion(A, criterion , m):
2 RES = 255 ∗ np.ones(A.shape) . astype( ’ float ’ ) ;

SE = np.ones ((3,3) ) ;
4 for s in np.arange(256) :

thresh = np. logical_and ( criterion >=s-m, criterion <=s+m);
6 seed = criterion ==s;

thresh = skimage.morphology.reconstruction(seed , thresh , selem=SE);
8 L,n = skimage.measure. label ( thresh , connectivity =2, return_num=True);

for l in np.arange (1, n+1):
10 currentLabel = L==l;

values = A[currentLabel ];
12 values . sort () ;

result = currentLabel . astype( ’ float ’ ) ∗ values [0] + 255∗np. logical_not
→֒ ( currentLabel . astype( ’ float ’ ) ) ;

14 RES = np.minimum(RES, result) ;
return RES;

The following script shows the difference between classical and adaptive mor-
phology.

Cdil = GANdilation(I , m);
2 Cero = GANerosion(I, m);
se =skimage.morphology.disk(2) ;

4 Bdil = skimage.morphology.dilation ( I , selem=se) ;
Bero = skimage.morphology.erosion(I , selem=se) ;

As previously mentioned with the Choquet filtering, you can see the blurring effect
caused by the classical filtering, contrary to the adaptive GAN filtering where the
transitions are much more preserved while smoothing the image.

Now, we can compute the GAN opening and closing as combined operators of
dilation and erosion.

1 def GANopening(A, criterion, m):
"""

3 """
temp = GANerosion(A, criterion , m);

5 RES = GANdilation(temp, criterion , m);
return RES;
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Figure 10.4: Classical (r = 2) vs. GAN (m = 30) morphological filtering of the
’Lena’ image.

(a) Original image. (b) Classical erosion (r = 2). (c) Classical dilation (r = 2).

(d) GAN erosion (m = 30). (e) GAN dilation (m = 30).
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def GANclosing(A, criterion , m):
2 """

"""
4 temp = GANdilation(A, criterion , m);

RES = GANerosion(temp, criterion , m);
6 return RES;

It is very important to use the same criterion h when combining these two
operators of GAN dilation and erosion. It means that we compute the GANs at
the beginning and therefater we use these same GANs for computing dilation
and erosion. It enables the idempotence, extensivity/anti-extensivity of the GAN
opening and GAN closing to be satisfied.

Copen=GANopening(I, I, m);
2 Cclose=GANclosing(I, I , m);

4 # classical open close
Bopen = skimage.morphology.opening(I, selem=se) ;

6 Bclose= skimage.morphology.closing( I , selem=se) ;

The result of such morphological filters is presented in Fig.10.5.

Figure 10.5: GAN (m = 30) opening and closing of the ’Lena’ image.

(a) Original image. (b) GAN opening (m = 30). (c) GAN closing (m = 30).

We can check some properties of thesemorphological filters such as extensivity/anti-
extensivity and idempotence:
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Copen2 = GANopening(Copen, I, m);
2 Cclose2= GANclosing(Cclose, I , m);

if np.max(np.abs(Copen2-Copen))==0:
4 print ( "OK: idempotence in opening") ;
else :

6 print ( " error in opening") ;

8 if np.max(np.abs(Cclose2-Cclose) )==0:
print ( "OK: idempotence in closing " ) ;

10 else :
print ( " error in opening") ;

1 #%% check extensivity and anti−extensivity
if np. all (Copen<=I):

3 print ( "OK: extensivity " ) ;
else :

5 print ( " error in extensivity " ) ;

7 if np. all (Cclose>=I) :
print ( "OK: anti−extensivity" ) ;

9 else :
print ( " error in anti−extensivity" ) ;

Result verifies these properties.

OK: idempotence in opening
2 OK: idempotence in closing
OK: extensivity

4 OK: anti - extensivity



11 Image Filtering using PDEs

This tutorial aims to process images with the help of partial differential
equations.

The different processes will be applied on the following MR image Fig. 11.1.

Figure 11.1: MRI image of a human brain.

Notations

The different operators used here are:

~A =

(

Ax

Ay

)

(11.1)

div
−→
A =

∂Ax

∂x
+
∂Ay

∂y
(11.2)

~gradu(x, y) = ∇u =

(
∂u
∂x
∂y
∂y

)

(11.3)

The Laplacian operator is denoted ∆u = ∇2u = div
−−→
gradu. A numerical approxi-

mation can be used, but is not recommanded in this tutorial.
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11.1 Linear diffusion

The heat equation is defined as follows:






∂u

∂t
(x, y, t) = div(∇u(x, y, t))

=
∂2u

∂x2
(x, y, t) +

∂2u

∂y2
(x, y, t)

u(x, y, 0) = f(x, y)

(11.4)

If f(x, y) is an image (with (x, y) ∈ D ⊂ R2,D is the spatial support), this defines
a filtering method that is equivalent to the convolution of f by a Gaussian function
[19]. This equation can be solved by a finite difference numerical method.

11.1.1 Numerical scheme

The following notations are employed. N , S, E,W stand for north, south, east and
west.

+δNu = u(x,y+h)−u(x,y)
h

−δSu = u(x,y−h)−u(x,y)
h

−δEu = u(x−h,y)−u(x,y)
h

+δWu = u(x+h,y)−u(x,y)
h

(11.5)

Thus, the numerical scheme is (h has value 1):

ut+1 − ut

δt
=

1

h

{

δNu− δSu+ δEu− δWu
}

(11.6)

1. Code the numerical scheme. It should use two parameters: the number
of iterations n, and the step time δt.

2. Filter the original image by varying the parameters of the discrete
diffusion process.

3. Comment the filtering results. Compare the results with the Gaussian
filter.

11.2 Nonlinear diffusion

Image filtering by nonlinear diffusion reduces noise in a controled way. The dif-
fusion coefficient is locally adapted, becoming negligible as object boundaries are
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approached.
The heat equation is replaced by the following PDE:







∂u

∂t
(x, y, t) = div (c(‖∇u(x, y, t)‖) · ∇u(x, y, t))

u(x, y, 0) = f(x, y)
(11.7)

with c the diffusion fonction satisfying the following properties:

• c(0) = 1,

• lim
s→+∞

sc(s) = 0,

• ∀s > 0, c′(s) ≤ 0.

Perona and Malik have proposed 2 diffusion coefficients [27, 5]:

• c1 : exp

(

−
(
s

α

)2
)

,

• c2 :
1

1 +

(
s

α

)2 .

11.2.1 Numerical scheme

The numerical scheme is the following:

ut+1 − ut

δt
=

1

h2

{

c(|δNu|) · δNu+ c(|δSu|) · δSu (11.8)

+c(|δEu|) · δEu+ c(|δWu|) · δWu
}

1. Code the numerical scheme

2. Filter the original image by varying the parameters of the discrete
nonlinear diffusion process.

3. Comment and compare the filtering results with the previous scheme.
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11.3 Degenerate diffusion

The following degenerate PDEs have been shown to be equivalent to the morpho-
logical operators of dilation and erosion (using a disk as structuring element, see
tutorial on mathematical morphology):







∂u

∂t
(x, y, t) = +‖∇u(x, y, t)‖

u(x, y, 0) = f(x, y)
(11.9)







∂u

∂t
(x, y, t) = −‖∇u(x, y, t)‖

u(x, y, 0) = f(x, y)
(11.10)

11.3.1 Numerical schemes

The previous numerical scheme is easy to find, but the results present large differ-
ences with the dilation and erosion operators (shocks due to discontinuities in the
original image). This is why the following numerical scheme is preferred [23]:

For the erosion:

ut+1 − ut

δt
=

1

h2

√
√
√
√
max2(0,−δNu) +min2(0,−δSu) . . .

+max2(0,−δWu) +min2(0,−δEu)
(11.11)

For the dilation:

ut+1 − ut

δt
=

1

h2

√
√
√
√
min2(0,−δNu) +max2(0,−δSu) . . .

+min2(0,−δWu) +max2(0,−δEu)
(11.12)

1. Code the numerical scheme.

2. Filter the original image while varying the parameters of the discrete
degenerate diffusion process.

3. Comment the morphological filtering results and compare the nume-
rical scheme to the approach with operational windows.
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11.4. Python correction

import numpy as np
2 from scipy import ndimage , misc
import matplotlib . pyplot as plt

11.4.1 Linear diffusion

The linear diffusion filter is equivalent to the classical gaussian filter. The gradients
are decomposed into the 4 directions so that the next developments (non linear
diffusion filters) are made easy.

1 def linearDiffusion ( I , nbIter , dt ) :
# linear diffusion # I : image # nbIter : number of iterations # dt : step

→֒ time
3 hW = np.array ([[1, - 1, 0]]) ;

hE = np.array ([[0, - 1,1]]) ;
5 hN = np.transpose (hW);

hS = np.transpose (hE);
7 Z = I . copy() ;

for i in range( nbIter ) :
9 gW = ndimage.convolve(Z, hW, mode=’constant’);

gE = ndimage.convolve(Z, hE, mode=’constant’) ;
11 gN = ndimage.convolve(Z, hN, mode=’constant’) ;

gS = ndimage.convolve(Z, hS, mode=’constant’) ;
13 Z = Z + dt ∗( gW+gE+gN+gS);

return Z

The code to filter images is presented as follows. Results are in Fig. 11.2.

I = imageio.imread("cerveau.png") /255.;
2 F = linearDiffusion ( I , 50, .05) ;
F2 = linearDiffusion ( I , 200, .05) ;

4 plt . subplot (1,3,1) ;
plt . imshow(I, cmap=plt.cm.gray) ;

6 plt . subplot (1,3,2) ;
plt . imshow(F, cmap=plt.cm.gray) ;

8 plt . subplot (1,3,3) ;
plt . imshow(F2, cmap=plt.cm.gray) ;
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Figure 11.2: Linear diffusion filter. Contours are not preserved: this is equivalent to
a Gaussian filter.

(a) Original image.

(b) Linear diffusion filter, with
α=0.1, dt=0.05 and 10 iter-
ations.

(c) Linear diffusion filter, with
α=0.1, dt=0.05 and 50 iter-
ations.

11.4.2 Nonlinear diffusion

The nonlinear diffusion is an adaptation of the diffusion to the informations con-
tained in the images. These informations are high frequency components. The
following diffusion coefficient is proposed by Perona and Malik.

1 def c( I , alpha) :
# diffusion coefficient

3 # I : image
# alpha : diffusion parameter

5 return np.exp(- ( I /alpha) ∗∗2) ;

The gradients are evaluated in the 4 directions, a specific coefficient is thus
applied to each one.
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1 def nonlinearDiffusion ( I , nbIter , alpha , dt ) :
# linear diffusion

3 # I : image
# nbIter : number of iterations

5 # dt : step time
hW = np.array ([[1, - 1, 0]]) ;

7 hE = np.array ([[0, - 1,1]]) ;
hN = np.transpose (hW);

9 hS = np.transpose (hE);

11 Z = I . copy() ;

13 for i in range( nbIter ) :
#print "%d" % i

15 gW = ndimage.convolve(Z, hW, mode=’constant’);
gE = ndimage.convolve(Z, hE, mode=’constant’) ;

17 gN = ndimage.convolve(Z, hN, mode=’constant’) ;
gS = ndimage.convolve(Z, hS, mode=’constant’) ;

19

Z= Z + dt ∗( c(np.abs(gW), alpha) ∗gW + c(np.abs(gE) , alpha) ∗gE
21 + c(np.abs(gN), alpha) ∗gN + c(np.abs(gS) , alpha) ∗gS) ;

23 return Z

The script to filter the images, for α = 0.1, dt = 0.05 and for 10 and 50
iterations, is the following. Results are presented in Fig. 11.3.

1 alpha = 0.1;
dt = .05;

3 I = imageio.imread("cerveau.png") /255.;

5 F = nonlinearDiffusion ( I , 10, alpha , dt ) ;
F2= nonlinearDiffusion ( I , 50, alpha , dt ) ;

11.4.3 Degenerate diffusion

Erosion and dilation can theoretically be coded with this numerical scheme. How-
ever, some numerical problems appear in the first version, which are corrected in
the second version.

First version

This first version is the direct transcription of the numerical scheme. As observed
in Fig.11.4, shocks (peaks) appear after a few iterations.



Image Filtering using PDEs 152

Figure 11.3: Nonlinear diffusion filter. Contours are preserved.

(a) Original image.

(b) Non linear diffusion filter,
with α = 0.1, dt = 0.05 and
10 iterations.

(c) Non linear diffusion filter,
with α = 0.1, dt = 0.05 and
50 iterations.

def degenerateDiffusion1 (image, nbIter , dt ) :
2 # degenerate diffusion

# I : image
4 # nbIter : number of iterations

# dt : step time
6 h = np.array ([[ - 1,0,1]]) ;

ht= np.transpose (h) ;
8 Zdilation = image;

Zerosion = image;
10 for i in range( nbIter ) :

gH = ndimage.convolve(Zdilation , h , mode=’constant’) ;
12 gV = ndimage.convolve(Zdilation , ht , mode=’constant’) ;

jH = ndimage.convolve(Zerosion, h , mode=’constant’) ;
14 jV = ndimage.convolve(Zerosion, ht , mode=’constant’) ;

Zdilation = Zdilation + dt∗np. sqrt (gV∗∗2 + gH∗∗2) ;
16 Zerosion = Zerosion + dt∗np. sqrt (jV∗∗2 + jH∗∗2) ;

return ( Zdilation , Zerosion)

Figure 11.4: Mathematical morphology operations by diffusion.

(a) Dilation by diffusion, for
dt = 0.05 and nbIter = 10.

(b) Dilation by diffusion, for
dt = 0.05 and nbIter = 50.
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More sophisticated version

Another scheme, more numerically stable, can be preferred to the previous one.
Results are presented in Fig. 11.5.

1 def degenerateDiffusion2 (image, nbIter , dt ) :
# degenerate diffusion

3 # I : original image
# nbIter : number of iterations

5 # dt : step time
hW = np.array ([[1, - 1,0]]) ;

7 hE = np.array ([[0, - 1, 1]]) ;
hN = np.transpose (hW);

9 hS = np.transpose (hE);
Zdilation = image;

11 Zerosion = image;

13 for i in range( nbIter ) :
gW = ndimage.convolve(Zdilation , hW, mode=’constant’);

15 gE = ndimage.convolve(Zdilation , hE, mode=’constant’) ;
gN = ndimage.convolve(Zdilation , hN, mode=’constant’) ;

17 gS = ndimage.convolve(Zdilation , hS, mode=’constant’) ;

19 jW = ndimage.convolve(Zerosion, hW, mode=’constant’);
jE = ndimage.convolve(Zerosion, hE, mode=’constant’) ;

21 jN = ndimage.convolve(Zerosion, hN, mode=’constant’) ;
jS = ndimage.convolve(Zerosion, hS, mode=’constant’) ;

23

g = np. sqrt ( np.minimum(0, -gW)∗∗2 + np.maximum(0, gE)∗∗2 + np.minimum(0,
→֒ -gN)∗∗2 + np.maximum(0, gS)∗∗2) ;

25 j = np. sqrt ( np.maximum(0, -jW)∗∗2 + np.minimum(0, jE)∗∗2 + np.maximum(0,
→֒ -jN)∗∗2 + np.minimum(0, jS) ∗∗2) ;

27 Zdilation = Zdilation + dt ∗ g;
Zerosion = Zerosion - dt ∗ j ;

29

return Zdilation , Zerosion
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Figure 11.5: Mathematical morphology operations by diffusion, sophisticated ver-
sion.

(a) Dilation by diffusion, for
dt = 0.05 and nbIter=10.

(b) Dilation by diffusion, for
dt = 0.05 and nbIter=50.



12 Multiscale Analysis

This tutorial aims to study some multiscale image processing and analysis
methods, based on pyramidal and scale-space representations.

The different processes will be applied on the following MR image.

Figure 12.1: Brain MR image.

12.1 Pyramidal decomposition and recons-

truction

12.1.1 Decomposition

Data: image A0

Result: pyramid of approximations {Ai}i, pyramid of details{Di}i
for i=1 to 3 do

filtering: F = filt(Ai−1);
subsampling: Ai = ech(F, 0.5);
details: Di = Ai−1 − ech(Ai, 2);

end

Algorithm 3: The algorithm of the pyramidal decomposition
The initial image (with the highest resolution), denoted A0, represents the level

0 of the pyramid. To build the pyramid, we successively carry out the following
steps:

1. a Gaussian filtering,

2. a subsampling,

3. a calculation of the details (residues).
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Make a pyramidal decomposition with 4 levels of the image ’brain’.

12.1.2 Reconstruction

To reconstruct the original image, we carry out the following steps at each level of
the pyramid:

1. an oversampling,

2. an addition of the details.
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Data: image A3, pyramid of details{Di}i
Result: reconstructed pyramid {Bi}i
initialization : B3 = A3;
for i=3 to 1 do

1 oversampling: R = ech(Bi, 2);
2 adding details: Bi−1 = R+Di

end

Algorithm 4: The algorithm of the pyramidal reconstruction

1. Reconstruct the original image from the last level of the pyramid.

2. Make the same reconstruction without adding the details.

3. Calculate the resulting error between the reconstruted image and the
original image.

12.2 Scale-space decomposition and mul-

tiscale filtering

Weare going to decompose (without any sampling) the imagewith the highest resolution
with a morphological operator, dilation or erosion. The resulting images will have the
same size.

12.2.1 Morphological multiscale decomposition

Build the two scale-space decompositions of the ’brain’ image, with a disk
of increasing radius as a structuring element

Informations

See the functions morphology.erosion and morphology.dilation from skimage.
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12.2.2 Kramer and Bruckner multiscale decomposition

Now, we are going to use the iterative filter of Kramer and Bruckner [20] defined
as:

MKn
B(f) = KB(MKn−1

B (f)) (12.1)

where B denotes a disk of a fixed radius r, and:

KB(f)(x) =

{

DB(f)(x) if DB(f)(x)− f ≤ f − EB(f)(x)
EB(f)(x) otherwise

(12.2)

where DB(f), EB(f) represent respectively the dilation and the erosion of the
image f with the structuring element B.

Implement and test this filter on the image ’brain’ for different values of n.
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12.3. Python correction

12.3.1 Pyramidal decomposition and reconstruction

Decomposition

The following function makes the decomposition of the Laplacian and Gaussian
pyramids at the same time. The Laplacian pyramid can be reconstructed without
any additional information. This is illustrated in Fig. 12.2.

def LaplacianPyramidDecomposition(Image, levels , interp=’ bilinear ’ ) :
2 """

Laplacian / Gaussian Pyramid
4 The last image of the laplacian pyramid allows a full reconstruction of the

→֒ original image.
Image: original image, float32

6 levels : number of levels of decomposition
interp : interpolation mode for downsizing the image

8

returns : pyrL, pyrG: Laplacian and Gaussian pyramids, respectively , as a list
→֒ of arrays

10 """

12 pyrL = [];
pyrG = [];

14

sigma = 3.;
16 for l in range( levels ) :

prevImage = Image.copy() ;
18 g = ndimage. gaussian_filter (Image, sigma) ;

print (g.dtype)
20

Image = misc. imresize (g, .5, interp=interp , mode=’F’);
22 primeImage= misc.imresize(Image, prevImage.shape, interp=interp , mode=’F’)

→֒ ;

24 pyrL.append(prevImage - primeImage);
pyrG.append(prevImage);

26

pyrL.append(Image);
28 pyrG.append(Image);

return pyrL, pyrG;
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Informations

Notice that with the misc. imresize function, the float mode of the operation
has to be specified.

Reconstruction

The reconstruction is straighforward and exact because of the construction of the
residue. The details can be filtered (removed for example), thus giving the following
result Fig. 12.3.

def LaplacianPyramidReconstruction(pyr, interp=’ bilinear ’ ) :
2 """

Reconstruction of the Laplacian pyramid, starting from the last image
4 pyr: pyramid of images ( list of arrays )

interp : interpolation mode, for upsizing the image
6 returns : Image, reconstructed image

"""
8

Image = pyr[- 1];
10 for i in range(len (pyr) - 2, - 1, - 1) :

Image = pyr[ i ] + misc. imresize (Image, pyr[ i ]. shape, interp=interp , mode=’
→֒ F’);

12

return Image;

12.3.2 Scale-space decomposition and multiscale filtering

The pyramid of erosions and dilations is illustrated in Fig.12.4.
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Figure 12.2: Gaussian and Laplacian pyramids, for 3 levels of decomposition. The
Laplacian pyramid in addition to the last level of the Gaussian pyramid is required
to exactly reconstruct the original image.

(a) Original image.

(b) Gaussian pyramid level 1. (c) Level 2. (d) Level 3.

(e) Laplacian pyramid level 1. (f) Level 2. (g) Level 3.
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Figure 12.3: Reconstruction of the Laplacian pyramid.

(a) Reconstruction of the pyramid with-
out any detail.

(b) Reconstruction of the pyramid with
all the details.

1 def morphoMultiscale(I , levels ) :
"""

3 Morphological multiscale decomposition
I : original image, float32

5 levels : number of levels , int

7 returns : pyrD, pyrE: pyramid of Dilations /Erosions , respectively
"""

9 pyrD=[];
pyrE=[];

11 for r in np.arange (1, levels ) :
se = morphology.disk(r ) ;

13 pyrD.append( morphology.dilation ( I , selem=se)) ;
pyrE.append( morphology.erosion(I , selem=se)) ;

15 return pyrD, pyrE;

12.3.3 Kramer and Bruckner multiscale decomposition

The results are illustrated in Fig.12.5.
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Figure 12.4: Morphological multiscale decomposition by dilation and erosion.

(a) Dilation scale 1. (b) Dilation scale 2. (c) Dilation scale 3.

(d) Erosion scale 1. (e) Erosion scale 2. (f) Erosion scale 3.

Figure 12.5: Kramer and Bruckner multiscale decomposition, with r = 5.

(a) MK1
B . (b) MK2

B . (c) MK3
B .
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1 def kb(I , r ) :
"""

3 Elementary Kramer/Bruckner filter . Also called toggle filter .
I : image

5 r : radius of structuring element ( disk ) , for max/min evaluation
"""

7 se = morphology.disk(r ) ;
D=morphology.dilation(I , selem=se) ;

9 E=morphology.erosion(I , selem=se) ;
difbool = D-I < I -E;

11 k = D∗difbool + E ∗ (~ difbool ) ;
return k;

def KBmultiscale( I , levels , r=1) :
2 """

Kramer and Bruckner multiscale decomposition
4

I : original image, float32
6 pyrD: pyramid of Dilations

pyrE: pyramid of Erosions
8

returns : MKB: Kramer/Bruckner filters
10 """

MKB = [];
12 MKB.append(I);

for i in range( levels ) :
14 MKB.append(kb(MKB[i-1], r)) ;

return MKB



13 Introduction to tomographic re-
construction

13.1 X ray tomography

Figure 13.1: Radon transform notations.

An X-ray beam (considered as monochromatic) going through objects is atten-
uated, following a logarithmic law (f is the linear attenuation, v an elementary
volume, I the intensity of the beam entering the volume dv and I+dI the intensity
exiting the volume):

log
I + dI

I
= −fdv

By integrating this formula on a line D (direction of the beam), yields:

I = I0 exp

(∫

D
f(x, y)dv

)

where f(x, y) is the attenuation at point (x, y). This principle is used in scanners,
scintigraphy, PET...
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13.2 Acquisition simulation

This first exercise will allow us to simulate the projections. The mathematical
operator behing this is the Radon transform.

• Generate a “phantom” image of size 256×256. Display it. Notice that
any image may be good for testing the simulation and reconstruction
via backprojection.

• To simulate the attenation process, considere the sum of all gray levels
of all pixels. Angles of projections will be between 0 and 180 degres
with a unit step. The result is presented as a sinogram pθ(u) (see Fig.
13.2), with u the length (in ordinates), and θ the projection angle (in
abscissa).

(a) Sinogram. (b) Phantom image.

Figure 13.2: Simulated sinogram of the phantom image.

13.3 Backprojection algorithm

A non exact reconstruction is the backprojection operator B (it is not the inverse
Radon transform). It attributes the value pθ(u) to each point of the projection line
that gave this attenation, and sum up all contributions from all projections (at the
different angles).

B[p](x, y) =

∫ π

0
pθ(x cos θ + y sin θ)dθ
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A simple (but slow) method is described to compute the backprojection. pθ is
the attenuation vector for a given angle θ.

• Use a command to replicate a matrix to obtain the contribution of each line
D, like on Fig. 13.3a.

(a) Contribution of a line D before rotation. (b) Reconstruction after projection every 45
degrees (4 projections).

Figure 13.3: Backprojection

• Each contribution line D should be turned of a certain angle to be added to
the overall contribution. This backprojection is really fuzzy compared to the
original phantom image (see Fig. 13.3b).

13.4 Filtered backprojection

It can be shown that backprojection is in fact the convolution of f by a filter. A
solution would be to make a deconvolution in the Fourier domain. The solution
used here is the filtered backprojection.

Numerous filters can be used. Among them, the Ram-Lak filter RL is approxi-
mated by :

k ∈ [−B;B] ⊂ N, RL(k) =
π

4
if k = 0

= 0 if |k| is even
=
−1

πk2
if |k| is odd
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• Write a function that generates this filter (see prototype). The param-
eter width is the number of points of the resulting vector.

• Modify the backprojection algorithm to filter (by convolution of the
projection vector) each contribution line before the summation. Ob-
serve the improved result.
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13.5. Python correction

1 import numpy as np
import matplotlib . pyplot as plt

3

from skimage.io import imread
5 from skimage.transform import radon, rescale , rotate
from scipy . signal import convolve

7 import skimage.io

13.5.1 Acquisition simulation

The phantom image is first loaded and displayed.

1 # Read image
image = imread("phantom.png", as_gray=True)

3 image = image [:,:,0];
plt . imshow(image, cmap=’gray’);

The simulation of the projection is simply an addition of all gray-levels of the
pixels, after rotating the image in order to simulate the rotation of the object (or of
the sensor). See Fig.13.3a

def simuProjection ( I , theta ) :
2 """

simulation of the generation of a sinogram
4 I : original image (phantom for example)

theta : angles of projection
6 """

N = I . shape [1];
8 M = len( theta ) ;

S = np.zeros ((N,M));
10

for i , ang in enumerate(theta) :
12 image1 = rotate ( I , ang) ;

S [:, i ] = np.sum(image1, axis=1) ;
14

return S;
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13.5.2 Backprojection algorithm

The backprojection algorithm will sum-up all the contributions of each projection.

1 def backprojection (P, theta , filtre ) :
"""

3 Backprojection of
P: image

5 theta : list of projection angles
filtre : bool , True if filtered

7 """

9 N = P.shape [0];
R = np.zeros ((N,N)) ;

11

# in case of filtered back−projection
13 if filtre :

h = RamLak(31);
15

# loops over all angles
17 for i , ang in enumerate(theta) :

proj = P [:, i ];
19

# filtered back−projection
21 if filtre :

proj = convolve(proj , h, mode=’same’);
23

proj2 = np.matlib . repmat(proj , N, 1) ;
25 proj2 = rotate ( proj2 , ang) ;

R = R + proj2 ;
27 return R.transpose () ;

The results is better in the case of a filtered backprojection. The RamLak
function is provided and illustrated in Fig.13.4.
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1 def RamLak(width):
"""

3 Ramlak filter of size width
width must be odd

5 """
ramlak = np.zeros ((2∗ width+1,) ) ;

7 for indice , val in enumerate(np.arange(-width, width+1)) :
val = np.abs( val ) ;

9

if val==0: # center
11 ramlak[indice]=np.pi /4;

else :
13 if val%2==1: # even indices

ramlak[indice]=- 1/(np.pi ∗val ∗∗2) ;
15 else : # odd indices

ramlak[indice ]=0;
17

return ramlak;
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Figure 13.4: RamLak function.

The reconstruction of the original image is obtained by the following code:
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# Performs unfiltered backprojection
2 ubp = backprojection (P, theta , False ) ;
plt . figure () ;

4 plt . imshow(ubp, cmap=’gray’);
plt . show()

6

# Performs filtered backprojection
8 fbp = backprojection (P, theta , True) ;
plt . figure () ;

10 plt . imshow(fbp, cmap=’gray’) ;
plt . show()

(a) Original phantom image. (b) Unfiltered backprojection. (c) Filtered backprojection.

Figure 13.5: Reconstruction by backprojection.



Part II Mathematical Morphol-

ogy





14 BinaryMathematicalMorphology

The objective of this tutorial is to process binary images with the elementary
operators of mathematical morphology. More particularly, different image
transformations, based on the morphological reconstruction, will be studied
(closing holes, removing small objects. . . ).

The different transformations will be applied on the following images Fig. 14.1:

Figure 14.1: Images to use for this tutorial.

(a) I1. (b) M . (c) I2.

(d) Cells.

14.1 Introduction tomathematicalmorpho-

logy

Mathematical morphology started in the 1960s with Serra and Matheron [38]. It is
based on Minkowski addition of sets. The main operators are erosion and dilation,
and by composition, opening and closing. More informations can be found in [40].

The erosion of a binary set A by the structuring element B is defined by:

εB(A) = A⊖B = {z ∈ A|Bz ⊆ A} (14.1)

where, Bz = {b+ z|b ∈ B}.
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The dilation can by obtained by:

δB(A) = A⊕B = {z ∈ A|(Bs)z ∩A 6= ∅} (14.2)

where Bs = {x ∈ E| − x ∈ B} is the symmetric of B.

By composition, the opening is defined as: A ◦B = (A⊖B)⊕B. The closing
is defined as: A •B = (A⊕B)⊖B.

14.2 Elementary operators

Test the functions of dilation, erosion, opening and closing on the image I2

by varying:

1. the shape of the structuring element,

2. the size of the structuring element.

The python functions come from the python module
scipy .ndimage.morphology. Useful functions are binary_dilation ,
binary_erosion, binary_opening and binary_closing . The function
ndimage. generate_binary_structure creates a structuring element.

14.3 Morphological reconstruction

The operator of morphological reconstruction ρ is very powerful and largely used
for practical applications. The principle is very simple. We consider two binary
images: I1 (the studied binary image) andM (the marker image). The objective is
to reconstruct the elements of I1 marked byM as illustrated in the Fig. 14.2.

To do this, we iteratively dilate the markerM while being included in I1 (see
Eq.14.3). In order to guarantee this inclusion in A, we keep from each dilated
set its intersection with I1. The algorithm is stopped when the process dilation-
intersection is equal to the identity transformation (convergence).

Let δc
I(M) = δB1(M) ∩ I be the dilation of the marker setM constrained to

the set I . Then, the morphological reconstruction is defined as:

ρI(M) = lim
n→∞

δI ◦ . . . ◦ δI(M)
︸ ︷︷ ︸

n times

(14.3)
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Figure 14.2: Illustration of morphological reconstruction of I1 byM .

(a) I1 (b) M (c) rec(I1, M)

Data: image I and markerM
Result: reconstructed image rec(I,M)
r = area(M);
s = 0;
while r 6= s do

s = r;
M = I ∩ (M ⊕B1);
r = area(M);

end

rec(I,M) = M ;

Algorithm 5: The algorithm of this morphological reconstruction

1. Implement the algorithm.

2. Test this operator with the images I1 andM .

Evaluate the area of a set may be done by counting the number of its
pixels.

14.4 Operators by reconstruction

Using the reconstruction operator, implement the 3 following transforma-
tions:

1. removing the border objects,

2. removing the small objects,
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3. closing the object holes.

Test these operators on the image I2.

The morphological reconstruction function to use is binary_propagation
in the module ndimage.morphology.

14.5 Cleaning of the image of cells

1. Threshold the image of cells (Fig. 14.1d).

2. Process the resulting binary image with the 3 cleaning processes of
the previous question.
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14.6. Python correction

from scipy import ndimage , misc
2 import numpy as np

4 import matplotlib . pyplot as plt

14.6.1 Elementary operators

First of all, one have to create a structuring element. The following function can be
used to create a circular structuring element. A square can also be used.

def disk ( radius ) :
2 # defines a circular structuring element with radius given by ’ radius ’

x = np.arange(- radius , radius+1, 1) ;
4 xx, yy = np.meshgrid(x, x) ;

d = np. sqrt (xx∗∗2 + yy∗∗2) ;
6 return d<=radius;

The following code presents basic mathematical morphology operations. First
of all, declare the structuring element.

# read binary image (and ensure binarization )
2 B = imageio.imread("B.jpg" ) ;
B = B>100;

4 # Structuring element
square = np.ones ((5,5) ) ;

Erosion and dilation are the two elementary function of mathematical morphol-
ogy.
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1 # Erosion
Bsquare_erode = ndimage.morphology.binary_erosion(B, structure =square) ;

3 plt . subplot (231) ;
plt . imshow(Bsquare_erode); plt . title ( " erosion" )

5 imageio.imwrite( ’ erosion .png’ , Bsquare_erode);
# Dilation

7 Bsquare_dilate = ndimage.morphology.binary_dilation(B, structure =square) ;
plt . subplot (232) ;

9 plt . imshow(Bsquare_dilate) ; plt . title ( " dilation " )
imageio.imwrite( ’ dilation .png’ , Bsquare_dilate ) ;

Opening and closing are a combination of the two previous functions.

# Opening
2 Bsquare_open = ndimage.morphology.binary_opening(B, structure=square) ;
plt . subplot (233) ;

4 plt . imshow(Bsquare_open);plt. title ( "opening")
imageio.imwrite( ’open.png’ , Bsquare_open);

6 # Closing
Bsquare_close = ndimage.morphology.binary_closing(B, structure =square) ;

8 plt . subplot (234) ;
plt . imshow(Bsquare_close); plt . title ( " closing " )

10 imageio.imwrite( ’ close .png’ , Bsquare_close) ;

The results are presented in Fig. 14.3.
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Figure 14.3: Basic mathematical morphology operations.

(a) Original image. (b) Dilation.

(c) Erosion. (d) Opening. (e) Closing.

14.6.2 Morphological reconstruction

The algorithm of morphological reconstruction is coded like this in python:

def reconstruct (image, mask):
2 # should be binary images

M = np.minimum(mask, image);
4

area = ndimage.measurements.sum(M);
6 s=0

8 se = np.array ([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) ;
while (area != s) :

10 s = area ;
M = np.minimum(image, ndimage.morphology.binary_dilation(M, structure=se) )

→֒ ;
12 area = ndimage.measurements.sum(M);

14 return M

The Fig. 14.4 illustrates the morphological recontruction.
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A=imageio.imread(’A.jpg ’ ) ;
2 A = A > 100;
M=imageio.imread(’M.jpg’) ;

4 M = M > 100;
# reconstruction de A par M

6 AM=reconstruct(A, M);

8 # display results
plt . subplot (1, 3, 1) ;

10 plt . imshow(A);
plt . subplot (1, 3, 2) ;

12 plt . imshow(M);
plt . subplot (1, 3, 3) ;

14 plt . imshow(AM);
plt . show();

Figure 14.4: Morphological reconstruction.

(a) Image A. (b) Image M . (c) AM=reconstruct(A, M);.

14.6.3 Operators by reconstruction

Remove objects touching the borders

The Fig. 14.5 illustrates the suppression of objects touching the borders of the
image. If B represents the border of the image (create an array of the same size
as the image, with zeros everywhere and ones at the sides), then this operation is
defined by:

killBorders(I) = I \ ρI(B)
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Figure 14.5: Suppress border objects.

(a) Original image. (b) Objects removed.

def killBorders (A):
2 # remove cells touching the borders of the image

m, n = A.shape
4 M = np.zeros ((m,n)) ;

M[0,:] = 1;
6 M[m-1,:] = 1;

M[:,0] = 1;
8 M[:,n-1] = 1;

M = reconstruct (A, M);
10 return A-M

Remove small objects

This is illustrated in Fig. 14.6. It consists in an erosion followed by a reconstruction.
The structuring element used in the erosion defines the objects considered as “small”.

killSmall(I) = ρI(ε(I))

def killSmall (A, n) :
2 # destroy small objects ( size smaller than n)

se = np.ones ((n, n) ) ;
4 M = ndimage.morphology.binary_erosion(A, structure =se) ;

return reconstruct (A, M);
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Figure 14.6: Small objects removal.

(a) Original image. (b) Small objects are removed.

Close holes in objects

This is illustrated in Fig. 14.7. The operation is given by the following equation,
with B the border of image I , and XC denoting the complementary of set X :

removeHoles(I) = {ρIC (B)}C

1 def closeHoles (A):
# close holes in objects

3 Ac = ~A;
m,n = A.shape;

5 M = np.zeros ((m,n)) ;
M[0,:] = 1;

7 M[m-1,:] = 1;
M[:,0] = 1;

9 M[:,n-1] = 1;
M = reconstruct (Ac, M);

11 return ~M

14.6.4 Application

The application shown in Fig. 14.8 presents the segmentation of blood cells after
removing small cells, closing holes and removing the cells touching the borders of
the image.
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Figure 14.7: Hole filling.

(a) Original image. (b) Holes in objects are closed.

1 cells = imageio.imread( ’ cells . jpg ’ )<98;
imageio.imwrite( ’ cellsbw .png’ , cells ) ;

3 B = closeHoles ( cells ) ;
B = killBorders (B) ;

5 B = killSmall (B, 5) ;
plt . subplot (1,2,1) ;

7 plt . imshow(cells ) ;
plt . subplot (1,2,2) ;

9 plt . imshow(B);
plt . title ( ’ clean image’)

11 plt . show()
imageio.imwrite( ’ clean .png’ , B) ;

Figure 14.8: Segmentation of the cells.

(a) Original image. (b) Binarization.
(c) Final segmentation of the
cells.





15 Morphological Geodesic Filtering

This tutorial aims to test different morphological filters and particularly the
geodesic ones (using reconstruction) for gray-level images.

The different processes will be applied on the following images:

(a) Lena (b) 2-D section of a cement paste
(X-ray tomography)

15.1 Morphological centre

The morphological centre is an auto-dual filter using a family of operators {ψi}i:

C(f) = (f ∨ (∧{ψi(f)})) ∧ (∨{ψi(f)}) (15.1)

• Implement this transformation with the family {γφγ, φγφ} where γ
denotes the morphological opening and φ the morphological closing.

• Test this operator by varying the size of the structuring element.

• Add a ’salt and pepper’ noise to the ’Lena’ image and compare the
morphological center with the median filtering.

• Try to reduce the noisy image ’cement paste’.
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15.2 Alternate sequential filters (ASF)

ASF can be defined from a family of openings and closings:

Ni(f) = γiφi ◦ γi−1φi−1 . . . γ2φ2 ◦ γ1φ1(f) (15.2)

Mi(f) = φiγi ◦ φi−1γi−1 . . . φ2γ2 ◦ φ1γ1(f) (15.3)

where γk (resp. φk) denotes the opening (resp. closing) with a structuring element
of size k.

• Implement these two operators.

• Test these transformations on the noisy image by varying the param-
eter i of the filter.

15.3 Reconstruction filters

The geodesic dilation of size 1 and n are respectively defined as:

δf (g) = ∧(δB1(g), f) (15.4)

δn
f (g) = δf (δf . . . (δf (g))) (15.5)

where δB1 denotes the morphological dilation with a disk of radius 1 as structuring
element. The opening (γrec

k (f)) and closing (φrec
k (f)) by reconstruction are then

defined as:

γrec
k (f) = ∨{δn

f (ǫBk
(f)), n > 0} (15.6)

φrec
k (f) = M − γrec

k (M − f) (15.7)

where ǫBk
denotes themorphological erosionwith a diskB of radius k as structuring

element.

• Implement these two operators γrec
k (f) and φrec

k (f).

• Test these transformations by varying the parameter k of the filter.

• Implement and test (on the noisy image) the filters of morphological
center and ASF using the geodesic operators. Compare with the
classical ones.
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15.4. Python correction

from skimage. util import random_noise
2 from scipy import misc
import matplotlib . pyplot as plt

4 from skimage import morphology as m
from skimage import filters

6 import numpy as np

15.4.1 Morphological center

The noisy image is obtained with the function random_noise from skimage. util .

L = imageio.imread( ’ lena512 .bmp’);
2 A = random_noise(L, mode=’s&p’, amount=.04);

Following the definition, themorphological center is obtainedwith the following
code, and illustrated in Fig.15.1:

def morphoCenter(I, c , o, selem=m.disk(1) ) :
2 """

"""
4 coc = c(o(c( I , selem=selem), selem=selem), selem=selem);

oco = o(c(o( I , selem=selem), selem=selem), selem=selem);
6 cMin = np.minimum(oco, coc);

cMax = np.maximum(oco, coc);
8 F = np.minimum( np.maximum(A, cMin), cMax);

return F;
10

B = morphoCenter(A, m.closing, m.opening);
12 Bmed= filters .median(A, selem=np.ones ((3,3) ) ) ;
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Figure 15.1: Morphological center compared to the classical median filter.

(a) Noisy image. (b) Median filter of size 5 × 5. (c) Morphological center.

15.4.2 Alternate sequential filters

The order of these filters are often chosen empirically. The results are illustrated in
Fig.15.2.

def asf_n( I , order=3) :
2 F = I . copy() ;

for r in np.arange (1, order+1) :
4 se = m.disk( r ) ;

F = m.opening( m.closing (F, selem=se) , selem=se) ;
6 return F;

def asf_m(I , order=3) :
2 F = I . copy() ;

for r in np.arange (1, order+1) :
4 se = m.disk( r ) ;

F = m.closing ( m.opening(F, selem=se) , selem=se) ;
6 return F;
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Figure 15.2: Alternate Sequential Filters compared to original image.

(a) Original image.

(b) ASF of order 3, starting
with a closing operation (de-
noted N).

(c) ASF of order 3, starting
with an opening operation (de-
noted M).

15.4.3 Geodesic reconstruction filters

These two functions are simply implemented using erosion and reconstruction
operators. Notice the duality property, that is used to code closerec . In this example,
8 bits images (unsigned) are considered, and the results are illustrated in Fig.15.3.

def openrec(I , selem=m.disk(1) ) :
2 B = m.erosion( I , selem=selem);

F = m.reconstruction (B, I ) ;
4 return F;

def closerec ( I , selem=m.disk(1) ) :
2 F = 255-openrec(255- I , selem=selem);

return F;
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Figure 15.3: Opening and closing by reconstruction.

(a) Original image. (b) Opening by reconstruction. (c) Closing by reconstruction.

15.4.4 ASF by reconstruction

This is an example of a 3rd order alternate sequential filter, illustrated in Fig.15.4.

1 def asfrec ( I , order=3) :
A = I . copy() ;

3 for r in np.arange (1, order+1) :
se = m.disk( r ) ;

5 A = closerec (openrec(A, selem=se) , selem=se) ;
return A;

Figure 15.4: Alternate Sequential Filtering by reconstruction.

(a) Original image.
(b) ASF of order 3 by recon-
struction. (c) Noisy image.

15.4.5 Morphological center by reconstruction

Morphological center by reconstruction replaces the opening and closing operations
by their equivalent by reconstruction (see Fig.15.5).
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def centerrec ( I , selem=m.disk(1) ) :
2 """

"""
4 B = morphoCenter(I, closerec , openrec, selem=selem);

return B;

Figure 15.5: Morphological center by reconstruction.

(a) Original image. (b) Center by reconstruction. (c) Noisy image.





16 Morphological A�ribute Filtering

This tutorial aims to test the attribute morphological filters for gray-level
images. The objective of such filters is to remove the connected components
of the level sets which do not satisfy a specific criterion (area, elongation,
convexity...).

Fig.16.1 are presented some results of attribute filtering applied on the grayscale
image.

Figure 16.1: Attribute filtering examples.

(a) Binary image. (b) Grayscale image. (c) Filtering by area.

(d) Filtering by elongation. (e) Filtering by convexity.
(f) Filtering objects larger than
a square.

A binary connected opening Γx transforms a binary image f given a pixel x, by
keeping the connected component that contains x and removing all the others.
Binary trivial opening ΓT operates on a given connected component X according
to an increasing criterion T applied to the connected component. If the criterion is
satisfied, the connected component is preserved, otherwise it is removed according
to:

ΓT (X) =

{

X if T (X) = true
∅ if T (X) = false

(16.1)
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In general, one or more features of the connected component, on which the filter is
applied, are compared to a given threshold defined by the rule.
Binary attribute opening ΓT , given an increasing criterion T , is defined as a binary
trivial opening applied on all the connected components of F . This can be formally
represented as:

ΓT (F ) =
⋃

x∈F

ΓT (Γx(F )) (16.2)

If the criterion T evaluated in the transformation is not increasing, e.g., when
the computed attribute is not dependent itself on the scale of the regions (e.g. shape
factor, orientation, etc.), the transformation also becomes not increasing. Even if
the increasingness property is not fulfilled, the filter remains idempotent and anti-
extensive. For this reason, the transformation based on a non-increasing criterion
is not an opening, but a thinning. In this case, one speak about a binary attribute
thinning.

Attribute openings and thinnings introduced for the binary case can be extended
to grayscale images employing the threshold decomposition principle. A grayscale
image can be represented by thresholding the original image at each of its graylevels.
Then, the binary attribute opening can be applied to each binary image and the
grayscale attribute opening is given by the maximum of the results of the filtering
for each pixel and can be mathematically represented as:

γT (f)(x) = max{k;x ∈ ΓT (Thk(f))} (16.3)

where Thk(f) is the binary image obtained by thresholding f at graylevel k.

The extension to grayscale of the binary attribute thinning is not straightforward
and not unique. For example, a possible definition of a grayscale attribute thinning
can be analogously defined as Equation (3). However, other definitions are possible,
according to the filtering rule considered in the analysis (max, min, subtractive,
direct...). Again, if the criterion T is increasing (i.e. the transformation is an
opening), all the strategies lead to the same result.

Attribute openings are a family of operators that also includes openings by
reconstruction. If we consider a binary image with a connected component X
and the increasing criterion "the size of the largest square enclosed by X must
be greater than λ", the result of the attribute opening is the same as applying an
opening by reconstruction with a squared structuring element of size λ.

16.1 Binary attribute opening/thinning
We are going to implement and test some binary attribute filters according to
different criteria (area, elongation, convexity).
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• Regarding the area criterion, implement the associated binary at-
tribute opening. Test on the binary image.

• Regarding the elongation criterion, implement the associated binary
attribute thinning (non-increasing criterion). Test on the binary image.

Code your own function bwFilter based on regionprops from
skimage.measure.

16.2 Grayscale attribute opening/thinning
We are going to extend the binary filters to grayscale images.

• Implement the decomposition operator into binary sections.

• Conversely, implement the reconstruction operator from binary sec-
tions.

• Implement and test the grayscale attribute filters according to the
following criteria: area, elongation, convexity.
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16.3. Python correction

from skimage import morphology as m
2 from scipy import misc
import matplotlib . pyplot as plt

4 from skimage.measure import regionprops
from skimage.measure import label

6 import numpy as np

16.3.1 Binary a�ribute filtering

If bw is a binary image, the different attribute are evaluated with regionprops and
filtered according to the given upper and lower thresholds.

def bwFilter (bw, attribute , thresholds ) :
2 """

binary filtering according to attribute
4 bw: binary image

attribute : string representing attribute , defined by regionprops
6 thresholds : threshold values , inside which objects are removed

returns binary image
8 """

F = bw.copy() ;
10 L = label (bw);

for region in regionprops(L) :
12 a = getattr ( region , attribute ) ;

if a < thresholds [1] and a>= thresholds [0]:
14 F[L==region. label ] = False ;

return F;

16.3.2 Grayscale filtering

The grayscale filtering is the previous binary filtering process applied to all level-sets
of the original image.
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1 def grayFilter ( I , attribute , thresholds ) :
"""

3 grayscale image filtering by attribute
for 8 bits unsigned images

5 I : original grayscale image (N, M) ndarray
attribute : string representing attribute , defined by regionprops

7 thresholds : threshold values , inside which objects are removed
returns grayscale filtered image

9 """
N, M = I . shape

11 F = np.zeros ((N, M, 256) ) ;
for s in range(256) :

13 F [:,:, s] = s ∗ bwFilter ( I>=s, attribute = attribute , thresholds=thresholds ) ;

15 # reconstruction
R = np.amax(F, axis=2) ;

17 return R;

Then, for each level, the binary set is filtered by some attribute, and the resulting
image is reconstructed by taking the maximum value on all levels.

The shape filtering process do not take the results from the regionprops function.
The shape is filtered by using the morphological function of reconstruction.

def shapeFilter ( I , selem=m.square(25)) :
2 """

image filtering when attribute is a shape of a given size , defined by selem
4 I : grayscale image

selem: structuring element
6 returns : grayscale filtered image

"""
8 N, M = I . shape

F = np.zeros ((N, M, 256) ) ;
10 for s in range(256) :

F [:,:, s] = s ∗ m.reconstruction (m.opening(I>=s, selem=selem), I>=s) ;
12

# reconstruction
14 R = np.amax(F, axis=2) ;

return R;

The examples are generated via the following code:
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1 F = bwFilter ( I>50, ’ area ’ , (0,5000) ) ;

3 F = grayFilter ( I , ’ area ’ , (0,1000) ) ;

5 F = grayFilter ( I , ’ eccentricity ’ , (0, 0.75) ) ;

7 F = grayFilter ( I , ’ solidity ’ , (0, 0.75) ) ;

9 F = shapeFilter ( I ) ;

Results are illustrated in Fig.16.1.



17 Morphological skeletonization

This tutorial aims to skeletonize objects with specific tools from mathemati-
cal morphology (thinning, maximum ball. . . ).

The different processes will be applied on the following image:

17.1 Hit-or-miss transform

The hit-or-miss transformation enables specific pixel configurations to be detected.
Based on a pair of disjoint structuring elements T = (T 1, T 2), this transformation
is defined as:

ηT (X) = {x, T 1
x ⊆ X,T 2

x ⊆ Xc} (17.1)

= ǫT 1(X) ∩ ǫT 2(Xc) (17.2)

where ǫB(X) denotes the erosion of X using the structuring element B.

1. Implement the hit-or-miss transform.

2. Test this operator with the following pair of disjoint structuring ele-
ments:

+1 +1 +1

0 +1 0

−1 −1 −1




T 1 =

1 1 1

0 1 0

0 0 0

, T 2 =

0 0 0

0 0 0

1 1 1






where the points with +1 (resp. −1) belong to T 1 (resp. T 2).
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17.2 Thinning and thickening

Using the hit-or-miss transform, it is possible to make a thinning or thickening of a
binary object in the following way:

θT (X) = X\ηT (X) (17.3)

χT (X) = X ∪ ηT (Xc) (17.4)

These two operators are dual in the sense that θT (X) = (χT (Xc))c.

1. Implement these two transformations.

2. Test these operators with the previous pair of structuring elements.

17.3 Topological skeleton

By using the two following pairs of structuring elements with their rotations (90◦) in
an iterative way (8 configurations are thus defined), the thinning process converges
to a resulting object which is homothetic (topologically equivalent) to the initial
object.

+1 +1 +1

0 +1 0

−1 −1 −1

0 +1 0

+1 +1 −1

0 −1 −1

1. Implement this transformation (the convergence has to be satisfied).

2. Test this operator and comment.

17.4 Morphological skeleton

A ball Bn(x) with center x and radius n is maximum with respect to the set X if
there exists neither indice k nor centre y such that:

Bn(x) ⊆ Bk(y) ⊆ X
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In this way, the morphological skeleton of a set X is constituted by all the centers
of maximum balls. Mathematically, it is defined as:

S(X) =
⋃

r

ǫBr(0)(X)\γB1(0)(ǫBr(0)(X)) (17.5)

1. Implement this transformation.

2. Test this operator and compare it with the topological skeleton.
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17.5. Python correction

1 from scipy import ndimage
import numpy as np

3

import imageio
5 import matplotlib . pyplot as plt

17.5.1 Hit or miss transform

The hit-or-miss transform is illustrated in Fig.17.1.

1 def hitormiss (X, T) :
"""

3 hit or miss transform
X: binary image

5 T: structuring element ( values −1, 0 and 1)

7 return : result of hit or miss transform (binary image)
"""

9 T1 = (T==1);
T2 = (T==-1);

11 E1 = ndimage.morphology.binary_erosion(X, T1) ;
E2 = ndimage.morphology.binary_erosion(np. logical_not (X), T2) ;

13 B = np.minimum(E1, E2);
return B;

17.5.2 Thinning and thickening

The code is split into 2 elementary operations of thinning and thickening, so that the
thinning consists in iterating this operation. The thickening operation is obtained
by thinning the complementary set.
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Figure 17.1: Elementary functions

(a) Hit or miss (intensities are
inverted). (b) Thinning. (c) Thickening.

1 def elementary_thinning(X, T) :
"""

3 thinning function
X: binary image

5 T: structuring element ( values −1, 0 and 1)

7 return : result of thinning
"""

9 B = np.minimum(X, np.logical_not( hitormiss (X, T)) ) ;
return B;

def elementary_thickening(X, T) :
2 """

thickening function
4 X: binary image

T: structuring element ( values −1, 0 and 1)
6

return : result of thickening
8 """

B = not(elementary_thinning(not(X), T)) ;
10 return B;
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def thinning(X, TT):
2 """

morphological thinning
4 TT is a configuration of 8 pairs of structuring elements

"""
6 for T in TT:

X = elementary_thinning(X, T) ;
8

return X;

17.5.3 Skeletons

The topological skeleton is the iteration of the operation of thinning, for structuring
elements defined like:

1 TT = [];
TT.append(np.array([[ - 1, - 1, - 1],[0,1,0],[1,1,1]]) ) ;

3 TT.append(np.array ([[0, - 1, - 1],[1,1, - 1],[0,1,0]]) ) ;
TT.append(np.array ([[1,0, - 1],[1,1, - 1],[1,0, - 1]]) ) ;

5 TT.append(np.array ([[0,1,0],[1,1, - 1],[0, - 1, - 1]]) ) ;
TT.append(np.array ([[1,1,1],[0,1,0],[ - 1, - 1, - 1]]) ) ;

7 TT.append(np.array ([[0,1,0],[ - 1,1,1],[ - 1, - 1,0]]) ) ;
TT.append(np.array([[ - 1,0,1],[ - 1,1,1],[ - 1,0,1]]) ) ;

9 TT.append(np.array([[ - 1, - 1,0],[ - 1,1,1],[0,1,0]]) ) ;

1 def topological_skeleton (X, TT):
"""

3 Topological skeleton : preserves topology
X: binary image to be transformed

5 TT: set of pairs of structuring elements
return skeleton

7 """
B = np. logical_not (np.copy(X)) ;

9 while not(np. all (X == B)) :
B = X;

11 X = thinning(X, TT);
return B;

The topological skeleton is the iteration of the thinning with structuring el-
ements in all 8 directions. It has the property of preserving the topology of the
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discrete structures, contrary to the morphological skeleton (see Fig.17.2). The mor-
phological skeleton does not preserve the connexity of the branches, but it can
be used to reconstruct the original image. Pay attention to the construction of
structuring elements, which should be homothetic (Br = B1 ⊕ · · · ⊕B1

︸ ︷︷ ︸

r times

).

def morphological_skeleton(X):
2 """

morphological skeleton
4 X: binary image

using disk structuring elements
6

in order to perform the reconstruction from the skeleton , one has to store
8 the value of S for each size of structuring element

10 return : S , morphological skeleton , grayscale image
"""

12 strel_size = - 1;
pred = True;

14 S = np.zeros (X.shape) ;
se = ndimage. generate_binary_structure (2, 1) ;

16 E = np.copy(X);
while pred:

18 strel_size +=1;
E = ndimage.morphology.binary_erosion(X, se ) ;

20 if np. all (E==0):
pred = False ;

22 D = ndimage.morphology.binary_dilation(E, se ) ;
S = np.maximum(S, ( strel_size +1)∗np.minimum(X, np.logical_not(D)) ) ;

24 X = E;
return S;
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1 def reconstruction_skeleton (S) :
"""

3 Reconstruction of the original image from the morphological skeleton
S: Skeleton , as constructed by morphological_skeleton

5

return : original image I
7 """

X = np.zeros (S .shape) . astype( "bool" ) ;
9 n = np.max(S);

se = ndimage. generate_binary_structure (2, 1) ;
11

for strel_size in range( int (n) ) :
13 Sn = S == strel_size +1;

15 # this is for preserving homothetic structuring elements
for k in range( strel_size ) :

17 Sn = ndimage.morphology.binary_dilation(Sn, se ) ;

19 X = np.maximum(X, Sn);
return X;

Figure 17.2: Skeletons. The topology is not preserved in the morphological skeleton,
but it can be used to reconstruct the original image. The intensities are inverted in
order to facilitate the display.

(a) Topological skeleton. (b) Morphological skeleton.



18 Granulometry

This tutorial aims to compute specific image measurements on digital images.
It consists in determining the size distribution of the ’particles’ included in
the image to be analyzed.

The image measurements will be realized on a simulated image of disks and an
image of silicon carbide powder acquired by Scanning Electron Microscopy (SEM,
Fig. 18.1).

Figure 18.1: These images are used for computing a granulometry of objects by
mathematical morphology.

(a) Simulated image. (b) Real image of powder, by SEM.

18.1 Morphological granulometry

18.1.1 Introduction to mathematical morphology

The tutorial 14 introduces the basic operations of the mathematical morphology, as
well as the morphological reconstruction. More informations can be found in [40].

With Python, the useful functions are binary_opening of the module
scipy .ndimage for the morphological opening, binary_propagation for the
geodesic reconstruction. For counting the number of objects, one can
use measurements.label for a labelling and counting algorithm.



Granulometry 210

18.1.2 Granulometry

• Load and visualize the image ’simulation’ Fig.18.1.

• Generate n images by applying morphological openings (with recon-
struction) to the binary image with the use of homothetic structuring
elements of increasing size: 1 < · · · < n.

• Compute the morphological granulometry expressed in terms of sur-
face area density. It consists in calculating the specific surface area of
the grains in relation with the size n of the structuring element.

• Compute the morphological granulometry expressed in terms of num-
ber density. It consists in calculating the specific number of grains in
relation with the size n of the structuring element.

• Compare and discuss.

Use generate_binary_structure and iterate_structure from python
module scipy .ndimage to define homothetic structuring elements.

18.2 Real application

• Load and visualize the image ’powder’ of Fig. 18.1b.

• Realize the image segmentation step. I can simply consist in a bina-
rization by a global threshold, followed by hole filling. Noise can also
be removed my mathematical morphology opening.

• Compute the morphological granulometry (surface area, number).

• What can you conclude?
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18.3. Python correction

18.3.1 Simulation

The construction of an homothetic structuring element is necessary for computing
a granulometry (through the function iterate_structure .

def granulometry(BW, T=35):
2 # total original area

A = ndimage.measurements.sum(BW);
4

# number of objects
6 label , N = ndimage.measurements.label(BW);

8 area=np.zeros (( T ,) , dtype=np. float ) ;
number=np.zeros((T,) , dtype=np. float ) ;

10

"""
12 Warning: the structuring elements must verify B(n) = B(n−1) o B(1) .

"""
14 se = ndimage. generate_binary_structure (2, 1) ;

for i in np.arange(T) :
16 SE = ndimage. iterate_structure (se , i - 1) ;

m = ndimage.morphology.binary_erosion(BW, structure=SE);
18 G = ndimage.morphology.binary_propagation(m, mask=BW);

area[ i ]=100∗ndimage.measurements.sum(G)/A
20 label , n = ndimage.measurements.label(G);

number[i] = 100∗n/N; # beware of integer division
22

plt . figure ()
24 plt . plot (area , label =’Area’)

plt . plot (number, label=’Number’)
26 plt . legend ()

#plt . savefig (" granulo_poudre1.pdf ") ;
28 plt . show()

30 plt . figure () ;
plt . plot ( -np. diff (area ) , label =’Area derivative ’ ) ;

32 plt . plot ( -np. diff (number), label =’Number derivative’ ) ;
plt . legend ()

34 #plt . savefig (" granulo_poudre2.pdf ") ;
plt . show()

The results are shown in Fig. 18.2, generated by the following code:
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1 ## Granulometry of synthetic image
# read binary simulated image, normalize it

3 I = imageio.imread(" simulation .png") /255;
I = I [:,:,2]>.5;

5 plt . figure () ;
plt . imshow(I);

7 plt . show();

9 granulometry(I , 35) ;

Figure 18.2: Granulometry on simulated image.

(a) Simulated image of disks.

(b) Granulometry in number and area.
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18.3.2 Powder image and segmentation

First of all, the image must be binarized, i.e. segmented. The following code is a
proposition of segmentation, leading to the result presented in Fig. 18.3c.
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1 ## Granulometry of real image
I = imageio.imread("poudre.bmp");

3

# segmentation
5 BW = I>74;
BW = ndimage.morphology.binary_fill_holes(BW);

7

# suppress small objects
9 se = ndimage. generate_binary_structure (2, 1) ;
m = ndimage.morphology.binary_opening(BW);

11 # opening by reconstruction
BW=ndimage.morphology.binary_propagation(m, mask=BW);

13

imageio.imwrite("segmentation.png", BW);
15 plt . imshow(BW)

plt . show()
17

granulometry(BW, 20);

Figure 18.3: Results of granulometry analysis of original image from (a).

(a) Original image of powder. (b) Segmentation of image of (a).

(c) Granulometry.
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Part III Registration and Segmen-

tation





19 Histogram-based image segmenta-
tion

This tutorial aims to implement some image segmentation methods based
on histograms (thresholding and “k-means” clustering).

The different processes will be applied on the following images:

(a) Cells. (b) Muscle cells, author: Damien
Freyssenet, University Jean Monnet,
Saint-Etienne, France.

19.1 Manual thresholding

The most simple segmentation method is thresholding.

• Visualize the histogram of the grayscale image ’cells’.

• Make the segmentation with a threshold value determined from the
image histogram.

19.2 k-means clustering

Let X = {xi}i∈[1;n],n∈N be a set of observations (the points) in Rd. The k-means

clustering consists in partitioning X in k (k < n) disjoint subsets S̃ such that:

S̃ = arg minS={Si}i≤k

k∑

i=1

∑

xj∈Si

‖xj − µi‖2 (19.1)
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where µi is the mean value of the elements in Si. The k-means algorithm is iterative.

From a set of k initial elements {m(1)
i }i∈[1;k] (randomly selected), the algorithm

iterates the following (t) steps:

• Each element of X is associated to an element mi according to a distance
criterion (computation of a Voronoi partition):

S
(t)
i =

{

xj :
∥
∥
xj −m

(t)
i

∥
∥ ≤

∥
∥
xj −m

(t)
i∗

∥
∥,∀i∗ ∈ [1; k]

}

(19.2)

• Computation of the new mean values for each class:

m
(t+1)
i =

1

|S(t)
i |

∑

xj∈S
(t)
i

xj (19.3)

where |S(t)
i | is the number of elements of S(t)

i .

19.3 Grayscale image, k = 2 in one dimen-

sion

The objective is to binarize image image ’cells’, which is a grayscale image. The set
X is defined by X = {I(p)}, for p being the pixels of the image I .

• Implement the algorithm proposed below (Alg. 6).

• Test this operator on the image ’cells’.

• Test another method of automatic thresholding (defined by Otsu in
[26]).

• Compare the values of the thresholds (manual and automatic).
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Data: Original image A
Data: Stop condition ε
Result: thresholded image
Initialize T0, for example at 1

2(max(A) + min(A));
done← False;
while NOT done do

Segment the image A with the threshold value T ;
it generates two classes G1 (intensities ≥ T ) and G2 (intensities < T );
Compute the mean values, denoted µ1, µ2, of the two classes G1, G2,
respectively;
Compute the new threshold value Ti = 1

2(µ1 + µ2);
if |Ti − Ti−1| < ε then

done← True
end

end

Segment the image with the estimated threshold value.

Algorithm 6: K-means algorithm for automatic threshold computation of
grayscale images.

For use with python, use the module skimage. filter and the function
threshold_otsu .

19.4 Simulation example, k = 3 in two di-

mensions
The objective is to generate a set of 2-D random points (within k = 3 distinct classes)
and to apply the k-means clustering for separating the points and evaluating the
method (the classes are known!).

Write a function for generating a set of n random points around a point
with coordinates (x, y).

We will use the python function randn from the module numpy.random.

• Use this function to generate 3 set of points (in a unique matrix)
around the points (0, 0), (3, 4) and (−5,−3).
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• Use the python function sklearn . cluster .KMeans for separating the
points. The result is presented in Fig.19.1.

Verify the utility of the option n_init =10.

Figure 19.1: Resulting clustering of random points.

19.5 Color image segmentationusingK-means:

k = 3 in 3D

The k-means clustering is now used for segmenting the color image representing
the muscle cells ’Tv16.png’.

Which points have to be separated? Transform the original image into a
vector of size N × 3 (where N is the number of pixels) which represent the
3 components R, G and B of each image pixel.

The python function numpy.reshape does the same transformation.
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• Visualize the 3-D map (histogram) of all these color intensities.

• Make the clustering of this 3-D map by using the K-means method.

• Visualize the corresponding segmented image.
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19.6. Python correction

19.6.1 Manual thresholding

Visual analysis of histogram

When manually choosing a threshold value, one has to analysis the histogram (Fig.
19.2).

import numpy as np
2 import imageio
import matplotlib . pyplot as plt # plots

4 from skimage import filter # otsu thresholding

6 # read image
cells =imageio.imread( ’ cells .png’) ;

8

# display histogram
10 fig=plt . figure () ;

plt . hist ( cells . flatten () , 256)
12 fig . show();

fig . savefig ( " histo .pdf" ) ;

Figure 19.2: Original image and its histogram.

(a) Original image. (b) Histogram.
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Segmentation

1 fig=plt . figure () ;
plt . subplot (1,2,1)

3 plt . imshow(cells , plt . cm.gray) ; plt . title ( ’ Original image’) ;
plt . subplot (1,2,2)

5 plt . imshow(cells>80, plt . cm.gray) ; plt . title ( ’Manual segmentation’) ;
fig . savefig ( "manual.pdf") ;

19.6.2 Automatic thresholding

def autothresh (image):
2 """ Automatic threshold method

@param image: image to segment
4 @return : threshold value

"""
6 s = 0.5∗( np.amin(image) + np.amax(image));

done = False ;
8 while ~done:

B = image>=s;
10 sNext = .5∗( np.mean(image[B]) + np.mean(image[~B]));

done = abs(s-sNext) <.5;
12 s = sNext;

return s

The results are displayed using the following code (Fig. 19.3):

1 # Automatic threshold
s_auto= autothresh ( cells ) ;

3

# Otsu thresholding
5 s_otsu = filter . threshold_otsu ( cells ) ;

7 plt . figure () ;
plt . subplot (1,2,1)

9 plt . imshow(cells>s_auto, plt . cm.gray) ; plt . title ( ’Automatic thresholding ’ )
plt . subplot (1,2,2) ;

11 plt . imshow(cells>s_otsu , plt . cm.gray) ; plt . title ( ’Otsu thresholding ’ ) ;
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Figure 19.3: Automatic thresholding and thresholding by Otsu. Results are almost
identical because threshold values are 105.3 and 105, respectively.

(a) Automatic threshold. (b) Otsu threshold.

19.6.3 k-means clustering

Different techniques can be found in the scikit documentation. A point cloud will
first be generated, from 3 clustered cloud points. The objective is then to segment
all the points into their original cluster.

Imports

1 import numpy as np
import matplotlib . pyplot as plt

3 import time

5 from sklearn . cluster import KMeans
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Generation of point clouds

1 def generation (n, x, y) :
Y = np.random.randn(n, 2) + np.array ([[ x, y ]]) ;

3 return Y

5 points1=generation (100, 0, 0) ;
points2=generation (100, 3,4) ;

7 points3=generation (100, - 5, - 3) ;

9 pts=np.concatenate (( points1 , points2 , points3 ) ) ;
plt . plot ( pts [:,0], pts [:,1], ’ ro ’ ) ;

11

plt . show();

8 6 4 2 0 2 4 6
6

4

2

0

2

4

6

Figure 19.4: Point cloud.
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k-means clustering

n=3; # number of clusters
2

# k−means initialization
4 k_means = KMeans(init=’k−means++’, n_clusters=n, n_init =10)
t0 = time. time () ; # computation time

6 k_means.fit ( pts ) ; # kmeans segmentation

8 t_batch = time. time () - t0 ;

10 # retrieve results
k_means_labels = k_means.labels_ ;

12 k_means_cluster_centers = k_means. cluster_centers_ ;

14 # plot
fig = plt . figure ()

16 colors = [ ’#4EACC5’, ’#FF9C34’, ’#4E9A06’]

18 # k−means
# zip agregates values two by two

20 for k, col in zip (range(n) , colors ) :
my_members = k_means_labels == k

22 cluster_center = k_means_cluster_centers[k]

24 # display points
plt . plot ( pts[my_members, 0], pts[my_members, 1], ’w’,

26 markerfacecolor=col , marker=’. ’ )

28 # display centroid
plt . plot ( cluster_center [0], cluster_center [1], ’o’ ,

30 markerfacecolor=col , markeredgecolor=’k’ ,
markersize=6)

32 plt . title ( ’KMeans’)
plt . show()

34 fig . savefig ( "kmeans.pdf") ;
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19.6.4 Color image segmentation

Three different colors can be observed in the image. The objective is to separate
the 3 colors with the help of the K-means algorithm. Thus, the segmentation is
performed in the RGB color space, and each pixel is represented by a point in this
3D space. Initialization steps are identical to previous code. The data is converted
from a color image (of size (n,m, 3)) to a vector (of size (n×m, 3)), done by the
reshape function of numpy.

# load color image
2 cells =imageio.imread( ’Tv16.png’) ;
[nLines ,nCols,channels] = cells . shape

4 # reshape data
data = np.reshape( cells , (nLines∗nCols, channels) ) ;

6 k_means.fit (data ) ;
# convert result to an image

8 # as we got labels , we expand the dynamic (multiply by 70)
segmentation = 70∗np.reshape(k_means.labels_ , (nLines , nCols) ) ;

10

fig=plt . figure () ;
12 plt . imshow(segmentation, cmap=plt.cm.gray);

imageio.imwrite("segmentation_kmeans.png", segmentation) ;

3D sca�er plot

This is a method to display colors in the RGB cube. This method is really slow,
depending on your GPU.
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Figure 19.5: Segmentation result.

(a) Original image. (b) Segmented.

1 from mpl_toolkits .mplot3d import Axes3D # 3D scatter plot
# plot

3 colors = [ ’#4EACC5’, ’#FF9C34’, ’#4E9A06’]

5 fig = plt . figure ()
ax = fig .add_subplot (111, projection =’3d’ )

7

# Plot scatter points
9 for k, col in zip (range(n) , colors ) :

my_members = k_means_labels == k
11 cluster_center = k_means_cluster_centers[k]

ax. scatter (data[my_members, 0], data[my_members, 1],
13 data[my_members, 2], c=col)

ax. scatter ( cluster_center [0], cluster_center [1],
15 cluster_center [2], s=30, c=col )



20 Segmentation by region growing

This tutorial proposes to program the region growing algorithm.

20.1 Introduction

The region growing segmentation method starts from a seed. The initial region
first contains this seed and then grows according to

• a growth mechanism (in this tutorial, the N8 will be considered)

• an homogeneity rule (predicate function)

The algorithm is simple and barely only needs a predicate function:

Data: I : image
Data: seed: starting point
Data: queue: queue of points to considere
Result: visited: boolean matrix, same size as I
begin

queue.enqueue( seed );
while queue is not empty do

p = queue.dequeue();
foreach neighbor of p do

if not visited(p) and neighbor verifies predicate then

queue.enqueue( neighbor );
visited( neighbor ) = true;

end

end

end

return visited
end

Algorithm 7:

To get the coordinate of the mouse click, use the matplotlib connect utilities.
Define a function def onpick.
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# start by displaying a figure ,
2 # ask for mouse input ( click )

fig = plt . figure () ;
4 ax = fig .add_subplot (211) ;
ax. set_title ( ’ Click on a point ’ )

6 # load image
img = misc. ascent () ;

8 ax.imshow (img, picker = True, cmap = plt .gray () ) ;
# connect click on image to onpick function

10 fig .canvas.mpl_connect ( ’ button_press_event ’ , onpick) ;
plt . show () ;

12 def onpick(event) :
""" connector """

20.2 Region growing implementation

The seed pixel is denoted s.

• Code the predicate function: for an image f and a pixel p, p is in the
same segment as s implies |f(s)− f(p)| ≤ T .

• Code a function that performs region growing, from a starting pixel
(seed).

• Try others predicate functions like:

– pixel p intensity is close to the region mean value, i.e.:

|I(p)−ms| ≤ T

– Threshold value Ti varies depending on the region Ri and the
intensity of the pixel I(p).It can be chosen this way:

Ti = (1− σi

mi
) · T



20.2 Region growing implementation 231

20.3. Python correction

20.3.1 imports

1 import queue
from scipy import misc

3 import matplotlib . pyplot as plt
import numpy as np

20.3.2 Predicate

This function defines the agregation condition.

def predicate (image, i , j , seed) :
2 f=image[i , j ];

g=image[seed[0], seed [1]];
4 return abs( f -g)<20

The following code is used to start the region growing from a pixel manually
clicked on an image.

# start of code
2 fig = plt . figure () ;
ax = fig .add_subplot (211) ;

4 ax. set_title ( ’ Click on a point ’ )

6 # load image
img = misc. ascent () ;

8 ax.imshow(img, picker=True,cmap=plt.gray () ) ;

10 fig .canvas.mpl_connect(’button_press_event ’ , onpick)
plt . show();

And here comes the main function for region growing. The result is illustrated
in Fig.20.1.
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1 def onpick (event) :
"""

3 this functions gets the event ’ click ’, and starts the region growing algorithm
Notice that img is a global variable

5 """
print ( "x, y: " , event . xdata , event .ydata) ;

7 # original pixel
seed = np.array ([ int (event .ydata) , int (event . xdata) ]) ;

9 q = queue.Queue () ;

11 myfunctions = [ predicate , predicate2 , predicate3 ];

13 for index , f in enumerate(myfunctions):

15 # initializes the queue
q.put (seed) ;

17

#Visited matrix : result of segmentation
19 # this matrix will contain 1 if in the region , −1 if visited but not in the

→֒ region , 0 if not visited
visited = np.zeros (img.shape)

21 #−−−−−−−−−−−−−−−

# Start of algorithm
23 visited [seed [0], seed [1]] = 1;

25 while not q.empty () :
p = q. get () ;

27

for i in range (max (0, p[0] - 1) , min (img.shape [0], p[0] + 2) ) :
29 for j in range (max (0, p[1] - 1) , min (img.shape [1], p[1] + 2) ) :

if not visited [ i , j ]:
31 if f (img, i , j , seed , visited ) :

visited [ i , j ] = 1;
33 q.put (np.array ([ i , j ]) ) ;

else :
35 visited [ i , j ] = - 1;

37 # visited matrix contains the segmentation result
#display results

39 ax = fig .add_subplot (142+index) ;
ax. imshow (visited == 1) ;

41

imageio.imsave(f .__name__ +’_seg.python.png’, ( visited ==1).astype( ’ int ’ ) )
43

fig .canvas.draw () ;
45 plt . show();

return ;

Notice that values−1 of the visited matrix avoid testing multiple times the same
pixel. In the predicate function, the visited matrix is used in case of adapting the
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predicate to the current region. In the next case, the candidate pixel’s graylevel is
compared to the mean gray value of the region. The results are illustrated Fig.20.1.

def predicate2 (image, i , j , seed , visited ) :
2 f = int (image[i , j ]) ;

m = np.mean(image[visited==1]) ;
4 return abs ( f - m) < 20

Another predicate function would be:

def predicate3 (image, i , j , seed , visited ) :
2 f = int (image[i , j ]) ;

m = np.mean(image[visited==1]) ;
4 s = np.std (image[ visited ==1]) ;

return abs ( f - m) < 20 ∗ (1 -s/m)
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Figure 20.1: Region growing illustration for pixel (189,136). The segmentation result
highly depend on the order used to populate the queue, on the predicate function
and on the seed pixel.

(a) Original image. (b) Segmented region.

(c) Segmented region. (d) Segmented region.



21 Hough transformand line detec-
tion

This tutorial introduces the Hough transform. Line detection operators are
implemented.

21.1 Introduction
This tutorial deals with line detection in an image. For a given point of coordinates
(x, y) in R2, there exists an infinite number of lines going by this point, with
different angles θ. These lines are represented by the following equation:

ρ = x · cos(θ) + y · sin(θ).

Thus, for each point (x, y) (Fig. 21.1a) corresponds a curve parametered by
[θ, ρ], where θ∈ [0;2π] (Fig. 21.1b). The intersection of these curves represents a
line (in this case, y = x).

Figure 21.1: Representation of the Hough transform.
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21.2 Algorithm

The (general and simple) method for line detection is then:
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1. Compute contours detections (get a binary image BW).

2. Apply the Hough transform on the contours BW.

3. Detect the maxima of the Hough transform.

4. Get back in the Euclidean space and draw the lines on the image.

Results should look like in Fig. 21.2.

Figure 21.2: Lines detection via Hough transform.

(a) Hough transform and maxima detection. Angles θ

are represented in abscissa, pixels ρ are represented in
ordinates. The detection of the absolute maxima of this
images will lead to the lines.

(b) Line detection.

21.3 Hough transform

Code a function that will transform each point of a binary image into a
curve in the Hough space. For each curve, increment each pixel by one in
the Hough space.



21.4 Maxima detection 237

21.4 Maxima detection

Use or code a function to detect maxima (regional maxima). For each maxi-
mum, keep only one point.

21.5 Display lines

For each maximum, display the corresponding line above the original image.
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21.6. Python correction

This correction makes use of the python modules numpy, opencv, skimage and
matplotlib.

1 import numpy as np
import cv2

3 import matplotlib . pyplot as plt
from skimage. feature import peak_local_max

21.6.1 Contours detection

The contours are detected using the Canny edge detection method. In this code,
the method from OpenCV is employed, see Fig.21.3a.

img = cv2. imread( ’TestPR46.png’) ;
2 plt . figure ()
plt . imshow(img)

4

# perform contours detection
6 edges = cv2.Canny(img,100,200) ;
plt . figure ()

8 plt . imshow(edges)

21.6.2 Hough transform

Notice that OpenCV contains Hough fonctions: HoughLines and HoughLinesP. The
result (sinogram) of the image is presented Fig.21.3b.
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(a) Canny edge detection.
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(b) Representation of the sinogram and detec-
tion of the maxima in the Hough space.

Figure 21.3: The algorithm of the Hough line detection consists in detecting the
edges, then representing each pixel in the Hough space and finally detecting the
maximal value in the sinogram.

## Hough transform
2 # size of image
X = img.shape [0];

4 Y = img.shape [1];

6 angular_sampling = 0.01; # angles in radians

8 # initialization of matrix H
rho_max = np.hypot(X,Y);

10 rho = np.arange(-rho_max, rho_max, 1) ;
theta = np.arange (0, np.pi , angular_sampling) ;

12 cosTheta = np.cos( theta ) ;
sinTheta = np.sin ( theta ) ;

14 H = np.zeros ([ rho. size , theta . size ]) ;

16 # Hough transform
# loop on all contour pixels

18 for i in range(X):
for j in range(Y) :

20 if (edges[ i , j ] != 0) :
R = i ∗cosTheta + j ∗sinTheta ;

22 R = np.round(R + rho. size /2) . astype( int ) ;
H[R,range(theta . size ) ] += 1;

24

plt . imshow(H);
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21.6.3 Maxima detection

The function peak_local_max from skimage is used to detect local maxima in the Hough
transform. Matrix H is first smoothed with a Gaussian filter and represented in
Fig.21.3b.

# Maxima detection
2 G = cv2.GaussianBlur(H, (5,5) , 5) ;
maxima = peak_local_max(H, 5, threshold_abs=150, num_peaks=5);

4 plt . figure () ;
plt . imshow(G);

6

# display maxima on Hough transform image G
8 plt . scatter (maxima [:,1], maxima [:,0], c=’r ’ ) ;
plt . show();

21.6.4 Resulting lines

The result is shown in Fig.21.4.

1 # display the results as lines in image
for i_rho , i_theta in maxima:

3 print rho[i_rho ], theta [ i_theta ]
a = np.cos( theta [ i_theta ])

5 b = np.sin ( theta [ i_theta ])
y0 = a∗rho[i_rho]

7 x0 = b∗rho[i_rho]
y1 = int (y0 + 1000∗( -b) )

9 x1 = int (x0 + 1000∗(a) )
y2 = int (y0 - 1000∗( -b) )

11 x2 = int (x0 - 1000∗(a) )

13 cv2. line (img,(x1,y1) ,( x2,y2) ,(0,0,255) ,2)

15 # display in window
cv2. imshow(’hough transform’, img);

17 # write resulting image
cv2. imwrite( ’cv_hough.png’, img);
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Figure 21.4: Lines detected with the Hough transform.

21.6.5 OpenCV builtin function

import cv2
2 import numpy as np

4 # read image and convert it to gray
img = cv2. imread( ’TestPR46.png’)

6 gray = cv2. cvtColor (img,cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 100, 200, apertureSize = 3)

8

# threshold value for lines selection :
10 # lower value means more lines

threshold = 150;
12

# perform lines detection
14 lines = cv2.HoughLines(edges, 1, np.pi /180, threshold )

16 # display lines
for rho, theta in lines [0]:

18 print rho, theta
a = np.cos( theta )

20 b = np.sin ( theta )
x0 = a∗rho

22 y0 = b∗rho
x1 = int (x0 + 1000∗( -b) )

24 y1 = int (y0 + 1000∗(a) )
x2 = int (x0 - 1000∗( -b) )

26 y2 = int (y0 - 1000∗(a) )
print x1, y1, x2, y2

28 cv2. line (img,(x1,y1) ,( x2,y2) ,(0,0,255) ,2)





22 Active contours

This tutorials aims at introducing the active contours (a.k.a. snakes) method
as originally presented in [18]. It is a segmentation method based on the
optimization of a contour that will converge to a specific object.

22.1 Definition

A snake is a parametric curve v(s) with s∈ [0; 1[. The energy functional is represented
by:

Esnake =

∫ 1

0
Eint(v(s))ds+

∫ 1

0
Eext(v(s))ds.

The internal energy is detailed in Eq.22.1. The first order derivation constrains
the length of the curve, the second order derivation constrains the curvature. The
parameters α and β a priori depend on s, but for simplicity, constant values will be
taken.

Eint(v(s)) =
1

2

(

α(s)|v′(s)|2
︸ ︷︷ ︸

length

+β(s)|v′′(s)|2
︸ ︷︷ ︸

curvature

)

(22.1)

The snake will be attracted by some edges points from the external energy (the
image to be segmented). The, the energy functional will be in a local minimum: it
is shown that the Euler-Lagrange equation is satisfied:

−αv(2) + βv(4) +∇Eext = 0

with v(2) and v(4) denoting the 2nd and 4th order derivatives. To solve this equation,
the gradient descent method is employed: the snake is now transformed into a
function of the position s and the time t, with Fext = −∇Eext

∂s

∂t
= αv(2) − βv(4) + Fext
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Figure 22.1: Illustration of the active contours segmentation method. Two energies
are at stake: internal energies depend only on the snake shape and control points,
external energies are related to the image properties.

22.2 Numerical resolution

The spatial derivatives are approximated with the finite difference method, and the
snake is now composed of n points, i ∈ [1;n]:

x(2) = xi−1 − 2xi + xi+1

x(4) = xi−2 − 4xi−1 + 6xi − 4xi+1 + xi+2

The gradient descent method can be written as, with γ being the time step and
controls the convergence speed:

xt − xt−1

γ
= A · xt + fx(xt−1, yt−1)

yt − yt−1

γ
= A · yt + fy(xt−1, yt−1)

with

A =













−2α−6β α+4β −β 0 ··· 0 −β α+4β
α+4β −2α−6β α+4β −β 0 ··· 0 −β

−β α+4β −2α−6β α+4β −β 0 ··· 0
0 −β α+4β −2α−6β α+4β −β 0 ···
...

. . .
. . .

. . .
. . .

...
0 ··· −β α+4β −2α−6β α+4β −β 0
0 ··· 0 −β α+4β −2α−6β α+4β −β

−β 0 ··· 0 −β α+4β −2α−6β α+4β
α+4β −β 0 ··· 0 −β α+4β −2α−6β













The forces fx and fy are the components of Fext. For example for an image I ,
if ∗ denotes the convolution and Gσ a gaussian kernel of standard deviation σ:

Fext = −∇(‖∇(Gσ ∗ I)‖)
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• Generate a binary image (of size n × n pixels, with values 0 and 1)
containing a disk (of a radius R).

• Generate the initial contour as an ellipse, with the same center as the
disk.

• Generate the pentadiagonal matrix A. The different parameters can
be α = 10−5 and β = 0.05.

• Program the iterations and visualize the results. For example, γ = 200
and 1000 iterations may give an idea of the parameters to use.
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22.3. Python correction

1 import numpy as np
import matplotlib . pyplot as plt

3 import scipy
import scipy .ndimage. filters

5 from scipy import interpolate
import progressbar

22.3.1 Binary image generation

A disk (Fig.22.2) is generated via the meshgrid function.

# disk : number of points
2 n = 1024;
# disk : radius

4 R = 300;
# construct a binary image of a disk

6 X, Y = np.meshgrid(np.arange(-n /2,n /2,1) , np.arange(-n /2,n /2,1) ) ;
I = X∗∗2+Y∗∗2<=R∗∗2;

8 I = I . astype( ’ float ’ )

Figure 22.2: Circle.

22.3.2 Initial contour

The choice of the initial contour (Fig.22.3) is crucial in this method. The parameters
used in this example ensure the convergence of the snake.



22.2 Numerical resolution 247

step =.01;
2 x = n/2 + 400 ∗ np.cos(np.arange (0,2∗ np.pi+step , step ) ) ;
y = n/2 + 200 ∗ np.sin (np.arange (0,2∗ np.pi+step , step ) ) ;

The different parameters are defined by:

1 k=.1;
alpha = .0001;

3 beta = 10;
gamma= 100;

5 iterations = 1000;

Figure 22.3: Circle.
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22.3.3 Matrix construction

This is maybe the hardest part of this code, with the use of the scipy . sparse . diags

function.

N = x. size ;
2 X = np.array ([ -beta , alpha+4∗beta , -2∗alpha-6∗beta , alpha+4∗beta , -beta , -beta ,

→֒ alpha+4∗beta , -beta , alpha+4∗beta ])
A = scipy . sparse . diags (X, np.array ([ - 2, - 1, 0, 1, 2, N-2, N-1, -N+2, -N+1]), shape

→֒ =(N,N)) . toarray () ;
4 AA = np. identity (N)-gamma∗A;
invAA = np. linalg . inv(AA);
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22.3.4 External forces

The external forces are computed with the following code. Notice that axis 0
correspond to the vertical axis (y) and and the axis 1 corresponds to the horizontal
axis (x).

1 # external forces computation
G = scipy .ndimage. filters .gaussian_gradient_magnitude(I , 30) ;

3 # Notice that horizontal axis x is 1, and vertical axis is 0
Fy = scipy .ndimage.prewitt (G, axis=0) ;

5 Fx = scipy .ndimage.prewitt (G, axis=1) ;

22.3.5 Display results

To enhance the role of the external forces, the arrows showing the force are displayed
(quiver function, see Fig.22.4).

imshow(I ,[])
2 hold on
plot ([x;x (1) ], [y; y (1) ], ’g’ , ’ linewidth ’ , 3) ;

4 # display arrows for external forces
step=20;

6 subx = 1: step : size ( I ,1) ;
suby = 1: step : size ( I ,2) ;

8 [Xa, Ya] = meshgrid(subx, suby) ;
quiver (Xa, Ya, Fx(subx, suby) , Fy(subx,suby)) ;

Figure 22.4: External forces that will be applied to the snake.
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22.3.6 Convergence algorithm

1 # interpolation methods to get values of the external forces at the
# coordinates of the snake

3 sx , sy = I . shape;
ix = interpolate . interp2d (np.arange(n) , np.arange(n) , Fx) ;

5 iy = interpolate . interp2d (np.arange(n) , np.arange(n) , Fy) ;
# loop for convergence of the snake

7 bar = progressbar . ProgressBar () ;
for index in bar(range( iterations ) ) :

9 fex = np.array ([ float ( ix (XX,YY)) for XX,YY in zip (x,y) ]) ;
fey = np.array ([ float ( iy (XX,YY)) for XX,YY in zip (x,y) ]) ;

11 #print (np.max(fex) , np.min(fex) )
x = np.matmul(invAA, x+gamma∗fex);

13 y = np.matmul(invAA, y+gamma∗fey);

The results are displayed in Fig.22.5.

Figure 22.5: Result of the snake converging toward the disk, after 1000 iterations
with the proposed parameters.
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23 Watershed

This tutorial aims to study the watershed transform for image segmentation.
In image processing, an image can be considered as a topographic surface.
If we flood this surface from its minima and if we prevent the merging of
the water coming from different sources, we partition the image into two
different sets: the catchment basins separated by the watershed lines.

The different processes will be applied on the following images:

(a) circles (b) gel

23.1 Watershed and distance maps

The objective is to individualize the disks by disconnecting them with the distance
map.

• Calculate the distance map of the image ’circles’.

• Take the complementary of this distance map and visualize its minima.

• Calculate the watershed transform of the inverted distance map.

• Subtract the watershed lines to the original image.

Look at the documentation of scipy .ndimage.morphology for Euclidean or
Chamfer distance transform. Reconstruction operator can be found in
skimage.morphology.
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23.2 Watershed and image gradients

• Calculate the Sobel gradient of the image ’gel’.

• Visualize the minima of the image gradient.

• Apply the watershed transform on the gradient image.

The watershed transform, applied in a direct way, leads to an over-segmentation.
To overcome this limitation, the watershed operator can be applied on a filtered
image.

• Smooth the original image with a low pass filter. To stay in the math-
ematical morphology field, you can use an alternate morphological
filter (opening followed by closing). A Gaussian filter is also a good
solution.

• Calculate the gradient operator on the filtered image.

• Calculate the corresponding watershed.

23.3 Constrained watershed by markers

In order to indivudualize the image spots, we have to determine the internal and
external markers for the constrained watershed.

• Calculate the gradient (Sobel) of the filtered image.

• Calculate the internal markers (minima of the filtered image) and
external (watershed of the filtered image) as minima of the gradient
image.

• Calculate the corresponding watershed.

• Superimpose the watershed lines of the resulting segmentation to the
original image.
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23.4. Python correction

import numpy as np
2 from scipy import misc
import matplotlib . pyplot as plt

4 from scipy import ndimage as ndi
from scipy .ndimage.morphology import distance_transform_edt

6 from scipy .ndimage.morphology import distance_transform_cdt
from skimage import morphology

23.4.1Watershed and distance map

Regional maxima

The following code is an implementation of the regional maxima (frommathematical
morphology definition). It deals with the case of float images as input.

1 def rmax(I) :
"""

3 Own version of regional maximum
This avoids plateaus problems of peak_local_max

5 I : original image, int values
returns : binary array , with True for the maxima

7 """
I = I . astype( ’ float ’ ) ;

9 I = I / np.max(I) ∗ 2∗∗31;
I = I . astype( ’ int32 ’ ) ;

11 h = 1;
rec = morphology.reconstruction( I , I+h);

13 maxima = I + h - rec ;
return maxima>0

Distance map followed by a watershed

This method is a classical way of performing the separation of some objects by
proximity or influence zones. It is illustrated in Fig.23.1.
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A = imageio.imread( ’ circles . tif ’ ) ;
2 # chamfer distance gives integer distances
dm = distance_transform_edt (A);

4 # regional maxima
local_maxi = rmax(dm);

The local maxima will be used as a marker for the watershed operation, in order
to perform the separation of the grains, see Fig.23.1.

1 # watershed segmentation for separating the circles
markers = ndi . label ( local_maxi , np.ones ((3, 3) ) ) [0]

3 W = morphology.watershed(-dm, markers, watershed_line=True)
# separation of the grains

5 B = A & W==0;
separation = ndi . label (B, np.ones ((3,3) ) ) [0];

Figure 23.1: Steps of the separation of the grains.

(a) Original image. (b) Distance map. (c) Separation of the grains.

23.4.2Watershed and image gradients

The gradient image amplifies the noise. Thus, the watershed operator directly ap-
plied to the gradient of the image produces an over-segmented image (see Fig.23.2).
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def sobel_mag(im):
2 """

Returns Sobel gradient magnitude
4 im: image array of type float

returns : magnitude of gradient (L2 norm)
6 """

dx = ndi . sobel (im, axis=1) # horizontal derivative
8 dy = ndi . sobel (im, axis=0) # vertical derivative

mag = np.hypot(dx, dy) # magnitude
10 return mag;

Figure 23.2: Performing the watershed on the gradient image is usually not a good
idea.

(a) Original image.
(b) Amplitude of the gradient (So-
bel). (c) Watershed segmentation.

In fact, this method produces as many segments as there are minima in the
gradient image Fig.23.3.

Figure 23.3: Local minima of the gradient image.

Solution: filtering the image

Before evaluating the gradient, the image is filtered. The number of minima is
lower and this leads to a less over-segmented image (Fig.23.4).
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SE = morphology.disk(2) ;
2 O = morphology.opening(gel, selem=SE);
F = morphology.closing(O, selem=SE).astype( ’ float ’ ) ;

4 g = sobel_mag(F) . astype( ’ float ’ ) ;

Figure 23.4: Even if the gradient is performed on the filtered image, there is still a
high over-segmentation.

23.4.3Watershed constrained by markers

The watershed can be constrained by markers: the markers can provide the correct
number of regions. This method imposes both the background (external markers)
and the objects (internal markers). The results are illustrated in Fig.23.5. The
ultimate erosion of the internal markers is used to deconnect these markers from
the external markers.

local_maxi = rmax(255-F) ;
2 markers = ndi . label ( local_maxi , np.ones ((3, 3) ) ) [0]
W = morphology.watershed(F, markers, watershed_line=True)

4

markers2 = local_maxi | (W==0);
6 M = ndi. label (markers2, np.ones ((3, 3) ) ) [0]
segmentation = morphology.watershed(g, M, watershed_line=True);

8

gel [segmentation==0] = 255;
10 plt . imshow(gel);

plt . show();
12 imageio.imwrite("segmentation.python.png", gel ) ;
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Figure 23.5: Watershed segmentation by markers.

(a) Markers of the back-
ground and of the objects. (b) Final segmentation.





24 Segmentation of follicles

This practical work aims to investigate image segmentation with a direct
application to ovarian follicles. The overall objective is to extract and quan-
tify the granulosa cells and the vascularization of each follicle included in
an ewe’s ovary.

The image to be processed is a 2D histological image of an ewe’s ovary acquired
by optical microscopy in Fig.24.1. The presented image contains one entire follicle
(the white region and its neighborhood) and a part of a second one (right-upper
corner). The follicle is composed of different parts shown in: antrum, granulosa
cells and vascularization. The theca is the ring region around the antrum where
the follicle is vascularized.

Figure 24.1: Different parts of the follicles, to be segmented.

(a) Original image with one
entire follicle (white region
and its neigborhood).

(b) Antrum (dark gray),
granulosa cells (light gray)
and vascularization (white)
of the follicle. (c) Theca.

24.1 Vascularization

• Load and visualize the image.

• Extract the antrum of the follicle.

• Extract the vascularization (inside a ring around the antrum).
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24.2 Granulosa cells

Which kind of processing could be suitable for extracting the granulosa
cells?

24.3 Quantification

Provide some geometrical measurements of the different entities of the
follicle (antrum, vascularization, granulosa cells).
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24.4. Python correction

import numpy as np
2 import matplotlib . pyplot as plt
from scipy import misc,ndimage

4 from skimage import morphology

24.4.1 Vascularization

Antrum segmentation

The first step consists in the segmentation of the antrum by thresholding the blue
component. Some post-processes are used to remove artifacts such as holes. This is
illustrated in Fig. 24.2.

A = imageio.imread( ’ follicle .png’) ;
2 plt . imshow(A);
plt . show();

4 ## Antrum
# segmentation by mathematical morphology

6 # manual selection of the antrum
B = A [:,:,2];

8 antrum = B > 220;
L = morphology.label(antrum, connectivity =2) ;

10 antrum = L == L [300,300];
antrum = ndimage.morphology. binary_fill_holes (antrum);

12 plt . imshow(antrum);
plt . title ( ’Antrum’)

14 plt . show();

Theca segmentation

The second step provides the segmentation of the theca which is extracted as a
spatial region (corona) adjacent to and outside the antrum. The width of the corona
is selected by the user (expert).
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se40 = morphology.disk(40) ;
2 theca = morphology.binary_dilation (antrum, selem = se40) ;
theca = theca - antrum;

4 plt . imshow(theca); plt . title ( ’Theca’)
plt . show()

Vascularization segmentation

The final step extracts the vascularization of the considered follicle. Pixels belonging
to the vascularization are considered to have a low blue component and they should
also be included in the antrum of the follicle.

1 vascularization = B < 140;
vascularization = vascularization ∗ theca ;

3 plt . imshow(vascularization ) ;
plt . title ( ’ vascularization ’ )

5 plt . show();
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Results

Figure 24.2: Extraction of the different components of the follicle.

(a) Original image.

(b) Antrum. (c) Theca. (d) Vascularization.

24.4.2 Granulosa cells

First solution

The granulosa cells have a low contrast, so it is difficlut to use thresholding tech-
niques. But we know they are localized between the antrum and the vascularization.
Nevertheless the vascularization is not a closed region outside the antrum. There-
fore, the proposed solution consits in firt trying to close the vascularization region
and taking the corona between this region and the antrum. The result is shown in
Fig. 24.3.
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1 se10 = morphology.disk(10) ;
dil = 1-morphology.binary_closing( vascularization , se10) ;

3 L = morphology.label( dil , connectivity =1) ;
dil = L == L [300,300];

5 granulosa = dil - antrum;
plt . imshow(granulosa);

7 plt . title ( ’granulosa ’ )
plt . show()

Figure 24.3: Extraction of the granulosa cells of the follicle.

(a) Original image. (b) Granulosa cells.
(c) Segmentation of the differ-
ent parts.

Second solution

This first solution is not really robust. The closing of the vascularization region is
not really accurate. A more robust solution consists in using deformable models
to get the corona between the vascularization and the antrum. But this kind of
method is out of the scope of this tutorial.

24.4.3�antification

The quantification is easy to process. In addition, we can represent the different
extracted components of the follicle in false colors.
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result = antrum + 2∗granulosa + 3∗ vascularization ;
2 plt . imshow(result , cmap=’jet’ ) ;
plt . show();

4 plt . imsave(" result .png", result , cmap=’jet’ ) ;

6 follicle = antrum + theca ;
q_vascularization = np.sum( vascularization ) / np.sum( follicle ) ;

8 print ( ’ vascularization : ’ , q_vascularization )
q_granulosa = np.sum(granulosa)/np.sum( follicle ) ;

10 print ( ’Granulosa: ’ , q_granulosa) ;

This quantification gives:

vascularization : 0.0428495233516
2 Granulosa: 0.0913707490403





25 ImageRegistration

This tutorial aims to implement the Iterative Closest Point (ICP) method
for image registration. More specifically, we are going to estimate a rigid
transformation (translation + rotation without scaling) between two images.

The different processes will be applied on T1-MR images of the brain in Fig.25.1.

Figure 25.1: Original images.

(a) brain1 (b) brain2

25.1 Transformation estimation

A classical method in image registration first consists in identifying and matching
some characteristic points by pairs. Thereafter, the transformation is estimated
from this list of pairs (displacement vectors).

25.1.1 Preliminaries

Pairs of points are first manually selected.

• Read and visualize the two MR images ’brain1’ and ’brain2’ (moving
and source images).

• Manually select a list of corresponding points.
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There is no built-in function for manual selection of pairs of points. You
can use the following points or code your own function, see tutorial 20

# define control points
2 A_points = np.array ([[136, 100], [127, 153], [96, 156], [87,

→֒ 99]]) ;
B_points = np.array ([[144, 99] , [109, 140], [79, 128], [100,

→֒ 74]]) ;

25.1.2 Rigid transformation

With this list of pairs (pi, qi)i, this tutorial proposes to estimate a rigid transfor-
mation between these points. It is composed of a rotation and a translation (and
not scaling). For doing that, we make a Least Squares (LS) optimization, which is
defined as follows. The parameters of the rotation R and the translation t minimize
the following criterion:

C(R, t) =
∑

i

||qi −R.pi − t||2

Calculation of the translation :

The optimal translation is characterized by a null derivative of the criterion:

∂C

∂t
= −2

∑

i

(qi −R.pi − t)T = 0⇔
∑

i

qi −R.
(
∑

i

pi

)

= N.t

where N denotes the number of matching pairs. By denoting p̄ = 1
N

∑

i pi and
q̄ = 1

N

∑

i qi the barycenters of the point sets and by changing the geometrical
referential: p′

i = pi − p̄ et q′
i = qi − q̄, the criterion can be written as:

C ′(R) =
∑

i

||q′
i −R.p′

i||2

The estimated rotation R̂ will provide the expected translation:

t̂ = q̄ − R̂.p̄ (25.1)

calculation of the rotation by the SVD method:

We will use the following theorem: Let U.D.V T = K a singular decomposition
of the correlation matrix K = q′T.p′, for which the singular values are sorted in
the increasing order. The minimum of the criterion: C(R) =

∑

i ||q′
i −R.p′

i||2 is
reached by the matrix :

R̂ = U.S.V T (25.2)

with S = DIAG(1, . . . , 1,det(U).det(V )).
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• Code a function that takes as parameters the pairs of points, and
returns the rigid transformation elements of rotation R̂ and translation
t̂ as defined in Eqs.25.1 and 25.2.

• Apply the transformation to the moving image.

• Visualize the resulting registered image.

• See svd function from scipy . linalg or numpy.linalg.

• See cv2.warpAffine and cv2.transform for transformation
application

25.2 ICP-based registration

When the points are not correctly paired, it is first necessary to reorder them before
estimating the transformation. In this way, the ICP (iterative Closest Points) consists
in an iterative process of three steps: finding the correspondence between points,
estimating the transformation and applying it. The process should converge to the
well registered image.

To simulate the mixing of the points, randomly shuffle them selected on the
first image and perform the registration with the previous method.

See np.random.permutation.

1. From the list of the characteristic points p of the image ’brain1’, find
the nearest neighbors q in the image ’brain2’. Be careful to the order
of the input arguments.

2. Estimate the transformation T by using the LS minimization coded
previously.

3. Apply this transformation to the points p, find again the correspon-
dence between these resulting points T (p) and q and estimate a new
transformation. Repeat the process until convergence.
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4. Visualize the resulting registered image.

Look at scipy . spatial . cKDTree for nearest neighbor search.

25.3 Automatic control points detection

The manual selection of points may be fastidious. Two simple automatic methods
for detecting control points are the so-called Harris corners detection or Shi-Tomasi
corner detector.

The function goodFeaturesToTrack returns the corners from the
Shi-Tomasi method.

Replace the manual selection in the two previous parts of this tutorial.

Notice that the automatic points detection does not ensure to give the same
order in the points of the two images. More generally, other salient points detectors
do not give the same number of points, and thus the algorithms have to remove
outliers (non matching points). This case is not taken into account in this tutorial.
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25.4. Python correction

from scipy import misc
2 import matplotlib . pyplot as plt
import numpy as np

4 import cv2
from scipy . spatial import cKDTree

25.4.1 Transformation estimation based on corresponding points

Image visualization

The following code is used to display the images (see Fig.25.2).

1 # Read images and display
A=imageio.imread("brain1 .bmp")

3 B=imageio.imread("brain2 .bmp")
plt . imshow(A,cmap=’gray’);

5 plt . show();
plt . imshow(B,cmap=’gray’);

7 plt . show();

9 # define control points
A_points = np.array ([[136, 100], [127, 153], [96, 156], [87, 99]]) ;

11 B_points = np.array ([[144, 99], [109, 140], [79, 128], [100, 74]]) ;

Figure 25.2: Initial images.

(a) Moving image. (b) Source image. (c) Superimposition.
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If you want to display and save the fusion of both images, you can use this
function:

1 def superimpose(G1, G2, filename=None):
"""

3 superimpose 2 images, supposing they are grayscale images and of same shape
"""

5 r , c=G1.shape;
S = np.zeros (( r , c ,3) ) ;

7 S [:,:,0] = np.maximum(G1-G2, 0)+G1;
S [:,:,1] = np.maximum(G2-G1, 0)+G2;

9 S [:,:,2] = (G1+G2) / 2;
S = 255 ∗ S / np.max(S);

11 S = S.astype( ’ uint8 ’ ) ;
plt . imshow(S);

13 plt . show()
if filename!=None:

15 cv2. imwrite(filename , S) ;
return S

Manual selection of corresponding points

With openCV, there is not built-in function to make a manual selection of pairs
of control points. The following code uses a global variable I in order to manage
the display of the points, which are finally stored into the pts variable. First, the
callback function on_mouse is defined to handle mouse event.

pts = [];
2 def on_mouse(event, x , y, flags , param):

"""
4 callback method for detecting click on image

It draws a circle on the global variable image I
6 """

global pts , I ;
8 if event == cv2.EVENT_LBUTTONUP:

pts . append((x, y) ) ;
10 cv2. circle ( I ,( x ,y) , 2, (0,0,255) , - 1)

The function cpselect allows the selection of multiple points.
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def cpselect () :
2 """

method for manually selecting the control points
4 It waits until ’q’ key is pressed .

"""
6 cv2.namedWindow("image")

cv2.setMouseCallback("image", on_mouse)
8 print ( "press ’q’ when finished" )

# keep looping until the ’q’ key is pressed
10 while True:

# display the image and wait for a keypress
12 cv2. imshow("image", I )

key = cv2.waitKey(1) & 0xFF
14

# if the ’c ’ key is pressed , break from the loop
16 if key == ord( "q" ) :

break
18

# close all open windows
20 cv2.destroyAllWindows()

return pts ;

Transformation estimation

The rigid transformation is estimated from the corresponding points by the follow-
ing function:
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1 def rigid_registration (data1 , data2) :
"""

3 Rigid transformation estimation between n pairs of points
This function returns a rotation R and a translation t

5 data1 : array of size nx2
data2 : array of size nx2

7 returns transformation matrix T of size 2x3
"""

9 data1 = np.array(data1) ;
data2 = np.array(data2) ;

11

# computes barycenters , and recenters the points
13 m1 = np.mean(data1,0) ;

m2 = np.mean(data2,0) ;
15 data1_inv_shifted = data1-m1;

data2_inv_shifted = data2-m2;
17

# Evaluates SVD
19 K = np.matmul(np.transpose( data2_inv_shifted ) , data1_inv_shifted ) ;

U,S ,V = np. linalg . svd(K);
21

# Computes Rotation
23 S = np.eye (2) ;

S [1,1] = np. linalg . det (U)∗np. linalg . det (V);
25 R = np.matmul(U,S);

R = np.matmul(R, np.transpose (V)) ;
27

# Computes Translation
29 t = m2-np.matmul(R, m1);

31 T = np.zeros ((2,3) ) ;
T [0:2,0:2] = R;

33 T [0:2,2] = t ;
return T;

Then, you can apply this function to the manually selected points.
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# 1st case , rigid registration , with pairs of points in the correct order
2 T = rigid_registration (A_points, B_points) ;

4 # Apply transformation on control points and display the results
data_dest = applyTransform(A_points, T) ;

6 I = B.copy() ;
for pb,pa in zip ( data_dest , B_points) :

8 cv2. circle ( I , totuple (pa) , 1, (255,0,0) , - 1)
cv2. circle ( I , totuple (pb) , 1, (0,0,255) , - 1)

10 plt . imshow(I);
plt . show();

12 # Apply transformation on image
rows, cols= B.shape;

14 dst = cv2.warpAffine(A,T, ( cols , rows)) ;
plt . imshow(dst);

16 superimpose(dst , B, "rigid_manual .png") ;

Figure 25.3: Result of the registration for the manually selected control points.

(a) Without registration. (b) With registration.

The result is good, because the manual selection of the points is good (the points
are given in the correct order for both images).

25.4.2 ICP registration

Random permutation of points

The following code randomly shuffles the points of the first vector. The result is of
course a wrongly registered image, see Fig.25.4.
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# random permutation of the points
2 p = np.random.permutation(np.arange(4) ) ;
A_points = A_points[p];

4 T = rigid_registration (A_points, B_points) ;

Figure 25.4: Result of the registration for when the control points are not found in
the same order.

(a) Matching pairs of points. (b) Permulation of the points.

ICP

The previous operations simulates a general non-manual selection of the control
points: there is not reason to finding the points bymatching pairs. Thus, a reordering
is necessary. This propositions implies that the number of points is exactly the same
in order to perform the registration process, and that these are matching points
(every point has a matching point in the other image). The ICP method (see code
for icp_transform) reorders the points via a nearest neighbor rule.
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def icp_transform(dataA, dataB) :
2 """

Find a transform between A and B points
4 with an ICP ( Iterative Closest Point ) method.

dataA and dataB are of size nx2, with the same number of points n
6 returns the transformation matrix of shape 2x3

"""
8 data2A = dataA.copy() ;

data2B = np.zeros (data2A.shape) ;
10 T = np.zeros ((2,3) ) ;

T [0:2,0:2] = np.eye (2) ;
12 T [0:2,2] = 0;

14 nb_loops=5;
tree = cKDTree( dataB ) ;

16

for loop in range(nb_loops) :
18 # search for closest points and reorganise array of points accordingly

d, inds = tree .query( data2A);
20

data2B = dataB[inds ,:];
22 # find rigid registration with reordered points

t_loop = rigid_registration (data2A, data2B) ;
24

T = composeTransform(t_loop, T) ;
26 # evaluates transform on control points , to make the iteration

data2A = applyTransform(dataA, T) ;
28

return T;

Automatic extraction of corner points

Generally, the points are automatically detected, and thus, there is no warranty
that they are found in the same order, nor that each pair of point correspond to
matching points (some points –called outliers– need to be eliminated to compute
the correct transformation). In this tutorial, we do not address the problem of
outliers. Please notice that with these parameters and images, by chance, the same
points are detected in the correct order.
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Figure 25.5: Result of the registration for when the control points are not found in
the same order. The ICP algorithm reorders the points and gives a good result.

(a) Random shuffle of points and
direct rigid transformation estima-
tion.

(b) ICP registration on the same
points.

1 # Automatic extraction of corner points
# Harris corners detection or Shi and Tomasi

3 # this method do not ensure the correct order in the points (A_points and
# B_points)

5 nb_points = 4; # number of points to detect
corners = cv2.goodFeaturesToTrack(A,nb_points ,0.01,10, blockSize =3,

→֒ useHarrisDetector=False )
7 corners = np. int0 ( corners )
a , b , c = corners . shape;

9 A_points = np.reshape(corners , (a , c) ) ;

11 corners = cv2.goodFeaturesToTrack(B,nb_points ,0.01,10, blockSize =3,
→֒ useHarrisDetector=False )

corners = np. int0 ( corners )
13 a , b, c = corners . shape;

B_points = np.reshape(corners , (a , c) ) ;

The Fig.25.6 displays the results with the automatic detection of corners (in this
case, the method from Shi and Tomasi). Notice that by chance, the points in both
images match. In other cases, one would have to remove outliers.
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Figure 25.6: Shi and Tomasi corners detection. By chance, the points correspond
and the ICP method gives a correct result.

(a) (b)





Part IV Stochastic Analysis





26 Stochastic Geometry / Spatial Pro-
cesses

This tutorial aims to simulate different spatial point processes.

26.1 Poisson processes

This process simulates a conditional set of pointnb points in a spatial domain D
defined by the values xmin, xmax, ymin, ymax. In order to simulate a non conditional
Poisson point process of intensity λ within a domain S, it is necessary to generate
a random number of points according to a Poisson law with the parameter λS :
pointnb = poisson(λS) (i.e. the number of points is a random variable following
a Poisson Law).

The coordinates of each point follow a uniform distribution.

Figure 26.1: Conditional Poisson point process, with 200 points.
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1. Simulate a conditional Poisson point process on a spatial domain D
with a fixed number of points (see Fig. 26.1).

2. Simulate a Gaussian distribution of points around a given center.
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Import scipy . stats to use the function poisson and np.random for more
classical stochastic functions.

26.2 Neyman-Scott processes

This process simulates aggregated sets of points within a spatial domain D defined
by the values xmin, xmax, ymin, ymax. For each aggregate (npar), we first generate
the random position of the ’parent’ point. Then, the ’children’ points are simulated
in a neighborhood (within a square box of size r2

child) of the ’parent’ point. The
number of points for each aggregate is either fixed or randomized according to a
Poisson law of parameter nchild (see Fig. 26.2).

Figure 26.2: Neyman-Scott point process with hchild = 10 and npar = 10
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1. Simulate a process of 3 aggregates with 10 points.

2. Simulate a process of 10 aggregates with 5 points.

26.3 Gibbs processes

The idea of Gibbs processes is to spatially distribute the points according to some
laws of interactions (attraction or repulsion) within a variable range.
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Such a process can be defined by a cost function f(d) that represents the cost
associated to the presence of 2 separated points by a distance d (see Fig. 26.3). For
a fixed value r, if f(d) is negative, there is a high probability to find 2 points at a
distance d (attraction). Conversely, if f(d) is positive, there is a weak probability to
find 2 points at a distance d (repulsion).

• Code such a function, with prototype function e=f(d) or def energy(d) : , where

f(d) =







50 if 0 < d ≤ 15
−10 if 15 < d ≤ 30
0 otherwise

Figure 26.3: Energy function f .
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The generation process reorganizes an initial Poisson point process within
the spatial domain according to a specific cost piecewise constant function. The
reorganization consists in a loop of nbiter iterations. For each iteration, we calculate
the total energy:

e =
∑

(i,j),i6=j

f(dist(xi, xj)) (26.1)

The objective is to reduce this energy iteratively. At each iteration step, we try to
replace a point by four (for example) other random points and we calculate the
energy for each new configuration. The initial point is either preserved or replaced
(by one of the four points) according to the configuration of minimal energy (see
Fig.26.4).

1. Code a function with the following prototype (the function energy-

Function is previously noticed f ). It computes the energy between all
the points present in an array of coordinates [x, y] (the points that
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Figure 26.4: Illustration of iterative construction of the Gibbs point process.

(a) Start with an initial
distribution of points.
The energy is computed
for all pairs of points.

(b) A random point is se-
lected.

(c) Four candidate points
are randomly generated,
the energy of these four
new configurations is
evaluated.

?

(d) The configuration
with the minimal energy
is retained, other points
are discarded.

do not move) and point [xk, yk] (the new point). The energyFunction
converts a distance to an ’energy’, reflecting attractivity or repulsivity.

def energy(P, eFunction=exampleEnergyFunction):

2. Simulate a regular point process by choosing a specific energy func-
tion.

3. Change the cost function and simulate a few aggregated point pro-
cesses (see Fig. 26.5).

Informations

Use the function pdist from scipy . spatial . distance , which computes pairwise
distances of all points.
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Figure 26.5: Gibbs agregated point process and its energy function.
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26.4 Ripley function
The Ripley functionK(r) characterizes the spatial distribution of the points. For a
Poisson process of density λ, λK(r) is equal to the mean value of the number of
neighbors at a distance lower than r to any point. In the case where the process is
not known (λ?), the Ripley function has to be estimated (approximated) with the
unique known realization. It is the first estimator ofK(r):

K(r) =
1

λ

1

N

N∑

i=1

∑

i6=j

kij (26.2)

whereN is the number of points in the studied domainD, λ = N/D is the estimator
of the density of the process and kij takes the value 1 if the distance between the
point i and the point j is lower than r, and 0 in the other case.

We denote:

L(r) =
√

K(r)/π (26.3)

1. Code a function to compute K (function K=ripley( points , box, r )), with
points being the considered points, box the simulation domain, and r
the distance (or an array of all distances).

2. Calculate the Ripley function for an aggregated point process, a Pois-
son point process and a regular point process.

3. Display the value L(r)− r as in Fig 26.6.
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Figure 26.6: Ripley’s function L(r)− r.
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26.5 Marked point processes
To simulate a complex point process, it can be useful to associate several random
variables (marks) for each point.

1. Simulate a disk process, where the points (disk centers) are defined ac-
cording to a Poisson process and the radii are selected with a Gaussian
law.

2. Add a second mark for allocating a color to each disk (uniform law).

An example result is shown in Fig. 26.7
Figure 26.7: A Poisson point process is used to generates the center of the circles.
The radii are chosen according a Gaussian law, and the color according a uniform
law.
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26.6. Python correction

import numpy as np;
2 import matplotlib . pyplot as plt ;
from scipy . spatial . distance import pdist ;

4 from scipy . stats import poisson

26.6.1 Conditional Poisson Process

The conditional Poisson Point Process uses a given number of point, contrary to the
Poisson Process where the number of points follows a Poisson law. The result is
illustrated in Fig.26.8.

Figure 26.8: Conditional Poisson point process, with N=100 points.
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def cond_Poisson(nb_points, xmin, xmax, ymin, ymax):
2 # Conditional Poisson Point Process

# uniform distribution
4 # nb_points : number of points

# xmin, xmax, ymin, ymax: defined the domain (window)
6 x = xmin + (xmax-xmin)∗np.random.rand(nb_points)

y = ymin + (ymax-ymin)∗np.random.rand(nb_points);
8 return x,y

10 def test_ppp () :
# testing function

12 x,y = cond_Poisson(100, 0, 100, 0, 100) ;
plt . plot (x ,y, ’+’ ) ;
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26.6.2 Normal distribution

The normal distribution is illustrated in Fig.26.9. Each marginal distribution (distri-
bution on each axis) follows the normal distribution.

1 def normal_distribution (nb_points , mu, sigma) :
# Normal distribution centered around the point mu with stdev sigma

3 x = mu[0] + sigma[0]∗np.random.randn(nb_points);
y = mu[1] + sigma[1]∗np.random.randn(nb_points);

5 return x,y;

Figure 26.9: Normal distribution of points around (0, 0), with σ = (10, 20).
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26.6.3 Neyman-Sco� Process

Neymann-Scott point process is an agregated Poisson point process. It is illus-
trated in Fig.26.10. It consists on a “sub” point processes generated at locations
corresponding to a point process.
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1 def neyman_scott(nRoot, xmin, xmax, ymin, ymax, lambdaS, rSon) :
# Neyman−scott process simulation

3 # nRoot: number of agregates
# xmin, xmax, ymin, ymax: domain

5 # lambdaS: number of points . lambda is a density , S is the spatial domain
# rSon: radius around agregate ( points are distributed in a square)

7

# number of sons
9 nSons = poisson . rvs (lambdaS, size=nRoot);

# results
11 x=[];

y=[];
13 # father points coordinates

xf , yf = cond_Poisson(nRoot, xmin, xmax, ymin, ymax);
15 for i in range(nRoot):

# loop over all agregates
17 xs ,ys = cond_Poisson(nSons[i ], xf[ i ] -rSon, xf[ i]+rSon, yf[ i ] -rSon, yf[ i]+

→֒ rSon) ;
x = np.concatenate (( x ,xs) , axis=0) ;

19 y = np.concatenate (( y,ys) , axis=0) ;

21 return x,y

Figure 26.10: Neyman-Scott point process, with lambdaS=10 and rSon=10.

300 400 500 600 700 800 900 1000

200

300

400

500

600

700
Neymann-Scott Point Process

26.6.4 Gibbs Point Process

Gibbs point process allows attraction and repulsion at different distances. It is
illustrated in Fig.26.11. The attraction/repulsion law is given by the following code
for regular or agregated point process.
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def exampleEnergyFunction(distance) :
2 """ This function returns e with the same size as distance

e takes the value given in the variable energy according to the steps
4 """

e = np.zeros ( distance . shape) ;
6 e [ distance <10] = 10;

return e ;
8

def agregatedEnergyFunction(distance ) :
10 """

Agregated energy function
12 """

e = np.zeros ( distance . shape) ;
14 e [ distance <2] = 50;

e [np. logical_and ( distance>=2, distance<5)] = - 10;
16 e [np. logical_and ( distance>=5, distance<10)] = 5;

18 return e ;

The evaluation of the energy computes all pairwise distances and sum up the
energies associated, or it computes the distances between one single point to a set
of points.

def energy(P, eFunction=exampleEnergyFunction):
2 """

This computes the energy in the set of points P, with the energy function
4 given as a parameter.

return a float value
6 """

P = np.transpose (P) ;
8 d = pdist (P) ;

e = exampleEnergyFunction(d);
10 return np.sum(e);

12 def energyFromPoint(p, P, eFunction=exampleEnergyFunction):
"""

14 Compute energy from point p to all points of P
"""

16 dist = np. sqrt (( p[0] - P [0,:]) ∗∗2 + (p[1] - P [1,:]) ∗∗2) ;
ee = eFunction( dist ) ;

18 return np.sum(ee);

The principle of the algorithm is to iteratively add one point that minimizes
the energy after several trials. In order to speed up the process, notice that only
one point is moved, and it is thus sufficient to only compute the distances from this
point to all others.
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def gibbs (nb_points , xmin, xmax, ymin, ymax, nbiter , eFunction=
→֒ exampleEnergyFunction):

2 """
Gibbs point process

4 xmin, xmax, ymin, ymax represents the spatial window
nb_points : number of generated points

6 nbiter : number of iterations
returns (x,y) coordinates of the points

8 """

10 # start with a Poisson Point Process
x,y = spat_pp.cond_Poisson(nb_points, xmin, xmax, ymin, ymax);

12 nb_moves = 0;
e_prev = energy(np.vstack (( x,y) ) , eFunction) ;

14 print ( " initial energy: {0: f } " . format(e_prev) ) ;

16 for i in range( nbiter ) :
# choose a random point

18 j = np.random.randint (0, nb_points) ;
x2 = np. delete (x, j ) ;

20 y2 = np. delete (y, j ) ;

22 P = np.vstack (( x2, y2) ) ;
e1 = energyFromPoint([x[j ], y[ j ]], P, eFunction) ;

24

for m in range(10) :
26 xm,ym = spat_pp.cond_Poisson(1, xmin, xmax, ymin, ymax);

28 e2 = energyFromPoint([xm, ym], P, eFunction) ;
if e2<e1:

30 nb_moves+=1;
x[ j]=xm;

32 y[j]=ym;
e1=e2;

34

print ( "Number of moves: " + str (nb_moves));
36 print ( " Final energy: " + str (e1) ) ;

return x, y
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Figure 26.11: Gibbs point processes (with the same number of points).

(a) Regular Gibbs point process.
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(b) Agregated Gibbs point process.
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26.6.5 Ripley functions

The Ripley functions are useful to characterize a point process. Agregation and
repulsion can be observed with regard to the distance (see Fig.26.12). Notice that
this function is biased because points in border of window are counted as points in
the center. This could be corrected by the use of scipy . spatial . distance . cdist .
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def ripley (x, y, xmin, xmax, ymin, ymax, edges) :
2 # Ripley K and L functions , vals is values of radius

# this function has border effects !
4 # x, y: coordinates of points

# xmin, xmax, ymin, ymax: window
6 # edges: values of bins for histogram evaluation

8 # number of points
nb_points = x. size ;

10

# compute pairwise distances
12 P = np.transpose (np.vstack (( x,y) ) ) ;

d = pdist (P) ;
14

# compute cumulative histogram
16 h,edges = np.histogram(d, edges) ;

H = np.cumsum(h);
18

# normalization of K
20 K = 2∗H/nb_points;

area = (xmax-xmin) ∗ (ymax-ymin);
22 density = float (nb_points) / area ;

K = K / density ;
24

# L
26 L = np. sqrt (K/np.pi ) ;

28 # edge values
vals = edges [: -1] + np. diff (edges) ;

30

return K, L, vals

Figure 26.12: Ripley functions.

(a) Ripley K function.
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26.6.6 Marked Point Process

An illustration is presented in Fig.26.13. The algorithm simply consists in adding
two new random variables in order to generate the radius and the color of each
point.

1 def marked(nb_points, xmin, xmax, ymin, ymax):
"""

3 marked point process
"""

5

# points
7 x,y = spat_pp.cond_Poisson(nb_points, xmin, xmax, ymin, ymax);

9 # first mark: radii
sigma = 5;

11 mu = 10;
r = sigma ∗ np.random.randn(nb_points) + mu;

13 r[r<0.1] = 0.1;

15 # second mark: colors
nb_colors = 10;

17 c = np.random.randint(nb_colors , size = nb_points) ;

19 # plot
plt . scatter (x, y, r ∗∗2, c , alpha=.5) ;

21

# save pdf figure
23 plt . savefig ( "marked.pdf") ;

25 nb_points = 100;
N=100;

27 marked(nb_points, 0, N, 0, N);
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Figure 26.13: Marked point process.
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27 BooleanModels

This tutorial aims to study a classical model coming from stochastic geome-
try: the Boolean model. The first objective is to simulate some realizations
of a Boolean model of 2-D disks representing a population of overlapped
particles. Thereafter, the geometrical characteristics of the individual disks
(from a statistical point of view) will be analyzed.

Figure 27.1: Illustration of 2-D Boolean models observed in a squared windowW .

(a) Boolean model of disks (b) Boolean model of rectangles

27.1 Simulation of a 2-D Boolean model
Let {xi; i ∈ N} be a random collection of points in R2 forming a stationary Poisson
point process with intensity γ > 0. Let Z0, Z1, Z2, . . . be independent, identically
distributed random 2-D convex bodies (nonempty, compact, convex sets) with
distribution Q, which are independent of the point process {xi; i ∈ N}. The
random points x1, x2, . . . are the germs and the random sets Z1, Z2, . . . are the
grains of the Boolean model. The random set Z0 is called the typical grain. The
union of the translated grains:

Z =
∞⋃

i=1

(Zi + xi) (27.1)

is a random closed set, which is called the stationary Boolean model with intensity
λ and grain distribution Q. The random collection X = {Z1 + x1, Z2 + x2, . . . }
of the shifted grains is the particle process underlying the Boolean model.

Figure 27.1 shows a realization of two different Boolean models Z observed in
a compact and convex observation windowW .

We are going to simulate some realizations of a Boolean model of 2-D disks in
a squared observation window. The final simulated model will be represented as a
discrete binary image.



Boolean Models 300

• Generate a 2-D discrete observation windowW of size 500× 500.

• Generate the random germs that follows a Poisson law with intensity
λ = 100/(500 ∗ 500). Take care of the edge effects (a grain with a
germ outside the observation window could intersect it!)

• Generate the random grains (as disks). The disk radius will follow a
uniform distribution U(10, 50).

• Vizualize the realization.

Look at the numpy functions random.poisson and random.randint.
Use skimage.draw. circle to generate the disks in an array.

27.2 Geometrical characterization of a 2-

D Boolean model
Assume we observe Z in a compact, convex observation windowW with positive
volume (as shown in Figure 27.1). Our aim is to extract distributional information
from the geometric properties of the sample Z ∩W . Thus, we assume we can
measure geometric functionals like the perimeter of the sample Z ∩W which is
a finite union of convex bodies (a polyconvex set). By a geometric functional φ
we mean a real-valued functional defined on the space of polyconvex sets with
specific additional properties. Important examples of geometric functionals are the
Minkowski functionalsWν that are related in the 2-D space to the measures of area
(A), perimeter (P ) and Euler number (χ):

W0 = A (27.2)

W1 = P/2 (27.3)

W2 = πχ (27.4)

The boundary of the observation windowW has a disturbing effect. It is therefore
of advantage to assume a sufficiently large observation window and to consider
only limits as the window tends to infinity. This motivates the introduction of the
density (or specific value) of the Boolean model for a geometric functional φ. The
density of φ is the combined spatial and probabilistic mean value:

φ(Z) = lim
r→∞

E[φ(Z ∩ rW )]

W0(rW )
(27.5)

The crucial problem when studying a Boolean model is, that the particles overlap
and can therefore not be observed individually.
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For this purpose, the Miles formula gives relationships between the global
Minkowski densities and the Minkowski densities of the particle. For isotropic
Boolean models and by using the densities of the particle process X :

φ(X) = γE[φ(Z0)] (27.6)

Miles formulas express the observable Minkowski densitiesW ν(Z) in terms of the
Minkowski densitiesW ν(X) and can be inverted.
For example in 2-D:

W 0(Z) = 1− e−W 0(X) (27.7)

W 1(Z) = e−W 0(X)W 1(X) (27.8)

W 2(Z) = e−W 0(X)
(

W 2(X)−W 1(X)2
)

(27.9)

• Generate different realizations of the previous Boolean model and
compute the Minkowski densities of Z (by using the functions done
in the tutorial "Integral Geometry").

• Compute the theoretical Minkowski densities of Z by using the Miles
formulas.

• Compare the computed and theoretical values.
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27.3. Python correction

import numpy as np
2 from skimage import draw
from scipy import misc, signal

4 import matplotlib . pyplot as plt
import progressbar

27.3.1 Simulation of a 2-D Boolean model

The process for simulating the proposed Boolean model of 2-D disks consists in
four steps:

1. Generate the random number of points (by using the intensity parameter of
the Poisson distribution).
In order to avoid edge effects, one consider a larger window than the obser-
vation window to generate the disks. Indeed, a germ outside the observation
window can generate a disk that intersects the observation window.

2. Generate the random locations of the germs (random coordinates from a
uniform distribution).

3. Generate the random size of the disks (random radius from a probability
distribution).

4. Generate the union of disks.

Figure 27.2: Boolean model of disks, with Wsize = [1000, 1000] and
RadiusParam = [10, 30].

When executing this simulation with the following parameters, we get a real-
ization of the Boolean model as a binary image in Fig.27.2.
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1 Wsize=[1000, 1000];
gamma = 100 / (Wsize[0] ∗ Wsize[1]) ;

3 radius = [10, 30];
Z = booleanModel(Wsize, gamma, radius) ;

5 plt . imshow(Z);
plt . show();

Here is the global function for generating such a Boolean model as a binary
image:

def booleanModel(Wsize, gamma, radius) :
2 """

Generation of a 2D boolean model of disks , in a window of size Wsize
4 Wsize: 2x1 array

gamma: numerical value to control the Poisson process
6 radius : min and max values of radii , 2x1 array

returns : boolean array of size Wsize
8 """

edgeEffect =2 ∗ np.max(radius) + 100;
10 WsizeExtended = Wsize + 2∗ edgeEffect ;

# nb of points
12 areaW = WsizeExtended[0] ∗ WsizeExtended[1];

nbPoints = np.random.poisson(lam = gamma ∗ areaW);
14 # positions of the germs

x = np.random.randint (0, WsizeExtended[0], nbPoints) ;
16 y = np.random.randint (0, WsizeExtended[1], nbPoints) ;

# grains
18 rGrains = np.random.randint( radius [0], radius [1], nbPoints) ;

# union of grains
20 Z = np.zeros ((WsizeExtended[0], WsizeExtended[1])) ;

for r , xx, yy in zip (rGrains , x , y) :
22 rr , cc = draw. circle (xx, yy, radius=r , shape=Z.shape)

Z[rr , cc] = 1;
24 # restrain window for side effects

Z = Z[edgeEffect : edgeEffect+Wsize[0], edgeEffect : edgeEffect+Wsize[1]];
26 return Z;

27.3.2 Geometrical characterization of a 2-D Boolean model

We can use the following function to compute the Minkowski functionals of the
Boolean model (see the tutorial on Integral Geometry). The regionprops function
from skimage.measure is not used because it computes the properties of each object.
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def minkowskiFunctionals(X):
2 """

Evaluation of the Minkowski functionals
4 X: boolean 2D array

returns area , perimeter , euler number N8, euler number n4
6

"""
8 F = np.array ([[0, 0, 0], [0, 1, 4], [0, 2, 8]]) ;

XF = signal . convolve2d(X,F,mode=’same’);
10 edges = np.arange (0, 17 ,1) ;

h,edges = np.histogram(XF [:], bins=edges) ;
12 f_intra = [0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1];

e_intra = [0,2,1,2,1,2,2,2,0,2,1,2,1,2,2,2];
14 v_intra = [0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1];

EulerNb8 = np.sum(h∗v_intra - h∗ e_intra + h∗ f_intra )
16 f_inter = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1];

e_inter = [0,0,0,1,0,1,0,2,0,0,0,1,0,1,0,2];
18 v_inter = [0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1];

EulerNb4 = np.sum(h∗v_inter - h∗ e_inter + h∗ f_inter )
20 Area = sum(h∗f_intra )

Perimeter = sum(-4∗h∗ f_intra + 2∗h∗ e_intra ) ;
22

return Area, Perimeter , EulerNb8, EulerNb4;

So we can estimate the Minkowski densites on different realizations of the
Boolean model:

def realizations (Wsize, gamma, radius, n=100):
2 """

This function iterates the different realizations
4 Wsize: window size

gamma: value of gamma, see booleanModel
6 radius : min and max values of the radii of the generated disks

"""
8 W = np.zeros (( n, 3) ) ;

areaWsize = Wsize[0] ∗ Wsize[1];
10 bar = progressbar . ProgressBar () ;

for i in bar(range(n) ) :
12 Z = booleanModel(Wsize, gamma, radius) ;

a , p, chi8 , chi4 = minkowskiFunctionals(Z);
14 W[i ,:] = np.array ([a , p /2, chi8∗np.pi ]) / areaWsize;

16 return W;
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Therefater, we can compare the estimated Minkowski mean densities of the
Boolean model with the theoretical ones (by using the known parameters of the
different probability distributions of this Boolean model):

W = realizations (Wsize, gamma, radius, 1000) ;
2 W = np.mean(W, axis=0);
# comparison with analytical values

4 rMean = np.mean(radius) ;
areaMean = np.pi∗rMean∗∗2;

6 perMean = 2∗np.pi∗rMean;

8 W_X = gamma ∗ np.array([areaMean, perMean/2, np.pi ]) ;
W_0 = 1-np.exp(-W_X[0]);

10 W_1 = np.exp(-W_X[0]) ∗ W_X[1];
W_2 = np.exp(-W_X[0]) ∗ (W_X[2] -W_X[1]∗∗2);

12

error_0 = np.abs(W_0-W[0]) / W_0;
14 error_1 = np.abs(W_1-W[1]) / W_1;

error_2 = np.abs(W_2-W[2]) / W_2;

Here are the results for 100 specific realizations:

1 errorW0: 0.0190201754056
errorW1: 0.200478931771

3 errorW2: 0.0342984925035

The errors can be large due to the biais estimation of the Minkowski densities
within an observation window (specifically for the perimeter and the Euler number).
But you can use unbiased estimators which can be found in the literature.
Note that the Miles formulas can be inverted to estimate the Minkowski functionals
of the typocal grain from the Minkowski mean densities of the Boolean model.





28 Geometry ofGaussianRandom
Fields

This tutorial aims at simulating Gaussian random fields and analyzing their
geometry.

28.1 Introduction

Let φ be a real-valued stationary Gaussian Random Field (GRF) on R2. ∀p ∈ R2,
φ(p) defines a random variable. The family (φ(p), p ∈ R2) consists of identically
distributed random variables on a probability space Ω,F , P that satisfies for any
subset of {p1, ..., pn ∈ R2} and αk ∈ R that the random variable

∑n
k=1 αkφ(pk) is

normally distributed. The reader could find more informations in [43, 2, 3].

Thus, φ is completely characterized by its mean and its covariance:

m = E(φ(p)) = E(φ(0)) , p ∈ R2 (28.1)

C(p) = E(φ(0)φ(p))−m2 = E(φ(q)φ(p+ q))−m2, p, q ∈ R2 (28.2)

In this tutorial, we will assume m = 0. The goal is to construct φ for a given
covariance C.

28.2 Simulation

For more details on algorithms simulating GRFs in Rd, see [22].

28.2.1 Gaussian white noise random field

• Generate a white noise on R2. Choose an n × n size. Display it on
the screen (see for example Fig. 28.1).

• Modify the variance and observe the results.

Use randn from numpy.random. Use imshow from matplotlib . pyplot.
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Figure 28.1: Gaussian White Noise, withm = 128 and σ = 30 for display purposes.

28.2.2 Gaussian Random Field

Let W be an independent centered white noise random fields. F is the Fourier
Transform. The gaussian random field φ is defined by:

p ∈ R2, φ(p) = F−1(φ̂)(p)

and

φ̂(k) =
√

F(C)(k)F(W )

• Generate a 2D Gaussian covariance function , see Fig. 28.2a (we recall
the definition, u2 = x2 + y2):

C(u) = e− u2

2σ2

• Generate the Gaussian randomfield (see Fig. 28.2b). Test with different
values of σ.

Use meshgrid from numpy.
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Figure 28.2: Covariance and Gaussian random field examples.

(a) Generation of a 2D Gaussian function.
(b) Generation of a 2D Gaussian random field
with Gaussian covariance.

28.3 Geometry

28.3.1 Excursion set

Let Y (x), x ∈ R2, be a stationary real-valued random field. An excursion set,
denoted by Eh(Y, S), of Y inside a compact subset D ⊂ R2 above a level h, is
defined as:

Eh(Y,D) = {p ∈ D : Y (p) ≥ h}

In D ⊂ R2, an excursion set is a binary image.

Represent, for each level h, the area A, the perimeter P and the Euler
number χ of Eh(Y,D) (see Fig. 28.3). You can have a look at the tutorial
about integral geometry for perimeter, area and Euler number computation.
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Figure 28.3: Example of computation of Area, Perimeter and Euler number of level
sets Eh.
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28.3.2 Analytical values

We define three values, area A, perimeter C (Contour length) and Euler number χ,
as functions of the level h, with:

A(h) = L2(D)ρ0(h) (28.3)

C(h) = 2

(

L1(D)ρ0(h) +
π

2
L2(D)ρ1(h)

)

(28.4)

χ(h) = L0(D)ρ0(h) + L1(D)ρ1(h) + L2(D)ρ2(h) (28.5)

with L0(D) = χ(D) = 1, L1(D) is half the boundary length of the rectangle D
and L2(D) is its area.

• First, compute the following values:

ρ0(h) =

∫ ∞

h

1√
2π
e−u2/2du (28.6)

ρ1(h) =

√
λ

2π
e−h2/2 (28.7)

ρ2(h) =
λ

(2π)
2
3

e−h2/2h (28.8)

λ =
1

σ2
(28.9)

• Then, compute the analytical values of A, C and χ.

• Compare the analytical values to the empirical ones.
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Use erfc from scipy . special .
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28.4. Python correction

28.4.1White noise

The white noise is generated with the following code.

%% white noise simulation
2 W = np.random.randn (N, N) ;

28.4.2 Gaussian Random Field

The Gaussian function that will serve as a covariance function is generated via
the given code. Pay attention to the discretization grid: the FFT implies that
functions are periodic, and in order to do that, the discretization must be set
between [−N/2 : N/2[.

The Gaussian Random Field can be generated via the formula already presented
(see Fig.28.4).

def grf2D(N, sigma) :
2 # Discrete space

x = np.arange(-N/2 , N/2) ;
4 [ X , Y ] = np.meshgrid( x , x ) ;

# Covariance function
6 C = np.exp(-1/2 ∗ ( (X/ sigma /np. sqrt (2) ) ∗∗2+(Y/sigma/np. sqrt (2) ) ∗∗ 2 ) ) ;

Cmat = np. fft . fftshift (C) ;
8 # real positive part , then square root

Cf = np. real (np. fft . fft2 ( Cmat ) ) ;
10 Cf = np. sqrt ( np.maximum ( np.zeros ( Cf.shape ) , Cf ) ) ;

# Complex white noise
12 W = np.random.randn (N, N) ;

14 A = Cf ∗ np. fft . fft2 (W);
G = np. real ( np. fft . ifft2 (A) ) ;

16 return G;

28.4.3 Minkowski functionals

The Minkowski functionals are illustrated in Fig.28.5. The code follows.
The measures can be performed with the code from the tutorial 32.
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Figure 28.4: Gaussian Random Field, with σ = 10 (pixels) and N = 210 = 1024
pixels.

def bwminko(X):
2 # zero padding of input

X = np.pad(X, ((1,1) , (1,1) ) , mode=’constant’) ;
4 # Neighborhood configuration

F = np.array ([[0, 0, 0], [0, 1, 4], [0, 2, 8]]) ;
6 XF = signal . convolve2d(X,F,mode=’same’);

edges = np.arange (0, 17 ,1) ;
8 h,edges = np.histogram(XF [:], bins=edges) ;

10 f_intra = [0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1];
e_intra = [0,2,1,2,1,2,2,2,0,2,1,2,1,2,2,2];

12 v_intra = [0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1];
f_inter = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1];

14 e_inter = [0,0,0,1,0,1,0,2,0,0,0,1,0,1,0,2];
v_inter = [0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1];

16 EulerNb4 = np.sum(h∗v_inter - h∗ e_inter + h∗ f_inter )
Area = np.sum(h∗f_intra )

18 Perimeter = np.sum(-4∗h∗ f_intra + 2∗h∗ e_intra )
return Area, Perimeter , EulerNb4;

Then, the measurements consists in taking all the level-sets and evaluating the
properties from these binary sets. Notice that the perimeter is allways a difficult
task and is not really precise.
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Figure 28.5: Illustration of the simulated and analytical values of the Minkowski
functionals of the level sets of the Gaussian Random Field, for σ = 10 and N =
1024.
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1 def minkoMeasured(G, sigma, hmin, hmax):
H = np.arange(hmin, hmax, .1) ;

3 A = [];
P = [];

5 E = [];
bar = progressbar . ProgressBar () ;

7 for h in bar(H):
levelset = G >= h;

9 a , p, e = bwminko(levelset) ;
A.append(a) ;

11 P.append(p);
E.append(e) ;

13 return A, P, E;

The analytical values are simply evaluated with the formulas.

1 def minkoAnalytical(N, sigma, hmin, hmax):
l = 1/(2∗ sigma∗∗2) ;

3 # analytical values
H = np.arange(hmin, hmax, .1) ;

5 rho_0 = 1/2 ∗ erfc (H / np. sqrt (2) ) ;
rho_1 = np. sqrt ( l ) ∗ np.exp(- H∗∗2 / 2) /(2∗ np.pi ) ;

7 rho_2 = l / (2∗np.pi ) ∗∗(3/2) ∗ np.exp(- H∗∗2 / 2) ∗ H;

9 Aa = N∗∗2 ∗ rho_0;
Pa = 4∗N∗rho_0 + np.pi ∗N∗∗2∗rho_1;

11 Ea = rho_0 + 2∗N∗rho_1 + N∗∗2∗rho_2;
return Aa, Pa, Ea;





29 Stereology andBertrand’s para-
dox

This tutorial introduces the problems of stereological measurements, based
on simple probes (points, lines...). In a second part, the Bertrand’s paradox
is explored in the case of the analysis of the distribution of chord lengths of
disks and spheres. This tutorial uses the notation that can be found in [35]
(among others).

29.1 Classicalmeasurements of stereology
Let start by some definitions. The stereology is based on some measures, that can
be seen as samples, called probes. A probe can be a point, a line, a curve, a plane, a
surface... These probes allow us to estimate global geometrical properties through
partial measures. Very simple and practical probes are now presented and used.
The notation 〈·〉 denotes an expected count for some normalized value.

Probe name Notation Definition
Point count 〈PP 〉 Fraction of points in phase
Line intercept count 〈PL〉 Number of intersections per length
Area fraction 〈AA〉 Fraction of area in intersection

29.1.1 Probes

The measures are performed with the following definitions:
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• 〈PP 〉: the count of the points that lie in the phase, normalized by the total
number of points.

• 〈PL〉: the count of the number of intersection of lines and the surface of the
phase, normalized by the total length of the lines (in m−1, see Fig.29.1). LA

is the ratio between the perimeter of the phase and the total area.

• 〈AA〉: in a 3D object, the probes are planes and 〈AA〉 is the area of the
intersections of the planes and the phase, normalized by the total area of the
planes.

Figure 29.1: Probes examples: points and lines.

(a) Evaluation of PP : count the number of
points that lie in the objects, normalized by
the total number of points.

Object

(b) Evaluation of PL: count the number of
intersection of some lines with the surface of
the phase (object). Then, perform a ratio with
the total length of the lines.

Line probe

Object

2 intersections

• Generate a 2-D binary image containing a population of disks.

• Estimate its area fraction by using points as probe population (<
PP >= AA).

• Estimate its length per area by using lines as probe population (<
PL >= 2

πLA).

• Load the 3-D image and verify the following relation: < AA >= VV

with VV being the volume fraction.

29.2 Randomchords of a disk, andBertrand’s

paradox

The goal of this exercise is to simulate the distribution of random chord lengths
on a disk. In the field of process engineering, optical particle sizers provide chord
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length distributions of objects that are considered as spheres. These developments
are not only theoretical, they have a practical use in laboratories or in industrial
reactors.

29.2.1 Bertrand’s paradox

From Wikipedia1, the Bertrand paradox goes as follows: Consider an equilateral
triangle inscribed in a circle. Suppose a chord of the circle is chosen at random.
What is the probability that the chord is longer than a side of the triangle?

Bertrand provided three different methods in order to evaluate this probability.
These gave three different values.

The objective is to evaluate the distribution of the chord lengths for two of
these methods. The bertrand’s paradox lays on the fact that the question is
ill-posed, and the choice “at random” must be clarified. The reader will find
more details in the different citations.

29.2.2 Random radius

The intersection of a random line with a disk of radius R is a segment whose half
length r is linked to the distance x between the segment and the center of the disk
(Eq. 29.1 and Fig. 29.2).

r =
√

R2 − x2 (29.1)

Figure 29.2: Relation between the radius of the chord and the distance to the center
of the disk.

As presented in Fig. 29.2, θ is randomly chosen in [0; 2π[ (uniform law), and x
is randomly chosen in [0;R] (uniform law).

1https://en.wikipedia.org/wiki/Bertrand_paradox_(probability)
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Repeat the simulation of r by the so-called random radius method a large
number of times (N = 1e7), and compute the probability density function
of the distribution.

This method is in agreement with the analytical results.

29.2.3 Random endpoints

In this second case, two random angles θ1 and θ2 are randomly chosen (uniform
law in [0; 2π]). This defines two points and thus a chord (see Fig 29.3).

Make the simulation for the “random endpoints” and compare it to the
analytical values and to the first simulation. Notice that this simulation
gives different values (search for the Bertrand paradox for more details).

This method is NOT in agreement with the analytical results.

Figure 29.3: Second method for simulating a random chord of the disk.

29.2.4 Analytical values

The probability to obtain a chord of half length x between a and b is given by Eq.
29.2:

P(x ∈ [a; b]) =

∫ b

a

ρ

R
√

R2 − ρ2
dρ (29.2)
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By discretizing the interval [0;R], compute the analytical value of the prob-
ability density function of the distribution of the radii with the Eq. 29.2.

29.3 Random sections of a sphere and a

plane

The two previous strategies can be applied on the sphere. What we are looking for
are radii of the intersection of the sphere with a random plane.

29.3.1 First simulation: random radius

To find and random plane P intersecting a sphere S of radiusR, one have to choose
a direction ~u (i.e. a point on the sphere), find a point P between the latter and the
centerO of the sphere, and considere the plane P that is orthogonal to the direction
~u and passing at this point P (Fig. 29.4).

Code the following method:

• A random point on the sphere is chosen with the following method
(see [24]): let x, y and z be 3 Gaussian random variables, the point on
the sphere is defined by the normed vector ~u, such that:

~u =
1

√

x2 + y2 + z2






x
y
z




 (29.3)

• The point P is chosen as ~OP = α~u, with O being the center of the
sphere, and α being a uniform random variable in [0;R]. The plane
P is orthogonal to ~u, passing at P (see Fig. 29.4).

Notice that this simulation is equivalent to the first presented case (random
radius) of the random chords of a disk, and that the choice of the random point on
the sphere is useless.

The method that consists to choose a point by two angles does not provide
a uniform distribution of the points on the sphere.
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Figure 29.4: First simulation method of a random intersection of a sphere and a
plane.

29.3.2 Second simulation: 3 random endpoints

The random plane P is defined by 3 random points laying on the sphere (see Eq.
29.3).

• Analytically, find the distance between the center of the sphereO and
the plane P .

• Simulate a high number of intersections and find numerically the
distribution of the radii of these intersection disks.

29.3.3 Third simulation: 2 random endpoints

Choose 2 random points laying on the sphere (see Eq. 29.3) and evaluate their half
distance.

Simulate a high number of couple of points and evaluate the distribution of
their half distances.

The distribution of the length of the chords on a sphere is linear, and is
different from the distribution of the radii resulting from the intersection of
a random plane and the sphere.
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29.3.4 Comparison

Compare the 3 results and comment.
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29.4. Python correction

import numpy as np
2 import matplotlib . pyplot as plt
import skimage.measure

4 import scipy

29.4.1 Classical measurements of stereology

To generate a binary image with overlapping random disks (see Fig.29.5), the
following function is used:

def popDisks(nb_disks, S , Rmax):
2 """ Generates an image with random disks, with uniform distribution of the

→֒ centers , and of the radii .
@param nb_disks: number of disks

4 @type S: int
@param S: Size of spatial support

6 @param rmax: maximum radius of disks
@return: binary image of disks

8 """
centers = np.random.randint(S , size =(nb_disks ,2) ) ;

10 radii = Rmax ∗ np.random.rand(nb_disks) ;

12 N=1000;
x = np. linspace (0, S , 1000) ;

14 y = np. linspace (0, S , 1000) ;
X, Y = np.meshgrid(x, y) ;

16 I = np.zeros ((N,N)) ;
for i in range(nb_disks) :

18 I2 = (X-centers[ i ,0]) ∗∗2 + (Y-centers [ i ,1]) ∗∗ 2 <= radii [ i ]∗∗2;
I = np. logical_or ( I , I2 ) ;

20

return I ;

Area fraction

The area fraction counts the number of probes that lay inside the objects. In order
to verify this probe, the next function evaluates the real area covered by the disks.
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Figure 29.5: Random population of disks.

1 def areaFraction (nb_probes, I ) :
"""

3 Evaluates area fraction via point probes
@param nb_probes: number of probes

5 @param I: binary image, square
"""

7 P = np.random.randint( I . shape [0], size = (nb_probes,2) ) ;

9 # count the number of probes in phase
count = np.sum(I[P [:,0], P [:,1]]) ;

11 return float (count) / nb_probes;

1 def verifyAreaFraction () :
"""

3 Verify area fraction
"""

5 I = popDisks(50, 1000, 20) ;
plt . imshow(I);

7 AA = float (np.sum(I) ) / np. size ( I ) ;
PP = areaFraction (3000, I ) ;

9

print ( "AA (true number of pixels ) : {:.2%} " . format(AA));
11 print ( "PP ( evaluated fraction ) : {:.2%} " . format(PP)) ;

There is a good agreement between AA and PP . The method is illustrated in
Fig.29.6a.

1 AA (true number of pixels ) : 2.05%
PP ( evaluated fraction ) : 1.87%
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Figure 29.6: Illustration of the positions of the different probes.

(a) Area fraction evaluation.
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(b) Length per area evaluation.
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Length per area

A certain number of segments are used in order to perform the probing. The
number of times a segment goes through the surface of the object is evaluated. This
is illustrated in Fig.29.6b.

def lengthPerArea( I ) :
2 """

Evaluates the length per area
4 """

perim= skimage.measure.perimeter( I . astype( int ) , 8) ;
6 LA = perim / np.sum(I) ;

print ( "LA (true count) : {:.2%} " . format(LA)) ;
8

# lines probes , every 10 pixels
10 probe = np.zeros ( I . shape) ;

probe[20: - 20:10, 20: -20] = 1;
12 lines = I . astype( int ) ∗ probe;

14 # count number of intercepts
h = np.array ([[1, - 1, 0]]) ;

16 points = scipy . signal . convolve2d( lines , h, mode=’same’);

18 nb_lines = np.sum(lines ) ;
nb_points= np.sum(np.abs(points ) ) ;

20 PL = float (nb_points) / nb_lines ;
print ( "pi /2∗PL ( true count) : {:.2%} " . format(np.pi /2∗PL)) ;
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1 def verifyLengthPerArea () :
I = popDisks(50, 1000, 20) ;

3 plt . imshow(I);
plt . show();

5 lengthPerArea( I ) ;

The perimeter evaluation may vary a lot according to the implementations or
to the connectivity chosen.

1 LA (true count) : 18.02%
pi /2∗PL ( evaluated fraction ) : 15.20%

Volume fraction

This example loads a MATLAB® matrix.

def volumeFraction(volume):
2 """

"""
4 VV = float (np.sum(volume)) / np. size (volume);

probe= np.zeros (volume.shape);
6 probe[10: - 10:50, 10:, 10:] = 1;

8 s = np.sum(probe);
probe = probe ∗ volume;

10 AA = float (np.sum(probe)) / s ;

12 print ( "VV (true count) : {:.2%} " . format(VV));
print ( "AA (true count) : {:.2%} " . format(AA));

14

def verifyVolumeFraction () :
16 sphere = scipy . io . loadmat("spheres .mat") ;

volumeFraction(sphere[ ’A’]) ;

As for the area fraction, the volume fraction is precise. The results on this
example are:
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Figure 29.7: Random population of 3D overlapping spheres. This function uses
povray and the vapory python API.

1 VV (true count) : 5.02%
AA (evaluated fraction ) : 5.28%

29.4.2 Random sections of a disk

The value N is the number of simulations performed. To find the probability, N
values x are randomly chosen between 0 and R. The formula r =

√
R2 − x2 yields

to the half length r of the chord. After discretizing the interval [0;R] in nBins, the
number of values x in each bin is counted (with python np.histogram function). The
results are presented in Fig. 29.8.
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Figure 29.8: Simulations of random chords of a disk.
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import numpy as np
2 import matplotlib . pyplot as plt
N = 10000000;

4 nBins = 1000;
R = 1.;

6 # first simulation method: random radius
d = R ∗ np.random.rand(N);

8 radii = np. sqrt (R∗∗2 - d ∗∗2) ;
probaSimu = np.histogram( radii , bins=nBins) ;

10 plt . plot (probaSimu[1][: - 1], probaSimu[0]/N, linewidth=2) ;

The second method consists in choosing 2 random points on the circle, given
by two random angles.

#2nd method: random points on the circle
2 # from 2 random angles
theta = np.pi ∗2∗np.random.rand(int (N) ,2) ;

4 dX = np. diff (R ∗ np.cos( theta ) )
dY = np. diff (R ∗ np.sin ( theta ) ) ;

6 radii = 1./2 ∗ np. sqrt (dX∗∗2 + dY∗∗2) ;
probaSimu2 = np.histogram( radii , bins=nBins) ;

8 plt . plot (probaSimu2[1][: - 1], probaSimu2[0]/N, linewidth=2) ;

Finally, the analytical results are computed for comparison.
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# analytical values
2 step = .05;
r2 = np.arange (0, R, step ) ;

4 probaReal = 1./ R ∗ r2 / np. sqrt (R∗∗2-r2 ∗∗2) ;
probaReal = probaReal ∗ R / nBins; # approximation of the integral

6 plt . scatter ( r2 , probaReal , 50) ;
# display results

8 plt . legend ([ "Unique random points", "2 random points" , " Analytical values " ])
plt . show()

10 plt . savefig ( ’ sections_disk .pdf’ )

29.4.3 Random planar sections of a sphere

Figure 29.9: Simulations of random chords of a sphere.
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import numpy as np
2 import matplotlib . pyplot as plt

4 def generatePointsOnSphere(nb_points, R) :
"""

6 Generate points on a sphere
@param nb_points: number of points

8 @return n: array of size nb_points x 3
"""

10 n = np.random.randn(nb_points, 3) ;
mynorm = np.linalg.norm(n, axis=1) ;

12 n = R ∗ n / np.transpose (np.matlib . repmat(mynorm, 3, 1) ) ;

14 return n

16 def dot(A, B, ax=1) :
""" dot product for arrays

18 """
return np.sum(A.conj() ∗B, axis=ax ) ;

First simulation: random radius

This method is equivalent to the first case of the disk chord. The 3D property of
the sphere is not used and thus the code is strictly equivalent to the 2D case.

1 # initial values
N = 1e7; # number of samples, float number

3 R = 1; # radius of the sphere
nBins = 1000; # number of bins for histogram computation

5 # first simulation method: random radius
d = R ∗ np.random.rand(int (N)) ;

7 radii = np. sqrt (R∗∗2 - d ∗∗2) ;
probaSimu = np.histogram( radii , bins=nBins) ;

9 plt . plot (probaSimu[1][: - 1], probaSimu[0]/N, linewidth=2) ;

Second simulation: 3 endpoints

Define a random plane from 3 points randomly chosen on the sphere. Let n1, n2

and n3 be 3 points on the sphere. These points define the plane P . The distance
between the center of the sphere O and the plane P is given by the relation:

d(0,P) =
|~n · ~u|
||~n||
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with ~u = ~n2− ~n1, ~v = ~n3− ~n1, and ~n = ~u∧~v the normal vector to the plane. The
results are presented in Fig. 29.9.

This is a case of Bertrand’s paradox: the definition of randomness is not good
in the present case.

1 # second simulation
# choose 3 points to define a plane ,

3 # then, compute the distance from the origin to this plane
n1 = generatePointsOnSphere(N, R) ;

5 n2 = generatePointsOnSphere(N, R) ;
n3 = generatePointsOnSphere(N, R) ;

7 # u and v belong to the plane
u=n2-n1;

9 v=n3-n1;
# n: normal vector to the plane

11 n=np.cross(u,v) ;
x = dot(n, n1) / np. linalg .norm(n, axis=1) ;

13 # distance from the origin to the plane :
r = np. sqrt (R∗∗2 - x ∗∗2) ;

15 probaSimu = np.histogram(r , bins=nBins) ;
plt . plot (probaSimu[1][: - 1], probaSimu[0]/N, linewidth=2) ;

3rd simulation: 2 endpoints

This situation presents the random choice of two points on the sphere, and the
computation of their distance. This produces a linear probability (see Fig.29.9).

# 3rd case :
2 # 2 points on the sphere and distance between them
n1 = generatePointsOnSphere(N);

4 n2 = generatePointsOnSphere(N);
r = 1./2 ∗ np. linalg .norm(n1-n2, axis=1) ;

6 probaSimu = np.histogram(r , bins=nBins) ;
plt . plot (probaSimu[1][: - 1], probaSimu[0]/N, linewidth=2) ;

Analytical values

This code evaluates analytical values.
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1 # analytical values
step = .05;

3 r2 = np.arange (0, R, step ) ;
probaReal = 1./ R ∗ r2 / np. sqrt (R∗∗2-r2 ∗∗2) ;

5 probaReal = probaReal ∗ R / nBins; # approximation of the integral
plt . scatter ( r2 , probaReal , 50) ;

7

# display
9 plt . legend ([ "random plane by 3 points on the sphere" , "2 points on the sphere" , "

→֒ Analytical values " ])
plt . show();

11 plt . savefig ( " section_sphere .pdf" ) # save as pdf file

The results are displayed in Fig. 29.9.

The Bertrand’s paradox is illustrated by the fact that “at random” can pro-
vide several different interpretations. The objective here is to focus on the
computational choices that can be made in order to provide random chords
or random points on a sphere.





30 ConvexHull

This tutorial aims to determine the convex hull of a set of 2D points with a
simple and classical algorithm. This tool is largely used in computational ge-
ometry and imagemodeling. This tutorial is widely inspired of theWikipedia
page https://en.wikipedia.org/wiki/Graham_scan.

Figure 30.1: Convex Hull example.

30.1 Graham scan

The Graham scan is a method of computing the convex hull of a finite set of points
in the plane with time complexity O(n logn), n is the number of points. It is an
evolution of the Gift wrapping algorithm (O(nh), h is the number of points in the
hull) in the sense that it avoids evaluating all pairs of angles by first sorting the
points.

30.1.1 Lowest y-coordinate point

The first step, as in the gift wrapping algorithm, is to find the point with the
lowest y-coordinate. If two points exist in the set, choose the one with the lowest
x-coordinate: it is denoted P . This step obviously takes O(n).

Use the numpy.lexsort function.
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30.1.2 Sort by angle

Next, the set of points must be sorted in increasing order of the angle they and the
point P make with the x-axis.

Use the numpy.argsort function.

This is the limiting step, it takes O(n logn). Notice that the cosine of the angle
is a decreasing function between 0 and 180 degrees, and will thus avoid to evaluate
the angle itself. The sorted set of points is denoted S (it does not contain P ).

30.1.3 Check angles: le� or right turn?

From the star-like shape issued from the sorting algorithm, construct a list L of
points as: L = {P,S, P}.

Then, for each triplet of consecutive points (Pi, Pi+1, Pi+2) of L, check if the

angle ̂PiPi+1Pi+2 is a right turn or a left turn. In case of a right turn, remove Pi+1

from the list L. Process the entire list this way.

30.1.4 Le� or right turn?

Again, determining whether three points constitute a “left turn” or a “right turn”
does not require computing the actual angle between the two line segments, and
can actually be achieved with simple arithmetic only. Consider the cross product of

the vectors
−−−−→
PiPi+1 and

−−−−→
PiPi+2.

Procedure ccw(p1, p2, p3)

return (p2.x− p1.x) ∗ (p3.y − p1.y)− (p2.y − p1.y) ∗ (p3.x− p1.x) ;

Three points are a counter-clockwise turn if ccw > 0, clockwise if ccw < 0,
and collinear if ccw = 0 because ccw is a determinant that gives the signed area of
the triangle formed by p1, p2 and p3.
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30.1.5 Convex hull algorithm

This pseudo-code shows a different version of the algorithm, where points in the
hull are pushed into a new list instead of removed from L.

Data: n: number of points
Data: L: sorted list of n+ 1 elements
Data: First and last elements are the starting point P .
Data: All other points are sorted by polar angle with P .
stack will denote a stack structure, with push

and pop functions.

Data: stack.push(L(1))
Data: stack.push(L(2))
for i = 3 to n+ 1 do

while stack.size≥ 2 AND ccw(stack.secondlast, stack.last, L(i)) < 0)
do

stack.pop();
end

stack.push(L(i));
end

In this pseudo-code, stack.secondlast is the point just before the last one in the
stack. When coding this algorithm, you might encounter problems with floating
points operations (collinearity or equality check might be a problem).

1. Generate a set of random points.

2. Implement and apply the algorithm, and visualize the result.
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30.2. Python correction

import numpy as np
2 import matplotlib . pyplot as plt

30.2.1 Graham scan algorithm

For convex hull and other computational geometry algorithms, robustness must be
handled with special care. Floating points operations may be really tricky and the
following code is not ensured to work for all cases.

# very naive precision handling
2 points = np.round(points , decimals=4) ;

The first step is to get the starting point.

# sort first by y, then x. get first point
2 ind=np. lexsort ( points . transpose () ) ;
P = points [ind [0],:];

4

# all points but first one
6 pp =points [: - 1,:]

Then, the points are sorted by the cosinus of the angle. This step has complexity
O(n logn).
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# sort all points by angle
2 hypothenuse=np.sqrt( (pp [:,0] -P[0]) ∗∗2 + (pp [:,1] -P[1]) ∗∗2 ) ;
adj_side = pp [:,0] - P [0];

4 # as cos is decreasing , we use minus
cosinus= - adj_side /hypothenuse;

6 ind=cosinus . argsort () ;

8 # construct ordered list of points
list_points = [];

10 list_points . append(P. tolist () ) ;
list_points = list_points + pp[ind ,:]. tolist () ;

12 list_points . append(P. tolist () ) ;

Finally, the sorted points allow to construct the convex hull by testing the
orientation of the turn of the hull (see Fig.30.2).

first = list_points .pop(0) ;
2 second= list_points .pop(0) ;
hull = []; # convex hull

4 hull . append( first ) ;
hull . append(second);

6

for i , p in enumerate( list_points ) :
8 while len ( hull )>=2 and crossProduct ( hull , p)<0:

hull .pop() ;
10

hull . append(p);
12

# display result every 10 points
14 if i%10 == 0:

displayPointsAndHull( points , P, hull , ’ chull_ ’+str ( i )+’ .python.pdf’ ) ;

Figure 30.2: Graham scan illustration while constructing the convex hull.

(a) After 10 tested points.
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(b) After 20 tested points.
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(c) After 30 tested points.
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30.2.2 Useful functions

The cross-product function first extract the last two points of the hull, and check if
there is a left-turn or a right-turn to go to the point p3.

def crossProduct ( hull , p3) :
2 """

Cross product
4 hull : list that should contain at least 2 points

p3 : point
6 """

p1 = hull [ - 2];
8 p2 = hull [ - 1];

10 c= (p2[0] - p1[0]) ∗( p3[1] - p1[1]) - (p3[0] - p1[0]) ∗( p2[1] - p1[1]) ;
return c ;

In order to display the results, one function is proposed.

1 def displayPointsAndHull( points , P, hull , filename=None):
"""

3 Fonction for display points and hull
optionally save figure into pdf file

5 """
fig = plt . figure () ;

7 if P is not(None):
for i in np.arange(points . shape[0]) :

9 plt . plot ([P [0], points [ i ,0]], [P [1], points [ i ,1]], ’C0’) ;
plt . scatter ( points [:,0], points [:,1]) ;

11

hull = np.array( hull ) ;
13 plt . plot ( hull [:,0], hull [:,1], ’C2’) ;

plt . show()
15 if filename :

fig . savefig (filename , bbox_inches=’ tight ’ ) ;

30.2.3 Simple tests

For 5 points:
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Points=np.array ([[ 1, 2],
2 [ 1, - 4],

[ 2, - 1],
4 [ 3, - 4],

[ 4, 1],
6 [ 3, 0]])

8 H = conv_hull( Points ) ;
displayPointsAndHull( Points , H, ’sample_hull .python.pdf’ ) ;

For a few random points:

1 nb=50;
Points = np.random.rand(nb, 2) ;

3 H = conv_hull( Points ) ;
displayPointsAndHull( Points , H, ’random_hull.python.pdf’ ) ;

The results are illustrated in Fig.30.3.

Figure 30.3: Illustration of the convex hull computation.

(a) Convex points of 5 points.
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(b) Convex hull of 50 random points.
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31 VoronoïDiagrams andDelaunay
Triangulation

This tutorial aims to spatially characterize a spatial point pattern by using
some tools of computational geometry: the Voronoi diagram, the Delaunay
triangulation and the Minimum Spanning Tree (MST), illustrated in Fig.31.1.
For biomedical issues, this point pattern analysis can help the biologists to
classify different populations of cells.

Figure 31.1: Random point pattern and some geometrical structures used to charac-
terize it.

(a) Initial points
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(c) Delaunay triangulation
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triangulation
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31.1 Voronoi and Delaunay

Avoronoi diagram, in 2D, is defined as a partition of the plane into cellsRk according
to a distance function d and a set of seeds (germs) Pk.

Rk = {x ∈ X | d(x, Pk) ≤ d(x, Pj) for all j 6= k}
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The Delaunay graph is the dual graph that links the germs of the neighborhing
Voronoi cells.

31.1.1 Random tesselation

Follow these instructions to generate a random tesselation:

1. Generate a random point process.

2. Determine the Delaunay triangulation.

3. Determine the Voronoi diagram.

Use the python functions Delaunay and Voronoi from scipy . spatial .

31.1.2 Characterization of the Voronoi diagram

This basic approach characterizes the set of the cells. With the help of the Voronoi
diagram, it is possible to make the two following measurements, Area Disorder
(AD) and Round Factor Homogeneity (RFH), defined by:

AD = 1− 1

1 +
σ(A)

µ(A)

(31.1)

RFH = 1− σ(RF )

µ(RF )
(31.2)

where A and RF are calculated on the regions Rk of the Voronoi diagram. µ and σ
are the mean and standard deviation of the areas of the Voronoi cells. The circularity
(RF) of a polygon can be defined as the ratio between its area and the area of the
disk of an equivalent perimeter.

• Code these measurements with the following prototypes:

function ad = AD(V, R)
2 % computes AD (area disorder ) parameters
% V: Vertices of the Voronoi diagram

4 % R: Regions of the Voronoi diagram
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1 def AD(vor):
# takes a voronoi diagram to compute area disorder

In order to evaluate the area of each Voronoi cell, transform each cell
to a polygon.

• Represent the couple (ad, rfh) in a graph, which gives a characteri-
zation of the Voronoi diagram.

See shapely .geometry.Polygon for evaluating the area of a polygon.

31.1.3 Characterization of the Delaunay graph

If L denotes the set of the edge lengths of the Delaunay triangulation, the mean
and the standard deviation of L can also give informations on the graph.

• Compute and display in a graph the point of coordinates (µ(L), σ(L)),
with µ representing the mean and σ the standard deviation.

31.2 Minimum spanning tree

Definition from Wikipedia: a minimum spanning tree (MST) or minimum weight
spanning tree is a subset of the edges of a connected, edge-weighted undirected
graph that connects all the vertices together, without any cycles and with the
minimum possible total edge weight. That is, it is a spanning tree whose sum of
edge weights is as small as possible.

One of the methods to compute the MST is the Kruskal algorithm.

• Compute the MST.

• Compute (µ(L∗), σ(L∗))whereL∗ denotes the set of the edge lengths
of the MST.
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31.3 Characterization of various point pat-

terns

1. Generate n condition Poisson point processes of 100 points each. For
each realization, calculate the parameters (AD,RFH), (µ(L), σ(L))
and (µ(L∗), σ(L∗)). Display these n points in a 2D diagram in order
to analyze the robustness of the quantification.

2. Generate 3 different point processes with regular, uniform and Gaus-
sian dispersion. Display the different diagrams. Which one is the
most discriminant?
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31.4. Python correction

from scipy . spatial import Voronoi, voronoi_plot_2d , Delaunay, distance
2 import numpy as np

4 import matplotlib . pyplot as plt
from shapely import geometry # for polygons, area and perimeter

6 from scipy . sparse import csgraph # minimum spanning tree

31.4.1 Random tessellations

Random tessellations are generated following normal standard and uniform distri-
bution. A regular pattern is also employed. They are illustrated in Fig.31.2.

def dist_poisson (N=100):
2 points = np.random.rand(N, 2)

return points
4

def dist_gaussienne (N=100):
6 points = np.random.randn(N, 2)

return points
8

def dist_regular (N=100):
10 c = np. floor (np. sqrt (N)) ;

x2, y2 = np.meshgrid(range( int (c) ) , range( int (c) ) ) ;
12 points = np.vstack ([x2. ravel () , y2. ravel () ])

return points . transpose () ;

Figure 31.2: Different point patterns.

(a) Uniform distribution.
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31.4.2 Voronoi diagram and analysis

The Voronoi diagram is simply generated via the following command, with points

being generated with the previous functions:

vor = Voronoi(points ) ;

The two characterization functions RFH and AD are defined on the Voronoi
cells.

1 def RFH(vor):
"""

3 Evaluates Round Factor Homogeneity from voronoi diagram
"""

5 rfs =[];
for cell in vor . regions :

7 if cell and -1 not in cell :
poly = geometry.Polygon([(vor . vertices [p- 1]) for p in cell ]) ;

9 rfs . append(4∗np.pi ∗poly . area /( poly . length ∗∗2) ) ;
res = 1 - np.std ( rfs ) / np.mean(rfs) ;

11 return res ;

1 def AD(vor):
"""

3 Evaluates Area Disorder from voronoi diagram
"""

5 areas =[];
for cell in vor . regions :

7 if cell and -1 not in cell :
poly = geometry.Polygon([(vor . vertices [p- 1]) for p in cell ]) ;

9 areas .append(poly.area ) ;
res = 1 - 1/(1+np.std ( areas ) / np.mean(areas)) ;

11 return res ;

31.4.3 Delaunay triangulation and minimum spanning tree

The Delaunay triangulation is computed with
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1 tri = delaunay(points ) ;

Then, the characterization of the triangulation is done by measuring the dis-
tances of the edges.

1 def characterization ( tri ) :
"""

3 Characterization of the Delaunay triangulation (mean and std dev of edges)
"""

5 M = triToMat( tri ) ;
m = np.mean(M[M>0]);

7 s = np.std (M[M>0]);
return m, s ;

9 def triToMat( tri , value =0.) :
"""

11 Transforms the triangulation into a matrix representation ,
for simplicity

13 """
M = np. full (( tri . npoints , tri . npoints ) , value) ;

15 d = distance . pdist ( tri . points ) ;
distances = distance . squareform(d) ;

17 for s in tri . simplices :
M[s[0], s [1]] = distances [s [0], s [1]];

19 M[s[1], s [2]] = distances [s [1], s [2]];
M[s[2], s [0]] = distances [s [2], s [0]];

21 return M;

31.4.4 Characterization of different realizations

n realizations of the two distributions (uniform and Gaussian) are simulated. Then,
the Voronoi diagram and the Delaunay triangulation are computed and character-
ized. The results are presented in Fig.31.3.
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Figure 31.3: Characterization of several point processes. Each color represent a
different process, and each point represent one realization. These characterizations
can enhance a difference between the spatial distributions of the points.

(a) Characterization by the mean and stan-
dard deviation of the lengths of the Delaunay
triangulation.
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(b) Characterization of the minimum span-
ning tree of the Delaunay triangulation by the
mean and standard deviation of the lengths
of the MST.
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(c) AD and RFH on the Voronoi diagram.
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32 Integral Geometry

This tutorial aims to characterize objects by measurements from integral
geometry.

The different processes will be applied on the following synthetic image:

Figure 32.1: X

32.1 Cell configuration
The spatial support of an image can be covered by cells associated with pixels. A cell
(square of interpixel distance size) is composed of 1 face, 4 edges and 4 vertices. Either
a cell is centered in a pixel (intrapixel cell) or a cell is constructed by connecting pixels
(interpixel cell). The following figure shows the two possible representations of an
image with 16 pixels:

Figure 32.2: Pixels representation.

(a) Image. (b) Intrapixel cells. (c) Interpixel cells.

We respectively denote f intra (resp. f inter), eintra (resp. einter) and vintra (resp.
vinter) the number of faces, edges and vertices for the intrapixel (resp. interpixel)
cell configuration Using these two configurations, the measurements from integral
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geometry (area A, perimeter P , Euler number χ8 or χ4) can be computed as:

A = f intra = vinter (32.1)

P = −4f intra + 2eintra (32.2)

χ8 = vintra − eintra + f intra (32.3)

χ4 = vinter − einter + f inter (32.4)

1. Count manually the number of faces, edges and vertices of the image
X for the two configurations (Intra- and Inter-pixel) of Fig. 32.1.

2. Deduce the measurements from integral geometry (Eq. 32.1-32.4).

32.2 Neighborhood configuration
In order to efficiently calculate the number of vertices, edges and faces of the
object, the various neighborhood configurations (of size 2x2 pixels) of the original
binary image X are firstly determined. Each pixel corresponds to a neighborhood
configuration α. Thus, sixteen configurations are possible, presented in Tab. 32.1.

Table 32.1: Neighborhood configurations.

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 1

α 0 1 2 3 4 5 6 7

1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1
0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 1

α 8 9 10 11 12 13 14 15

Thereafter, each configuration contributes to a known number of vertices, edges
and faces (Tab. 32.2). To determine the neighborhood configurations of all the pixels,
an efficient algorithm effective consists in convolving the image X by a mask F ,
whose values are powers of two, and whose origin is the top-left pixel:

F =

(

1 4
2 8

)

The resulting image isX ∗ F . Notice that this imageX has no pixel touching the
borders, your code should ensure this (for example by padding the array with zeros).
In this way, the histogram h of X ∗ F gives the distribution of the neighborhood
configurations from image X . And each configuration contributes to a known
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number of vertices, edges and faces:

v =
15∑

α=0

vαh(α) (32.5)

e =
15∑

α=0

eαh(α) (32.6)

f =
15∑

α=0

fαh(α) (32.7)

The following table gives the values of vα, eα and fα for each cell configuration.

1. Compute the distribution of the neighborhood configurations from
image X .

2. Deduce the number of vertices, edges and faces for each cell rep-
resentation and compare these values with the previous (manually
computed) results.

Table 32.2: Contributions of the neighborhood configurations to the computation of
v, e and f

intrapixel cells
α 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
fα 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
eα 0 2 1 2 1 2 2 2 0 2 1 2 1 2 2 2
vα 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

interpixel cells
α 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
fα 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
eα 0 0 0 1 0 1 0 2 0 0 0 1 0 1 0 2
vα 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

32.3 Crofton perimeter
The Crofton perimeter could be computed form the number of intercepts in different
random directions. In discrete case, only the directions 0, π/4, π/2 and 3π/4 are
considered; they are selected according to the desired connexity.

The number of intercepts are denoted i0, iπ/4, iπ/2 and i3π/4 for the orientation
angles 0, π/4, π/2 and 3π/4 respectively.
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In this way, the Crofton perimeter (in 4 and 8 connexity) is defined in discrete
case as:

P4 =
π

2

(

i0 + iπ/2

)

(32.8)

P8 =
π

4

(

i0 +
iπ/4√

2
+ iπ/2 +

i3π/4√
2

)

(32.9)

These perimeter measurements can be computed from the neighborhood configu-
rations of the original image:

P4 =
15∑

α=0

P 4
αh(α) (32.10)

P8 =
15∑

α=0

P 8
αh(α) (32.11)

with the following weights P 4
α and P 8

α of these linear combinations (Tab. 32.3):

Table 32.3: Weights for the computation of the Crofton perimeter

α 0 1 2 3 4 5 6 7

P 4
α 0 π

2 0 0 0 π
2 0 0

P 8
α 0 π

4

(

1 + 1√
2

)
π

4
√

2
π

2
√

2
0 π

4

(

1 + 1√
2

)

0 π
4
√

2

α 8 9 10 11 12 13 14 15

P 4
α

π
2 π 0 0 π

2 π 0 0

P 8
α

π
4

π
2

π
4
√

2
π

4
√

2
π
4

π
2 0 0

Evaluate the perimeters P4 and P8 with the previous formula on Fig.32.1
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32.4. Python correction

32.4.1 Cell configurations

The following values are reported:

f intra = 50

eintra = 158

vintra = 107

f inter = 4

einter = 42

vinter = 50

Then, it is easy to compute the following values:

A = f intra = 50

P = −4f intra + 2eintra = 116

χ8 = vintra − eintra + f intra = −1

χ4 = vinter − einter + f inter = 12

32.4.2 Neighborhood configuration

The configuration is computed using the convolution function scipy . signal . convolve2d.
The histogram of the different configurations is presented in Fig.32.3.

Be aware that this algorithms works if there is no object pixel touching the
borders of the image. The example image is in this case, but you can ensure this
property by padding 0 values around the image:

X = np.pad(I , ((1,1) ,) , mode=’constant’) ;
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1 # Neighborhood configuration
F = np.array ([[0, 0, 0], [0, 1, 4], [0, 2, 8]]) ;

3 XF = signal . convolve2d(X,F,mode=’same’);
edges = np.arange (0, 17 ,1) ;

5 h,edges = np.histogram(XF [:], bins=edges) ;
plt . figure ()

7 plt . bar(edges [0: - 1], h) ;
plt . title ( "Histogram of the different configurations " )

9 plt . show()
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0

1000

2000
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Figure 32.3: Distribution of the different neighborhood configurations.

The Minkowski functionals are computed using the cells contributions:

1 # Computation of the functionals
f_intra = [0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1];

3 e_intra = [0,2,1,2,1,2,2,2,0,2,1,2,1,2,2,2];
v_intra = [0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1];

5 EulerNb8 = np.sum(h∗v_intra - h∗ e_intra + h∗ f_intra )
f_inter = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1];

7 e_inter = [0,0,0,1,0,1,0,2,0,0,0,1,0,1,0,2];
v_inter = [0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1];

Then, the values are easily verified.

EulerNb4 = np.sum(h∗v_inter - h∗ e_inter + h∗ f_inter )
2 Area = sum(h∗f_intra )
Perimeter = sum(-4∗h∗ f_intra + 2∗h∗ e_intra )

4 print ( "E_4 :{0}, A :{1}, P :{2} " . format(EulerNb4, Area, Perimeter) ) ;
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E_4 :12, A:50, P:116

32.4.3 Cro�on perimeter

The Crofton perimeter is a good approximation of a perimeter. One should notice
that there is no definitive solution to perimeter evaluation. The Crofton perimeter
is approximated in 2 or 4 directions, denoted P4 and P8 with a reference to the
connectivity.

1 # Crofton perimeter
P4 = [0, np.pi /2,0,0,0, np.pi /2,0,0, np.pi /2, np.pi ,0,0, np.pi /2, np.pi ,0,0];

3 Perimeter4 = sum(h∗P4)
P8 = [0, np.pi /4∗(1+1/( np. sqrt (2) ) ) ,np.pi /(4∗ np. sqrt (2) ) ,np.pi /(2∗ np. sqrt (2) ) ,0, np.

→֒ pi /4∗(1+1/( np. sqrt (2) ) ) ,0, np.pi /(4∗ np. sqrt (2) ) ,np.pi /4, np.pi /2, np.pi /(4∗
→֒ np. sqrt (2) ) ,np.pi /(4∗ np. sqrt (2) ) ,np.pi /4, np.pi /2,0,0];

5 Perimeter8 = sum(h∗P8)

1 Perimeter4 : 91.10618695410399, Perimeter8 : 77.76399477870015





33 Topological Description

The objective of this tutorial is to classify all foreground points of a binary
image according to their topological signification: interior, isolated, border. . . .
The reader can refer to [6]for more details.

The different processes will be realized on the following binary image.

Figure 33.1: Test

Preliminary definitions:

• y is 4-adjacent to x if |y1 − x1|+ |y2 − x2| ≤ 1.

• y is 8-adjacent to x if max(|y1 − x1|, |y2 − x2|) ≤ 1.

• V4(x) = {y : y is 4-adjacent to x}; V ∗
4 (x) = V4(x)\{x}.

• V8(x) = {y : y is 8-adjacent to x}; V ∗
8 (x) = V8(x)\{x}.

Figure 33.2: Different neighborhoods. By convention, pixels in white are of value 1,
in black of value 0.

(a) V4(x)

x

(b) V8(x)

x

(c) V ∗
4 (x)

x

(d) V ∗
8 (x)

x

• a n-path is a point sequence (x0, . . . , xk) with xj n-adjacent to xj−1 for
j = 1, . . . , k.

• two points x, y ∈ X are n-connected in X if there exists a n-path (x =
x0, . . . , xk = y) such that xj ∈ X . It defines an equivalence relation.

• the equivalence classes of the previous binary relation are the n-components
of X .
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33.1 Connectivity numbers

Let Compn(X) be the number of n-components (n = 4 or n = 8 within the
selected topology V4 or V8) of the set X of foreground points (object). We define
the following set:

CAdjn(x,X) = {C ∈ Compn(X) : C is n-adjacent to x}

We select the 8-connectivity for the set X of foreground points (object) and the
4-connectivity for the complementary X .

Warning: the definition of CAdjn introduces the n-adjacency to the central
pixel x. In the case of the following configuration (Fig.33.3), T8 = 2, T̄8 = 2
and TT8 = 3.

Figure 33.3: The pixel in the bottom right corner is not C-adjacent-4 to x.

(a) X (b) V ∗
8 (x) ∩ X

1. Create a function for determining the connectivity number:
T8(x,X) = #CAdj8(x, V ∗

8 (x) ∩X),

2. Create a function for determining the connectivity number:
T 8(x,X) = #CAdj4(x, V ∗

8 (x) ∩X),

3. Create a function for determining the number:
TT8(x,X) = #(V ∗

8 (x) ∩X).

Test these functions on some foreground points of the image ’test’.

Use scipy .ndimage.measurements.

33.2 Topological classification of binary points

From the connectivity numbers T8(x,X), T 8(x,X) and TT8(x,X), it is possible to
classify a foreground point xwithin the binary imageX according to its topological
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signification:

T8(x,X) T 8(x,X) TT8(x,X) Type
0 1 isolated point
1 0 interior point
1 1 > 1 border point
1 1 1 end point
2 2 2-junction point
3 3 3-junction point
4 4 4-junction point

The following Fig. 33.4 shows the classification of 4 points.

Figure 33.4: Points configurations.

(a) end (b) isolated (c) border (d) interior

With the help of this table, classify the points of the image ’test’.
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33.3. Python correction

33.3.1 Toplogical description

The operations are not difficult, except that the CAdj4 should be coded carefully.

def nc(A):
2 # A : block 3x3, binary

# complementary set of A
4 invA=1-A;

# neighborhoods
6 V8=np.ones ((3,3) ) . astype( int ) ;

V8_star=np.copy(V8);
8 V8_star [1,1] = 0;

V4=np.array ([[0, 1, 0],[1, 1, 1],[0, 1, 0]]) . astype( int ) ;
10 # intersection is done by the min operation

X1=np.minimum(V8_star,A);
12 TT8=np.sum(X1);

L, T8 = mes. label (X1, structure =V8);
14 # The C−ajd−4 might introduce some problems if a pixel is not 4−connected

# to the central pixel
16 X2=np.minimum(V8,invA);

Y=np.minimum(X2,V4);
18 X=morpho.reconstruction(Y,X2,selem=V4);

L, T8c = mes. label (X, structure =V4);
20

return T8, T8c, TT8
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Figure 33.5: Extraction of the window centered in x = (1, 4), given as (row,col).

33.3.2 Topological classification

The different types are given by the following code.
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1 def nc_type(X):
# evaluates the connectivity numbers

3 a ,b,c=nc(X);
if (a==0):

5 y=1; # isolated point
if (( a==1) and (b==1) and (c>1)) :

7 y=5; # border point
if (b==0):

9 y=7; # interior point
if (( a==1) and (b==1) and (c==1)) :

11 y=6; # end point
if (a==2):

13 y=2; # 2−junction point
if (a==3):

15 y=3; # 3−junction point
if (a==4):

17 y=4; # 4−junction point :
return y;

In order to perform the classification of all pixels of an image, one has to loop
over all the pixels, except the ones at the sides. The results are presented in Fig.33.6

def classification (A):
2 # for the whole image

m, n = A.shape
4 B=np.zeros ((m,n)) ;

for i in range (1, m-1):
6 for j in range (1, n-1) :

if A[i , j]> 0:
8 X=A[i-1: i +2, j - 1: j +2];

B[i , j]=nc_type(X);
10 return B
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Figure 33.6: Classification of all the pixels of the the original image.



34 ImageCharacterization

This tutorial aims to characterize objects by geometrical and morphometrical
measurements.

The different processes will be applied on synthetic images as well as images from
the Kimia database [1, 39]:

(a) Bat. (b) Camel. (c) Ray.

34.1 Perimeters

We are going to calculate the perimeter using the Crofton formula. This formula
consists in integrating the intercept number of the object with lines of various
orientation and positions. Its expression in the 2-D planar case is given by:

P (X) = π

∫

χ(X ∩ L)dL

where the Euler-poincaré characteristic χ is equal to the number of connected
components of the intersection of X with a line L.
In the discrete case, the Crofton formula can be estimated by considering the
intercept numbers for the horizontal i0, vertical iπ/2 and diagonal orientations iπ/4

and i3π/4 as:

P (X) = π × 1

4

(

i0 +
1√
2
iπ/4 + iπ/2 +

1√
2
i3π/4

)
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1. Calculate the intercept number of a binary object from the Kimia
database with lines oriented in the following four directions:
0, π/4, π/2, 3π/4.

2. Deduce the value of the Crofton perimeter.

3. Compare the result with the classical perimeter functions.

See perimeter from skimage.measure.

34.2 Feret Diameter
The Feret diameter (a.k.a. the caliper diameter) is the length of the projection of an
object in one specified direction Fig.34.1.

Figure 34.1: Feret diameter of the object in horizontal direction.

1. Calculate the projections in different directions of a binary object
from the Kimia database.

2. Deduce the minimum, maximum and mean value of the Feret diame-
ters.

34.3 Circularity
We want to know if the object X is similar to a disk. For that, we define the
following measurement (circularity criterion):

circ(X) =
4πA(X)

P (X)2

where A(X) and P (X) denote the area and perimeter of the object X .
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1. Show that the circularity of a disc is equal to 1.

2. Generate an array representing an object as a discrete disc.

3. Calculate its circularity and comment the results.

Use numpy.meshgrid.

34.4 Convexity
We want to know if the object X is convex. For that, we define the following
measurement:

conv(X) =
A(X)

A(CH(X))

where CH(X) denotes the filled convex hull of the object X .

1. Compute the convex hull of a pattern from the Kimia database.

2. Evaluate the area of the filled convex hull.

3. Deduce the convexity of the pattern.

See ConvexHull from scipy . spatial .
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34.5. Python correction

import matplotlib . pyplot as plt
2 import numpy as np
from scipy import ndimage

4 from scipy import signal
from scipy import misc

6 from scipy import spatial
from skimage import measure

34.5.1 Perimeters

The convolution is used here as an easy way of getting the borders of the object
in one direction, i.e. counting the number of intercepts. This method is efficient
because, for one given direction, a high number of lines are considered. Keep in
mind that only 4 orientations are used in the proposed code.

1 def countIntercepts ( I , h) :
B = np.abs( signal . convolve2d(I , h, mode=’same’));

3 n = np.sum(B) / 2;
return n;

5

def perimCrofton(I ) :
7 """

Approximate the Crofton perimeter with 4 directions
9 I is the input binary image

return the perimeter , float value
11 """

# defines an orientation
13 h = np.array ([[ - 1, 1]]) ;

n1 = countIntercepts ( I , h) ;
15

n2 = countIntercepts ( I , h. transpose () ) ;
17

h = np.array ([[1, 0], [0, - 1]]) ;
19 n3 = countIntercepts ( I , h. transpose () ) ;

21 h = np.array ([[0, 1], [ - 1, 0]]) ;
n4 = countIntercepts ( I , h. transpose () ) ;

23

perim_Crofton = np.pi /4 ∗ (n1+n2+ 1/np.sqrt (2) ∗( n3+n4)) ;
25 return perim_Crofton;
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1 Crofton perimeter : 1305.50015965
Classical perimeter in N4: 1374.19509294

3 Classical perimeter in N8: 1642.82842712

34.5.2 Feret diameter

The code consists in rotating the image and evaluating the projected diameter. The
rotation function can interpolate the pixel, the nearest method is thus required.
The function np.max directly performs the projection in one direction.

def feretDiameter ( I ) :
2 """

I : input binary image
4 Returns min, max and mean Feret diameter , which is the length of the

projected object in one direction
6 """

diameter = [];
8 for angle in range(180) :

I2 = ndimage. interpolation . rotate ( I , angle , mode=’nearest’) ;
10 I3 = I2 .max(axis=0) ;

diameter .append(np.sum(I3 > 0) ) ;
12

return np.min(diameter) , np.max(diameter), np.mean(diameter);

For the camel image [1], the Feret diameters are:

1 min, Max, average Feret diameters : 182 325 266.05

34.5.3 Circularity

For a disk, the perimeter is π ·D and the surface is π · D2

4 , which shows that the
circularity criterion has value 1 for a disk.

In order to generate a binary image containing a disk, one simple way is to use
the formula: (x − x0)2 + (y − y0)2 ≤ R2. The efficient way to do this is to use
np.meshgrid.
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def disk ( t , r ) :
2 """

Generates a binary array representing a disk , centered , of radius r
4 an array of size [2t ,2 t ] is generated

"""
6 x = np.arange(- t , t , 1) ;

X,Y = np.meshgrid(x, x) ;
8 I = (X∗∗2 + Y∗∗2)<= r ∗∗2;

return I ;

The circularity uses the perimeters as evaluated earlier.

1 def circularity ( I ) :
"""

3 Circularity criterion
4∗pi ∗A/P∗∗2

5 returns crofton and classic
"""

7 P = perimCrofton(I ) ;
print ( "Perimeter by crofton : " , P)

9 A = np.sum(I) ;
C = np.pi ∗4∗A/P∗∗2;

11

p = measure.perimeter( I , neighbourhood=4);
13 print ( "Usual perimeter : " , p)

c = np.pi ∗4∗A/p∗∗2;
15 return C, c ;

This gives for the camel image:

1 Perimeter by crofton : 2514.43300853
Usual perimeter : 2649.36074863

3 circularity by crofton : 0.999019146137
circularity usual 0.89985338478

34.5.4 Convexity

The convex hull is computed with the scipy . spatial tools. The following function
plots the result. Notice that the coordinates of an image and the coordinates of an
array are different, and one has to flip the image array in order to display both data
in the same figure.
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Figure 34.2: Convex hull of the image Camel.

def convexity( I ) :
2 """

Evaluates the convexity criterion
4 I is a binary image (np array)

return convexity
6 """

# be careful that coordinates between images and arrays are inversed
8 # thus , image is flipped before extracting points coordinates

points = np.transpose (np.where(np. flip ( I ,0) ) ) ;
10 hull = spatial .ConvexHull(points) ;

A = np.sum(I) ;
12 Ah = hull .volume;

14 plt . figure ()
for simplex in hull . simplices :

16 plt . plot ( points [simplex , 1], points [simplex , 0], ’k−’)
plt . axis ( ’equal ’ )

18 plt . show()
return A/Ah;

This criterion is between 0 and 1. This is illustrated in Fig.34.2.

1 convexity of Camel: 0.644014426566





35 ShapeDiagrams

The objective is to study some shape diagrams and the possibility to define
properties that may be useful in order to distinguish the different objects.

Shape diagrams are representations of single shapes (connected compact sets,
see [30, 31, 32]) as points in the 2-D unit square plane. They are based on inequalities
between 6 geometrical measurements: area A, perimeter P , radius of the inscribed
circle r, radius of the circumscribed circle R, minimum Feret diameter ω and
maximum Feret diameter d. In this way, the morphometrical functionals used in
the different shape diagrams are normalized ratios of such geometrical functionals.
The following table shows the morphometrical functionals for non-convex sets:

Geometrical
functionals

Inequalities
Morphological
functionals

r, R r ≤ R r/R
ω, R ω ≤ 2R ω/2R
A, R A ≤ πR2 A/πR2

d, R d ≤ 2R d/2R

r, d 2r ≤ d 2r/d
ω, d ω ≤ d ω/d
A, d 4A ≤ πd2 4A/πd2

R, d
√

3R ≤ d
√

3R/d

r, P 2πr ≤ P 2πr/P
ω, P πω ≤ P πω/P
A, P 4πA ≤ P 2 4πA/P 2

d, P 2d ≤ P 2d/P
R, P 4R ≤ P 4R/P

r, A πr2 ≤ A πr2/A

r, ω 2r ≤ ω 2r/ω

Table 35.1: Morphometrical functionals.
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Figure 35.1: The different processes will be applied on images from the Kimia
database [1, 39].

(a) Apple. (b) Bone. (c) Camel.

35.1 Geometrical functionals

Code functions in order to evaluate the different parameters:

• the area, Crofton perimeter and Feret diameters have been already
presented in tutorial 32;

• the radius of the inscribed circle can be defined from the ultimate erosion
of a set.

The function scipy .ndimage.morphology.distance_transform_cdt computes
the distance map of a binary image (chamfer distance transform).

35.2 Morphometrical functionals

Code and evaluate some of the morphometrical functionals listed in the table
35.1. Note that each of them has a physical meaning, e.g. 4πA

P 2 (circularity),
4A
πd2 (roundness), 2ω/P (thinness).
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35.3 Shape diagrams

• Visualize the different shape diagrams for all the images (from
the Kimia database) within the three classes ’apple’, ’bone’ and
’camel’. The Fig.35.2 illustrates the result for the shape diagram
(x = 2r/d, y = P/πd).

• Which shape diagram is the most appropriate for the discrimination of
such objects?

Figure 35.2: Example of a shape diagram.

35.4 Shape classification

• Use a K-means clustering method for automatic classification of such
shapes.

• Propose a method to quantify the classification accuracy for each shape
diagram.
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35.5. Python correction

import numpy as np
2

import scipy .ndimage
4 import imageio # imread and imwrite
import matplotlib . pyplot as plt

6 import skimage.measure # some geometrical descriptors

8 # for reading files
import glob

10

from sklearn . cluster import KMeans

35.5.1 Geometrical functionals

The Crofton perimeter is defined by multiple projections, as well as the Feret
diameter. Be careful while performing the rotation of the object (as it is a binary
object, the interpolation method could introduce non integer values).

1 def crofton_perimeter ( I ) :
""" Computation of crofton perimeter

3 """
inter = [];

5 h = np.array ([[1, - 1]]) ;
for i in range(4) :

7 II = np.copy(I ) ;
I2 = scipy .misc. imrotate ( II , 45∗ i , interp=’nearest ’ ) ;

9 I3 = scipy .ndimage.convolve(I2 , h) ;

11 inter . append(np.sum(I3>100)) ;

13

crofton = np.pi /4. ∗ ( inter [0]+ inter [2] + ( inter [1]+ inter [3]) /np. sqrt (2) ) ;
15 return crofton
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def feret_diameter ( I ) :
2 """

Computation of the Feret diameter
4 minimum: d (meso−diameter)

maximum: D (exo−diameter)
6

Input : I binary image
8 """

d = np.max(I.shape) ;
10 D = 0;

12 for a in np.arange (0, 180, 30) :
I2 = scipy .misc. imrotate ( I , a , interp=’nearest ’ ) ;

14 F = np.max(I2, axis=0) ;
measure = np.sum(F>100);

16

if (measure<d):
18 d = measure;

if (measure>D):
20 D = measure;

return d,D;

The inscribed circle is just the maximum of the distance transform inside the
object. The distance map for an image apple is shown in Fig.35.3a.

1 def inscribedRadius ( I ) :
"""

3 computes the radius of the inscribed circle
"""

5 dm = scipy .ndimage.morphology.distance_transform_cdt(I>100) ;
radius = np.max(dm);

7 return radius ;
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Figure 35.3: Illustration of the computation of two shape parameters.

(a) Distance map of an object apple. The in-
verse is actually displayed in order to see cor-
rectly the progression. The maximum of the
distance map is the radius of the inscribed
circle. (b) Circumscribed circle.
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The smallest enclosing circle is computed by using the code from the Project
Nayuki1 published under the GNU Lesser General Public License. The result is
presented in Fig.35.3b.

1 def circumCircle ( I ) :
"""

3 this version uses a function provided by Project Nayuki
under GNU Lesser General Public License

5 """
points = np.argwhere(I > 100) ;

7 c = smallestenclosingcircle .make_circle ( points ) ;
return c ;

35.5.2 Shape diagrams

The shape diagrams are constructed by reading all the images and computing the
shape descriptors.

1https://www.nayuki.io/page/smallest-enclosing-circle
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def diagrams() :
2 name=[’apple−∗.bmp’, ’Bone−∗.bmp’, ’camel−∗.bmp’];

elongation =[];
4 thinness =[];

roundness=[];
6 z =[];

for pattern in name:
8 namesList = glob . glob( pattern ) ;

for fichier in namesList:
10 I = imageio.imread( fichier ) ;

radius = inscribedRadius ( I ) ;
12 d,D = feret_diameter ( I ) ;

crofton = crofton_perimeter ( I ) ;
14

elongation .append(d/D);
16 thinness .append(2∗radius / D);

roundness.append(4∗np.sum(I>100) /(np.pi ∗ D∗∗2) ) ;
18 z .append(crofton / (np.pi ∗ D)) ;

The display of the different plots is just a use of the function plt . plot .

plt . plot ( elongation [0:20], thinness [0:20], "o" , label =’Apple’)
2 plt . plot ( elongation [20:40], thinness [20:40], "+" , label =’Bone’)

plt . plot ( elongation [40:60], thinness [40:60], " . " , label =’Camel’)
4 plt . legend(name)

plt . show
6 evaluateQuality ( elongation , thinness ) ;

8 plt . figure () ;
plt . plot (z [0:20], roundness [0:20], "o" , label =’Apple’)

10 plt . plot (z [20:40], roundness [20:40], "+" , label =’Bone’)
plt . plot (z [40:60], roundness [40:60], " . " , label =’Camel’)

12 plt . legend(name)
plt . show

14 evaluateQuality (z , roundness) ;

16 plt . figure () ;
plt . plot ( thinness [0:20], z [0:20], "o" , label =’Apple’)

18 plt . plot ( thinness [20:40], z [20:40], "+" , label =’Bone’)
plt . plot ( thinness [40:60], z [40:60], " . " , label =’Camel’)

20 plt . legend(name)
plt . show

22 evaluateQuality ( thinness , z) ;
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35.5.3 Shape classification

The following code evaluates the quality by comparing the known class of the
shape with the segmented (via the kmeans method) class. The result is illustrated
in Fig.35.4 with an accurary of 98.3%.

def evaluateQuality (x, y) :
2 global i

n = 3;
4 k_means = KMeans(init=’k−means++’, n_clusters=n)

X = np.asarray (x) ;
6 Y = np.asarray (y) ;

pts = np.stack (( X, Y)) ;
8 pts = pts .T;

#print ( pts )
10 k_means.fit ( pts ) ;

k_means_labels = k_means.labels_ ;
12 k_means_cluster_centers = k_means. cluster_centers_ ;

# plot
14 fig = plt . figure ()

colors = [ ’#4EACC5’, ’#FF9C34’, ’#4E9A06’]
16 # KMeans

for k, col in zip (range(n) , colors ) :
18 my_members = k_means_labels == k

cluster_center = k_means_cluster_centers[k]
20 plt . plot ( pts[my_members, 0], pts[my_members, 1], ’o’ ,

markerfacecolor=col , markersize=6)
22 plt . plot ( cluster_center [0], cluster_center [1], ’o’ , markerfacecolor=col ,

markeredgecolor=’k’ , markersize=12)
24 plt . title ( ’KMeans’)

plt . show()
26 fig . savefig ( "kmeans"+str(i )+" .pdf" ) ;

i += 1;
28 """

Evaluation of the quality : count the number of shapes correctly detected
30 """

accuracy = np.sum(k_means_labels[0:20] == scipy . stats .mode(k_means_labels
→֒ [0:20]) ) ;

32 accuracy +=np.sum(k_means_labels[20:40] == scipy . stats .mode(k_means_labels
→֒ [20:40]) ) ;

accuracy +=np.sum(k_means_labels[40:60] == scipy . stats .mode(k_means_labels
→֒ [40:60]) ) ;

34 accuracy = accuracy / 60 ∗ 100;
print ( ’Accuracy: {0:.2 f}%’ . format(accuracy) ) ;
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Figure 35.4: Illustration of the accuracy of the classification from a k-means method.
The k-means method is not necessarily the adapted to these data. The measured
accurary if of 98.3%.





36 FreemanChainCode

This tutorial is focused on shape representation by the Freeman chain code.
This code is an ordered sequence of connected segments (of specific sizes
and directions) representing the contour of the shape to be analyzed. The
direction of each segment is encoded by a number depending on the selected
connectivity (Fig. 36.1). In this example, the contour of the shape and its
Freeman code are given in 4-connectivity.

Figure 36.1: Freeman chain code examples.

(a) 4-connected
neighborhood.
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(b) Example Freeman code in a
4-neighborhood.
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Notations:

• y is 4-adjacent to x if |y1 − x1|+ |y2 − x2| ≤ 1.

• y is 8-adjacent to x if max(|y1 − x1|, |y2 − x2|) ≤ 1.

• N4(x) = {y : y is 4-adjacent to x}; N∗
4 (x) = N4(x)\{x}.

• N8(x) = {y : y is 8-adjacent to x}; N∗
8 (x) = N8(x)\{x}.
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x

(a) V4(x)

x

(b) V8(x)

36.1 Shape contours

Before determining the Freeman chain code of the shape, it is necessary to extract
its contour.

1. Generate or load a simple shape as a binary image A.

2. Extract its contour C4(A) ou C8(A) according to the 4-connectivity
or the 8-connectivity, respectively:

x ∈ C4(A) ⇔ ∃y ∈ N8(x) y ∈ cA

x ∈ C8(A) ⇔ ∃y ∈ N4(x) y ∈ cA

Informations

You can erode the object and subtract this erosion to it, with a structuring
element that corresponds toN4 orN8 if you want to have 8 or 4 connectivity,
respectively.

36.2 Freeman chain code

From the shape contours, the Freeman chain code can be calculated.

1. From the binary array of pixels, extract the first point belonging to
the shape (from left to right, top to bottom).
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Informations

You can use np.argwhere to locate the first point.

2. From this initial point, determine the Freeman chain code c (counter-
clockwise direction) using the N4 or N8 connectivity.

36.3 Normalization

The Freeman chain code is depending on the initial point and is not invariant to
shape rotation. It is then necessary to normalize this code.

1. The first step consists in defining a differential code d from the code c :

dk = ck − ck−1(mod 4 or 8)

In this example, d = 3003131331300133031130;

2. The second step consists in normalizing the code d. We have to extract the
lowest number p from all the cyclic translations of d.
In this example, p = 0013303113030031313313.
This Freeman chain code p is then independant from the initial point and
invariant by rotations of angles k ∗ π/2 radians (k ∈ Z).

• Code above steps 1 and 2. Prototypes of functions are given.

• Validate your code by rotating the shape of 3π/2 radians.

def codediff ( fcc , connectivity =8) :
2 # computes differential code

Use numpy.roll for circularly shifting the freeman code array. Code a
small function that tests all elements of array, one by one, in order to get
the minimum of two arrays.
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36.4 Geometrical characterization

36.4.1 Perimeter

From the Freeman chain code, it is possible to make different geometrical measure-
ment of the shape.

Calculate the perimeter of the shape (take care of the diagonals).

36.4.2 Area

The area is evaluated by the following algorithm:

• The area is initialized to 0 and the parameter B is initialized to 0.

• For each iteration on the Freeman chain code c, the area and the parameter
value B are incremented with the following rules:

8-code area B

0 -B 0
1 -B-0.5 1
2 0 1
3 B+0.5 1
4 B 0
5 B-0.5 -1
6 0 -1
7 -B+0.5 -1

Calculate the area of the shape in 8-connectivity. Note that the area does
not correspond to the total number of pixels belonging to the shape.
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36.5. Python correction

import matplotlib . pyplot as plt
2 import numpy as np
from skimage.morphology import binary_erosion, disk , rectangle

4 from skimage.measure import perimeter

36.5.1 Shape contours

To generate a simple object, here is an example:

A = np.zeros ((20,20) ) . astype( ’bool ’ ) ;
2 A[4:14, 9:17] = True;
A [1:18,11:16]= True;

The contours are computed in 4- or 8-connectivity, see Fig.36.2. This function
uses the mathematical morphology in order to get the contour.

1 def bwperim(I, connectivity =8) :
"""

3 Morphological inner contour, in 4 or 8 connectivity
I : binary image

5 return : binary image representing the contour
"""

7 if connectivity ==8:
SE = disk (1) ;

9 else :
SE = rectangle (3,3) ;

11

E = binary_erosion ( I , selem=SE);
13

return I^E;
15

# compute the contours
17 contours8 = bwperim(A, 4) ;

contours4 = bwperim(A, 8) ;

36.5.2 Freeman chain code
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(c) Sample object. (d) Contour in 4-connectivity. (e) Contour in 8-connectivity.

Figure 36.2: Simple object and its contours in 4- or 8-connectivity.

First point of the shape

The important thing is to find one point in the contour. The Freeman chain code is
sensitive to this choice, but several methods can transform this code so that this
first choice does not have any importance.

def firstPoint (C):
2 """

find first point of contour
4 returns point (as array )

"""
6 p = np.argwhere(C);

return p [0];

1 >>[r0,c0]= firstPoint (A)

3 r0 =
5

5 c0 =
10

Freeman chain code

The principle is to follow the contour, delete each pixel at each step, and find the
direction of the next pixel.
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def freeman(C, p, connectivity =8) :
2 def getIndex(contour, point , connectivity ) :

""" subfunction for getting the local direction
4 """

if connectivity ==8:
6 lut= np.array ([[1, 2, 3], [8, 0, 4], [7, 6, 5]]) ;

else :
8 lut= np.array ([[0, 2, 0], [8, 0, 4], [0, 6, 0]]) ;

10 window = contour[point[0]- 1: point [0]+2, point [1] - 1: point [1]+2];
window = window ∗ lut;

12 index = np.max(window);
return index- 1;

14

16 # Be careful that these LUTs consider coordinates from left to right , top to
→֒ bottom

lutx = np.array ([ - 1, - 1, - 1, 0, 1, 1, 1, 0]) ;
18 luty = np.array ([ - 1, 0, 1, 1, 1, 0, - 1, - 1]) ;

lutcode = np.array ([3, 2, 1, 0, 7, 6, 5, 4]) ;
20

nbrpoints = np.sum(C);
22 code=[];

point = p.copy() ;
24 C2 = C.copy() ;

26 for i in np.arange(nbrpoints ) :
C2[point [0], point [1]] = 0;

28

index = getIndex(C2, point , connectivity ) ;
30

if (index==0):
32 C2[p[0], p[1]] = 1;

index = getIndex(C2, point , connectivity ) ;
34

# new point
36 point [0] = point [0] + lutx [index ];

point [1] = point [1] + luty [index ];
38

# add code
40 code.append(lutcode[index]) ;

42 return code;

code = freeman(C8, p) ;
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1 code = array ([6, 6, 5, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 0, 7, 6, 6, 6, 0, 0, 0, 0, 2,
→֒ 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 4, 4, 4])

36.5.3 Normalization

Differential code

This is the first step towards independence from the first point.

1 def codediff ( fcc , connectivity =8) :
sr = np. roll ( fcc , 1) ;

3 d = fcc - sr ;
return d%connectivity ;

Normalization

The differential code is then normalized, in order to get a rotation invariant code. All
the circular shifts are evaluated, and a criterion (the minimum value) is established
to be able to always find the same result, for every position of the first point.

def minmag(code):
2 # high value for min computing

codemin = np.max(code)∗ np.ones(code.shape) ;
4 nb = len (code) ;

for i in np.arange(len (code) ) :
6 C = np. roll (code, i ) ;

8 for j in np.arange(nb) :
if C[j] > codemin[j ]:

10 break;
elif C[j] < codemin[j ]:

12 codemin = C;
break;

14 if j == nb:
codemin = C;

16

return codemin;

The differential code is evaluated in d8, the normalization gives shapenumber8:
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c = codediff (code, 8) ;
2 shapenumber8 = minmag(c);

c= array ([2, 0, 7, 7, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 7, 7, 0, 0, 2, 0, 0, 0, 2, 0,
→֒ 0, 7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 7, 0, 2, 0, 0, 0])

2

shapenumber8= array([0, 0, 0, 0, 0, 0, 0, 0, 1, 7, 0, 2, 0, 0, 0, 2, 0, 7, 7, 2,
→֒ 0, 0, 0, 0, 0, 0, 0, 0, 2, 7, 7, 0, 0, 2, 0, 0, 0, 2, 0, 0, 7, 1])

Validation

This validation shows the effect on a different starting point.

1 p = np.array ([4, 9]) ;

Another test is to verify the result after a rotation. To prevent discretization
problems, we use 90 degrees and take the transpose of the matrix.

1 % check for rotation by 90 deg
contours8rot=contours8’ ;

The same code should be found in both cases.

36.5.4 Geometrical characterization

Perimeter for 8-connectivity

We first need to extract the codes in the diagonal directions and apply a
√

2 factor,
then add the number of codes in vertical and horizontal directions.



Freeman Chain Code 394

def Perimeter( fcode) :
2 """

fcode : Freeman code
4 """

nb_diag = np.sum(np.array(fcode)%2);
6 perim = nb_diag∗np. sqrt (2) + len (fcode) -nb_diag;

return perim;

The perimeter is evaluated in the same way in skimage.

Perimeter : 43.65685424949238
2 skimage.measure.perimeter : 43.65685424949238

Area for 8-connectivity

def Area(fcode) :
2 """

"""
4 area = 0;

B = 0;
6 lutB = np.array ([0, 1, 1, 1, 0, - 1, - 1, - 1]) ;

for i in np.arange(len (fcode) ) :
8 lutArea = np.array ([ -B, - (B+0.5) , 0, (B+0.5) , B, (B- 0.5) , 0, - (B- 0.5) ]) ;

area = area + lutArea[fcode[ i ]];
10 B = B + lutB[fcode[ i ]];

return area ;

Notice that the area evaluated by this way is different from the number of pixels.

1 Area: 93.0
Number of pixels (area ) : 115



37 Machine Learning

The objective of this tutorial is to classify images by using machine learning
techniques. Some images, as illustrated in Figure 37.1 of the Kimia database
will be used [1, 39].

Figure 37.1: The different processes will be applied on images from the Kimia
database. Here are some examples.

(a) bird (b) camel (c) ray (d) turtle

37.1 Feature extraction

The image database used in this tutorial is composed of 18 classes. Each class
contains 12 images. All these 216 images come from the Kimia database. In order to
classify these images, we first have to extract some features of each binary image.

1. For each image in the database, extract a number of different features,
denoted nbFeatures.

2. Organize these features in an array of nbFeatures lines and 216
columns. In this way, each column i represents the different features
of the image i.

You can use the Python function skimage.measure.regionprops to extract
the same geometrical features.
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37.2 Image classification

In order to classify the images, we are going to use neural networks. Pattern
recognition networks are feedforward networks that can be trained to classify
inputs according to target classes. The inputs are the features of each image. The
target data are the labels, indicating the class of each image.
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1. Build the target data, representing the class of each image. The target
data for pattern recognition networks should consist of vectors of all
zero values except for a 1 in element i, where i is the class they are to
represent. In our example, the target data will be an array of 18 lines
and 216 columns.

2. The database will be divided into a training set (75%) and a test set
(25%).

3. Run the training task and classify the test images.

4. Show the classification confusion matrix as well as the overall perfor-
mance.

5. Try to run the same process. What can you conclude?

6. Try to change the parameters of the network to improve the classifi-
cation performance.

Look at the Python module sklearn .neural_network.MLPClassifier to make
the classification. Notice that your data may be normalized before
performing the classification.
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37.3. Python correction

The following imports may be considered.

# image manipulation and features construction
2 import glob
from skimage import measure, io

4 import numpy as np
import matplotlib . pyplot as plt

6 # preprocessing data and normalization
from sklearn . preprocessing import StandardScaler

8 from sklearn . preprocessing . data import QuantileTransformer
# learning methods

10 from sklearn import svm
from sklearn .neural_network import MLPClassifier

12 from sklearn . model_selection import train_test_split
from sklearn . metrics import classification_report , confusion_matrix

14 # plot confusion matrix
import seaborn as sn

16 import pandas as pd

37.3.1 Feature extraction

We make a loop on the whole database to extract some features of each image. The
9 features used here are: area, convex area, eccentricity, equivalent diameter, extent,
major axis length, minor axis length, perimeter and solidity.
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# Definitions of the database , classes and images
2 rep = ’images_Kimia216/’;

classes = [ ’ bird ’ , ’bone’ , ’ brick ’ , ’camel’ , ’ car ’ , ’ children ’ ,
4 ’ classic ’ , ’ elephant ’ , ’ face ’ , ’ fork ’ , ’ fountain ’ ,

’ glass ’ , ’hammer’,’heart ’ , ’key’ , ’misk’ , ’ray’ , ’ turtle ’ ];
6 nbClasses = len ( classes ) ;
nbImages = 12;

8 # The features are manually computed
properties = np.zeros (( nbClasses∗nbImages,9) ) ;

10 target = np.zeros (nbClasses ∗ nbImages);
index=0;

12 for ind_c , c in enumerate( classes ) :
filelist = glob . glob(rep+c+’∗ ’ ) ;

14 for filename in filelist :
I = io . imread(filename) ;

16 prop = measure.regionprops( I ) ;
properties [index , 0] = prop [0]. area ;

18 properties [index , 1] = prop [0]. convex_area;
properties [index , 2] = prop [0]. eccentricity ;

20 properties [index , 3] = prop [0]. equivalent_diameter ;
properties [index , 4] = prop [0]. extent ;

22 properties [index , 5] = prop [0]. major_axis_length ;
properties [index , 6] = prop [0].minor_axis_length;

24 properties [index , 7] = prop [0]. perimeter ;
properties [index , 8] = prop [0]. solidity ;

26 target [index] = ind_c ;

28 index = index+1;

Note that in the same time, the target array (required in the following) is built
within this loop. It represents the true classes of the objects.

37.3.2 Classification

We used a training set of 75% of the database and 25% for the test set. The scaler
is used in order to rescale the data having different ranges and dimensions. Other
scalers are proposed in sklearn . preprocessing.

# percentage of the data used for splitting into train / test
2 percentTest = .25;
# MLP Classifier (Multi−Layer Perceptron)

4 # the data are first scaled
propertiesMLP = StandardScaler () . fit_transform ( properties ) ;

6 prop_train , prop_test , target_train , target_test = train_test_split (propertiesMLP,
→֒ target , test_size =percentTest , random_state=0);
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The network is created with 1 hidden layers of 10 neurons. One could also use
SVM instead of MLP ( classifier = svm.SVC(kernel=’ linear ’ ) ;).

# feedforward neural network
2 # max_iter should be extended max_iter=100000 for adam or sgd solvers
mlp = MLPClassifier ( hidden_layer_sizes =(10,) , solver=’ lbfgs ’ ) ;

4 target_pred = mlp. fit ( prop_train , target_train ) . predict ( prop_test )
print ( "Training set score : %f" % mlp.score ( prop_train , target_train ) )

The training score should be around 1, according to the training dataset and
the different parameters employed.

1 Training set score : 1.000000

37.3.3 Performance

The confusion matrix gives an idea of the overall performance. The following
function uses the modules seaborn and pandas to generate a heatmap that displays the
confusion matrix.

def plot_cm(cm, classes , normalize=False , cmap=plt.cm.Blues) :
2 """

Plot confusion matrix
4 cm: confusion matrix , as ouput by sklearn . metrics . confusion_matrix

classes : labels to be used
6 normalize: display number (False by default ) or fraction (True)

cmap: colormap
8 returns : figure that can be used for pdf export

"""
10 if normalize:

cm = cm.astype( ’ float ’ ) / cm.sum(axis=1) [:, np.newaxis]
12 fmt = ’ .1 f ’ if normalize else ’d’

df_cm = pd.DataFrame(cm, index = classes , columns = classes ) ;
14

fig = plt . figure () ;
16 sn. set ( font_scale =.8)

sn.heatmap(df_cm, annot=True, cmap = cmap, fmt=fmt);
18 plt . xlabel ( ’Target label ’ )

plt . ylabel ( ’True label ’ )
20

return fig ;
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The previous function is then used, and illustrated in Fig.37.2.

1 cnf_matrix = confusion_matrix( target_test , target_pred ) ;
fig=plot_cm(cnf_matrix, classes , normalize=True);

sklearn . metrics . classification_report can be used to display the performance.

precision recall f1 - score support
2

bird 0.75 1.00 0.86 3
4 bone 1.00 1.00 1.00 5

brick 1.00 1.00 1.00 1
6 camel 1.00 1.00 1.00 3

car 1.00 1.00 1.00 1
8 children 1.00 1.00 1.00 2

classic 1.00 1.00 1.00 5
10 elephant 1.00 1.00 1.00 3

face 1.00 1.00 1.00 4
12 fork 1.00 1.00 1.00 2

fountain 1.00 1.00 1.00 3
14 glass 1.00 1.00 1.00 5

hammer 1.00 0.75 0.86 4
16 heart 1.00 1.00 1.00 2

key 1.00 1.00 1.00 3
18 misk 1.00 1.00 1.00 3

ray 1.00 1.00 1.00 4
20 turtle 1.00 1.00 1.00 1

22 avg / total 0.99 0.98 0.98 54
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Figure 37.2: Normalized confusion matrix of the classification result.
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The aim of this tutorial is to develop a simple Harris corner detector. This is
the first step in pattern matching, generally followed by a feature descriptor
construction, and a matching process.

38.1 Corner detector and cornerness mea-

sure

Use the sobel and gaussian_filter from the scipy .ndimage module.

38.1.1 Gradient evaluation

The Harris corner detector is based on the gradients of the image, Ix and Iy in x
and y directions, respectively.

Apply a Sobel gradient in both directions in order to compute Ix and Iy .

38.1.2 Structure tensor

The structure tensor is defined by the following matrix. The coefficients ω follow a
gaussian law, and each summation represents a gaussian filtering process. W is an
operating window.

M =






∑

(u,v)∈W
ω(u, v)Ix(u, v)2 ∑

(u,v)∈W
ω(u, v)Ix(u, v)Iy(u, v)

∑

(u,v)∈W
ω(u, v)Ix(u, v)Iy(u, v)

∑

(u,v)∈W
ω(u, v)Iy(u, v)2




 =

[

M1 M2

M3 M4

]

• EvaluateM1 toM4 for each pixel of the image.
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38.1.3 Cornerness measure

The cornerness measure C , as proposed by Harris and Stephens, is defined as
follows for every pixel of coordinates (x, y):

C(x, y) = det(M)−Ktrace(M)2

withK between 0.04 and 0.15.

Compute C for all pixels and display it for several scales σ.

38.2 Corners detection

A so-called Harris corner is the result of keeping only local maxima above a certain
threshold value. You can use the checkerboard image for testing, or load the sweden
road sign image Fig.38.1.

Use the following function to generate a checkerboard pattern.

def checkerboard(nb_x=2, nb_y=2, s=10) :
2 """
checkerboard generation

4 a grid of size 2∗nb_x by 2∗nb_y is generated
each square has s pixels .

6 """
C = 255∗np.kron ([[1, 0] ∗ nb_x, [0, 1] ∗ nb_x] ∗ nb_y, np.ones (( s , s ) ) )

8 return C

Figure 38.1: Sweden road sign to be used for corner detection.
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• Evaluate the extended maxima of the image.

• Only the strongest values of the cornerness measure should be kept.
Two strategies can be employed in conjonction:

– Use a threshold value t on C: the choice of this value is not
trivial, and it strongly depends on the considered image. An
adaptive method would be preferred.

– Keep only the n strongest values.

• The previous operations are affected by the borders of the image.
Thus, eliminate the corner points near the borders.

• The detected corners may contain several pixels. Keep only the cen-
troid of each cluster.
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38.3. Python correction

38.3.1 Cornerness measure

Figure 38.2: Cornerness measure for the checkerboard image. The next step is
to locate the corners by thresholding the measure, extracting the local maxima,
eliminating points near the edges...

(a) Checkerboard. (b) Cornerness measure. (c) Harris corner points.
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The first step is to compute the gradient in both x and y directions.

Ix = scipy .ndimage.sobel( I , axis=0) ;
2 Iy = scipy .ndimage.sobel( I , axis=1) ;

Then, the coefficients of the matrix are computed.

M1 = np.multiply ( Ix , Ix ) ;
2 M2 = np.multiply ( Iy , Ix ) ;
M4 = np.multiply ( Iy , Iy ) ;

In case of using a scale parameter, these coefficients should be filtered (for
example via a gaussian filter).

1 M1 = scipy .ndimage. gaussian_filter (M1, sigma) ;
M2 = scipy .ndimage. gaussian_filter (M2, sigma) ;

3 M4 = scipy .ndimage. gaussian_filter (M4, sigma) ;
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Finally, the cornerness measure is evaluated.

1 C = (np.multiply (M1, M4) - np.multiply (M2, M2)) - K ∗ np.multiply (M1+M4, M1+M4);

The cornerness measure is displayed in Fig.38.2.

38.3.2 Corners detection

In order to keep only the strongest corner points, a threshold value t is applied
on C . This value is really depending on the considered image, thus such a global
threshold is not generally a good idea. One would probably prefer a h-maximum or
equivalent operator. For the purpose of this tutorial, we will keep this strategy.

1 C[C<t] = 0;

The local maxima are then extracted.

1 corners = peak_local_max(C, indices =False , min_distance=2) ;

The result is a binary image, where some clusters of points are the corner points.
To keep only one point per cluster, the centroid of each is detected. The final result
is presented in Fig.38.2c.

1 L = measure. label ( corners ) ;
props = measure.regionprops(L) ;

3 centers =[];
for prop in props:

5 centers . append(prop.centroid ) ;

38.3.3 Road sign image application

In this case, the values t = 107 and σ = 3 are used. The result is illustrated in
Fig.38.3.
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Figure 38.3: Harris corner detection with scale σ = 3 and threshold value t = 107.

(a) Cornerness measure. (b) Corner points.



39 Local Binary Pa�erns

This tutorial aims to study a texture descriptor named ’Local Binary Patterns’.
The first objective is to implement this descriptor. Therefater, digital images
of textures will be classified using this descriptor and the k-means algorithm.

The different processes will be applied on this kind of texture images:

(a) metal image (b) sand image (c) ground image

39.1 Local Binary Patterns

The Local Binary Patterns (LBP) descriptor is a simple yet very efficient texture
operator which labels the pixels of an image by thresholding the neighborhood of
each pixel and considers the result as a binary number. Due to its discriminative
power and computational simplicity, LBP texture operator has become a popular
approach in various applications. It can be seen as a unifying approach to the
traditionally divergent statistical and structural models of texture analysis. Perhaps
the most important property of the LBP operator in real-world applications is its
robustness to monotonic gray-scale changes caused, for example, by illumination
variations. Another important property is its computational simplicity, which
makes it possible to analyze images in challenging real-time settings.
The LBP feature vector, in its simplest form, is created in the following manner:

• For each pixel, compare the pixel to each of its 8 neighbors (on its left-top,
left-middle, left-bottom, right-top, etc.). Follow the pixels along a circle, i.e.
clockwise or counter-clockwise.

• Where the center pixel’s value is greater than the neighbor’s value, write "1".
Otherwise, write "0". This gives an 8-digit binary number (which is usually
converted to decimal for convenience).
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• Compute the histogram of the frequency of each "number" occurring (i.e.,
each combination of which pixels are smaller and which are greater than the
center).

• Normalize the histogram.

Difference

Sign

Weight

Figure 39.1: Local binary pattern. From wikipedia, author Xiawi, CC-By-SA.

• Code a function for computing the Local Binary Patterns.

• Test this operator on a texture image from the given database.

Consider the function numpy.histogram for histogram computation.

39.2 Classification of texture images

The objective is to classify the texture images from the given databse by using the
LBP descriptor.

1. Calculate the LBP descriptor for each image of the database.

2. Compare the descriptors for each class of images.
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3. Compute the distance between each pair of images in order to get a
dissimilarity matrix. Comment the result.

4. Use the k-means algorithm to classify the images of the database into
three classes (k = 3).

See KMeans from sklearn . cluster .
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39.3. Python correction

The following imports are used.

import numpy as np
2 from scipy import misc
import matplotlib . pyplot as plt

4 import glob
import seaborn as sn

6 import pandas as pd
import os

8 from sklearn . cluster import KMeans

39.3.1 LBP computation

Each pixel is given a specific 8 bits value according to a code as follows.

def LBP(I) :
2 B = np.zeros (np.shape(I ) ) ;

code = np.array ([[1,2,4],[8,0,16],[32,64,128]]) ;
4

# loop over all pixels except border pixels
6 for i in np.arange (1, I . shape[0]-2) :

for j in np.arange (1, I . shape[1]-2) :
8 w = I[ i - 1: i +2, j - 1: j +2];

w = w >= I[ i , j ];
10 w = w ∗ code;

B[i , j ] = np.sum(w);

Then, all values (except for border values) are summarized in the histogram.

1 h,edges = np.histogram(B[1: - 1, 1: - 1], density=True, bins=256) ;

For the first image of sand, the histogram is shown in Fig.39.2.
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Figure 39.2: Illustration of the Local Binary Pattern computed on an entire image.

(a) Texture image. (b) LBP of texture.
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39.3.2 Classification

For all images of the same family, the LBP are computed and represented in the
same graph. The histograms really look similar (see Fig.39.3). The following code is
used for the “sand” family.

1 classes = [ ’ Terrain ’ , ’Metal’ , ’Sand’ ];
names = [];

3 hh = [];
for c in classes :

5 print (c) ;
fig=plt . figure () ;

7 for file in sorted (glob . glob( ’ ../ matlab/images/’+ c + ’ ∗. bmp’)) :
names.append(os.path.basename(file ) ) ;

9 I = imageio.imread( file ) ;
I = I [:,:,1];

11 h, edges = LBP(I) ;
plt . plot (h) ;

13 hh.append(h);
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Figure 39.3: Illustration of the LBP of 4 images of each family. The histogram are
almost equivalent, which shows that this descriptor can be employed to discriminate
between the different families.

(a) Metal image example. (b) Sand image example. (c) Terrain image example.

(d) Four metal images.
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(e) Four sand images.
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(f) Four terrain images.
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A distance criterion is used to compare the different histograms: the classical
SAD (Sum of Absolute Differences) gives a numerical values. All pairs of distances
are concatenated in a matrix, displayed as an image in Fig.39.4.

1 # compute distance between LBPs
n = len (hh);

3 dists = np.zeros (( n, n) )
for i in np.arange(n) :

5 for j in np.arange(n) :
dists [ i , j ] = np.sum(np.abs(hh[i]-hh[j ]) )

7 fig= plot_dists ( dists , names);

In order to display this matrix, the module seaborn is used.
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1 def plot_dists ( dists , classes , cmap=plt.cm.Blues) :
"""

3 Plot matrix of distances
dists : all computed distances

5 classes : labels to be used
cmap: colormap

7 returns : figure that can be used for pdf export
"""

9 df_cm = pd.DataFrame(dists , index = classes , columns = classes ) ;
fig = plt . figure () ;

11 sn. set ( font_scale =.8)
sn.heatmap(df_cm, annot=True, cmap = cmap, fmt=’.2 f ’ ) ;

13 return fig ;

Figure 39.4: Sum of Absolute Differences between the different LBP histograms of
each image. 3 families of 4 textures are represented here, terrain images are in the
first part, metal images in the second and sand images in the last. Black represents
0 distance and white is 1 (highest distance, the values are normalized).
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The kmeans algorithm uses such a distance, and we can verify that the clustering
process works as expected. The result is presented in the next box.
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1 # kmeans clustering
n=3;

3 k_means = KMeans(init=’k−means++’, n_clusters=n, n_init =10)
k_means.fit (hh) ;

5 print (k_means.labels_ )

The result show that the kmeans algorithm perfectly performs the classification.

1 [1 1 1 1 0 0 0 0 2 2 2 2]
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40 Practical exam2016

All printed documents allowed. Send your code via the campus website (zip
files if several files are to be sent).

40.1 Segmentation (13 points)

• Segment the image.

Figure 40.1: Test image

(a) Image to be segmented, from [4]. (b) Segmented image

40.2 Integral image (7 points)

If the original image is denoted f , the integral image I is defined by the following
equation, for all pixels of coordinates (x, y):

I(x, y) = f(x, y) + I(x− 1, y) + I(x, y − 1)− I(x− 1, y − 1)

• Code a function that computes this integral image. The prototype of
this function must be function II =int_image(I ).
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• Code a function that computes the local average of the image f . Notice
that:

x2∑

x=x1

y2∑

y=y1

f(x, y) = I(x2, y2)− I(x2, y1 − 1)

− I(x1 − 1, y2) + I(x1 − 1, y1 − 1)

• Compare it to a mean filter.
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41.1 Basic notions

41.1.1 Image characterisation

• Cite the names of the major image file formats and their main differ-
ences. What is DICOM?

• Define sampling in numerical images. Define the image resolution.

41.1.2 Sensors

• What is a Bayer filter?

• Explain the principles of demosaicing.

41.1.3 Image processing

• Define the operation of histogram equalization.

• What is the difference with histogram stretching?

• From the mathematical definition of the derivative, explain the con-
struction of the gradient operator, and then of the Laplacian.

• Cite some method for contours detection, and list their pros and cons.
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41.2 Open question

The Fig. 41.1 shows a human retina (eye fundus). Propose a method for
segmenting:

• the vessels,

• the optical nerve (bright disk).

Justify your choices. Indicate all elements that seem important and the way
to deal with them. Look carefully at the shapes and intensities of objects
you need to segment.
For your record, ophthalmologists need to measure the diameter and the
circularity of the optical nerve, as well as the length and the number of
vessels (branches, tortuosity...).
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Figure 41.1: Human retina.

(a) Color image. (b) Red channel.

(c) Green channel. (d) Blue channel.
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42.1 Warm-up questions

42.1.1 Thresholding methods

Cite different methods in order to find a threshold value to binarize a
grayscale image. Explain the Otsu’s method. What are its limits?

42.1.2 Image filtering

• What is the difference between a rank filter and a linear filter?

• Cite the name of a filter of each type.

• In case of a salt and pepper noise present in the image, what type of
filter would you require to restore it? Why?

• For the latter, precise its limits and propose a way to improve the
result.

42.1.3 Retina images

As a project, you coded a method for retina vessels segmentation. Explain
the principles of the algorithm.
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42.2 Open question: QR code

A QR code is a binary code represented as a 2D matrix. A scanner is in charge of
reading it (via a camera) and translating it into the actual code. The structure of a
QR code is represented in Fig.42.1.

Figure 42.1: Conversion of a binary pattern into a binary matrix.

(a) Structure of a QR code, Wikipedia, author: Bobmath, CC-By-SA

1. Version information

2. Format information

3. Data and error correction keys

4. Required patterns

4.1. Position

4.2. Alignment

4.3. Timing

5. Quiet zone

(b) Code. (c) Matrix.

0

1

1

1

1

0

1

0

1

Describe the different steps required to perform the acquisition and geomet-
ric transformation of the QRcode into a binary 2D matrix representing the
code (1 value for 1 square, see Fig.42.1).

• List different situations that may complicate the image acquisition
and analysis.
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• Propose some (image processing) solutions in order to deal with these
situations. Explain them, give the necessary details describing the
methods.

Figure 42.2: Different QR codes. The image acquisition and analysis must be
tolerant to different observation conditions... Images from Collectif Raspouteam
http://raspouteam.org/. Other images from unknown sources.



Index

Aliasing, 14, 22

Characterization, 345, 356, 365, 373
Circularity, 367
Convexity, 367
Diameter, 366
Perimeter, 365

Classification, 374, 403
Color

Chromaticity diagram, 119
Color Matching Functions, 119
Color Spaces, 117

Computational Geometry
Convex Hull, 315, 367
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Fourier Transform, 49, 79
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Application, 41
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age Processing, 127
Logarithmic Image Processing, 107

Freeman Chain Code, 355
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Gradient
Prewitt, 15, 24
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Heat Equation, 140
Histogram, 12, 18
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Equalization, 29
Matching, 30

Image
Display, 12, 17
Load, 12, 17

Laplacian, 15, 24

Mapping, 20
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Alternate Sequential Filters, 272
Attribute Filters, 279
Dilation, 258
Erosion, 258
General Adaptive Neighborhood, 130
Geodesic Filtering, 271
Granulometry, 307
Hit-or-miss Transform, 285
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Reconstruction, 258, 272
Skeleton, 285
Topological Skeleton, 285
Watershed, 293

Multiscale, 149
Filtering, 151
Kramer & Bruckner, 151
Pyramid, 149

Noise
Exponential, 65
Gaussian, 65
Salt & Pepper, 65
Uniform, 65

Point Spread Function, 79

Quantization, 13, 21

Random Fields, 227
Registration, 381
Restoration

Adaptive median filter, 66
Blind deconvolution, 84
Deconvolution, 79
Lucy-Richardson filter, 84
Median filter, 66
Van Cittert filter, 83
Wiener filter, 82

Segmentation, 301
Active Contours, 195
Distance Map, 293
Histogram, 169
Hough Transform, 187
K-means, 170, 347, 403
Otsu thresholding, 170
Region Growing, 181
Threshold, 169
Watershed, 293
Watershed by Markers, 294

Shape From Focus, 95
SML, 97
Tenengrade, 98
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Variance of Tenengrad, 98
Spatial Processes, 205

Boolean Models, 219
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Gibbs Point Process, 207
Marked Process, 209
Miles Formula, 221
Neyman-Scott Point Process, 206
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Ripley Functions, 209
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Random Chords, 239
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Neighborhood, 331, 339, 355
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Definition, 49
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Image processing tutorials with python This book is a collection of tutorials
and exercises given at MINES Saint-Etienne as part of theMaster’s Degree in Science
and Executive Engineering ("Ingénieur Civil des Mines – ICM"). In recent years,
project-based learning has been used to illustrate theoretical concepts with real
and concrete applications.

Whether you are in the early years of your university studies, in preparatory
classes for the French Grandes Ecoles or in an engineering school, or even as
a teacher, this book is made for you. You will find a large number of tutorials,
classified by field, to familiarize yourself with the theoretical concepts of image
processing and analysis.

Go to http://iptutorials.science to download the complete codes in python.
Yann GAVET He graduated from Mines Saint-Etienne with a Master’s Degree

in Science and Executive Engineering ("Ingénieur Civil des Mines - ICM") in 2001,
obtained a Master of Science in 2004 and defended his PhD thesis in 2008. He
teaches signal-processing, image-processing and pattern-recognition as well as C
programming at Master’s level.

Johan DEBAYLE He received his master of science and PhD thesis in 2002
and 2005. He is the head of the master MISPA of MINES Saint-Étienne, and teaches
signal-processing, image-processing and pattern-recognition at Master’s level.
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