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purely mathematical line break-up model [START_REF] Lienau | Random Fracture of Brittle Solid[END_REF] to develop the initial theory of dynamic plate fragmentation [START_REF] Mott | A theory of Fragmentation[END_REF]. Soon after, Mott made a conceptual breakthrough by deciding to consider the cylinder as a stack of steel rings. With this brilliant hypothesis and the introduction of several probability distributions of initial defects, he was able to successfully predict fragment mass scattering [START_REF] Mott | Fragmentation of Shell Casings and the Theory of Rupture in Metals[END_REF][START_REF] Mott | A theory of fragmentation: Application to wire wound bombs 20 lb[END_REF][START_REF] Mott | Fragmentation of shell cases[END_REF]. Right from the beginning, Mott considered stress relaxation waves, which are now named in his honor. Mott waves are one of the foundations needed to predict bomb debris size because once unloaded, the parts of shell casings no longer fracture.

Unfortunately, given the computational limits of the 1940s, Mott was required to simplify crack propagation through thickness as instantaneous. That implied that the load carrying capacity of the corresponding section drops to zero, which Mott knew was an oversimplification.

In quasi-static deformation (small strain rates), ductility increases fracture energy and as consequence slows down crack propagation [START_REF] Freund | High strain-rate crack growth in rate-dependent plastic solids[END_REF], [START_REF] Tvergaard | Analysis of the cup and cone fracture in a round tensile bar[END_REF], Zhang andRavi-Chandar (2006, 2008), [START_REF] Gao | On ductile fracture initiation toughness: Effects of void volume fraction, void shape and void distribution[END_REF], [START_REF] Levy | Exploring the physics behind dynamic fragmentation through Parallel Simulations[END_REF]). Thus, the first step was to experimentally demonstrate the existence of ductile failure even at very high strain rates. Based on his theoretical and experimental work on expanding tubes, Taylor demonstrated that, before breaking, the mean strain is around 60% [START_REF] Taylor | Volume III, Aerodynamics and the mechanics of projectiles and explosions 44, The fragmentation of tubular bombs[END_REF]. Ductile failure requires lots of energy [START_REF] Nemat-Nasser | Hydraulic fracturing and geothermal energy[END_REF]) and consequently leads to slow crack propagation. Ergo, yielding and strain hardening influence fragmentation and Mott's model had to be enhanced. To the best of our knowledge, Grady who has published numerous papers and books in this field, was the very first to deal with non-instantaneous crack propagation [START_REF] Grady | Local inertial effects in dynamic fragmentation[END_REF]. Hence, he was able to predict the mean mass of the fragments but not their mass distribution [START_REF] Grady | Local inertial effects in dynamic fragmentation[END_REF][START_REF] Grady | Fragmentation of Rings and Shells -The Legacy of N.F. Mott[END_REF]. [START_REF] Zhou | A cohesive model based fragmentation analysis: effects of strain rate and initial defects distribution[END_REF] analyzed the fragmentation process in a one-dimensional bar taking into account elastic wave interaction and considering a cohesive crack opening process. They applied the model to a prototypical ceramic bar. For very high strain rates, Zou et al predict an average fragment size about 5 times smaller than the Grady. [START_REF] Levy | Dynamic fragmentation of a ring: Predictable fragment mass distributions[END_REF] 

Mott's model and Grady's extension

Mott investigated the dynamics of an infinite plastic rod. Prior to crack nucleation, the rod undergoes a homogeneous, time dependent, uniaxial strain rate, ε x, t = ε t = ∂v ∂x ⁄ . The uniaxial velocity v x, t depends linearly on the x coordinate. The velocity v, constant over time at any material location X, is a convenient Lagrangian variable given by:

, = = (1)
ε is the initial straining rate.

Mott considered crack nucleation, at t = τ, leading to instantaneous through thickness propagation separating the rod in two: a stress partially released and a loaded part (Fig. 1a). The moving interface between these two parts is called a Mott wave. These waves prevent further damage nucleation because of the stress partially released volume they produce. The material beyond section B undergoes uniform expansion. The material between the crack (0) and the moving interface B is partially unloaded. Mott modelled the material as perfectly plastic after through thickness crack propagation:

≥ = = (2)
Beyond B the material is submitted to σ . The stress increases linearly between sections A and B.

Newton's second law of motion and mass conservation imply the following equation for the velocity

= (3)
The wave front position X " is given by

# = √% % = & ' (4) 
With this simple model, combined with adequate assumptions concerning damage nucleation, Mott estimated the fragment distribution of steel warheads by hand. The lack of computers forced Mott to oversimplify the physical problem. The most significant limitation is the assumption of instantaneous through thickness crack propagation. 

Where Γ is the fragmentation energy Grady made major contributions to dynamic failure. His work leads to deeper insight of the synergy between damage growth (through thickness crack development) and stress release wave propagation.

Unfortunately, equations ( 5) and ( 6) lead to simple solutions only for a very limited choice of damage potentials. Moreover, the ad hoc introduction of a non-zero interface stress should be justified. In contrast, our comprehensive energy based approach, presented in the next section assumes positivity energy dissipation during through-thickness failure development.

Energy balance based extension of Mott's Model

Energy balance

Similarly, to Mott and Grady, we consider a rod, submitted to homogeneous strain rate ε , experiencing damage nucleation at t = t < τ = 0 . In the material ahead of the stress relaxation front, the dissipated power per unit volume is given by σ > ε . If X stands for the wave front position at time τ , an energy balance applied to the material [0, X τ ] between the times 0 and τ leads to:

A & B 6 C + 0 = & A & ; + E + 0 F G H I (8) 
The two terms on the left side of the equation, correspond respectively to the initial kinetic energy and the external work rate. The terms on the right side relate respectively to the final kinetic energy, the energy dissipated to damage the material and the energy dissipated by plastic deformation. Integration by parts leads to the following expression for the wave front position X

0 F G H I = E + ; A & ; (9) 
Recently, [START_REF] Vocialta | Influence of internal impacts between fragments in dynamic brittle tensile fragmentation[END_REF] considered possible friction between debris by a cohesive zone based f.e. analysis. In present approach, friction affect the energy dissipated to damage the material.

Wave front delay compared to Mott's solution

Deriving equation ( 9) with respect to the time and rearranging the different terms leads to

A & & = 0 -E (10) 
γ designates the power dissipated in the damaging process. Consistent with the assumption of a perfectly plastic material, we assume the dissipated energy depends only on the wave front position.

Hence, previous equation leads to a simple relation between the wave front position and the dissipation:

L B = 0 8 H B - & B + M NOPP : where % #Q = & 5 ' (11) 
After complete failure τ ≥ τ R , the energy dissipated in the damaging process remains constant (γ = 0).

So, equation ( 10) simplifies to Mott's equation.

*B + , H = % #Q (12)
The solution to equation ( 12) corresponds to a delayed Mott wave:

& = % #Q -1 (13) 
Where τ S R represents the wave front compared to Mott's solution (with zero energy dissipation) at failure. 

& = % #Q [ - ] TU = - B + M NOPP (14) 
Combining the last expression with equation ( 11) puts forward a simple relation between the increase in dissipated energy and time delay

L B = 0 8 H V B : (15) 
Therefore, the delay τ S X depends on the current wave front position X. Hence, the wave front position (10) may be expressed as a function of the energy dissipation rate, the yield strength and the remote strain rate:

*B + , H = % #Q W 1 - L H 5 ' B H Y (16) 
Combining the two previous equations provides a relation between the derivative of τ S and the power dissipated to damage the material (γ )

H V H = L H 5 ' B H (17) 
σ > ε X τ dτ S is the energy used to damage the material during the time G . As X > 0 and γ ≥ 0 , the derivative of the time delay is always positive, and τ S increases from 0 to its maximum τ S R .

Stress and damage variable

The interface (y) between the localized damage zone and the rigid material governs damage evolution. Its velocity, y , describes damage progression, whereas y corresponds to its accumulation.

Assuming rigid plastic behavior leads to:

. = , . = F G H I (18) 
The stress σ associated to y than naturally follows from the dissipated power:

E = . = (19) 
Hence, σ is related to the variation of the time delay:

= ' B H L H = H V H (20) 
The stress depends on the remote strain rate, the wave front position and the energy dissipation rate.

Equations ( 9) and ( 18) lead to a simple expression of the damage variable y.

. = F G H I = L H ' + ; ' B 6 H . = L H ' + &' ;M NOPP ; % #Q = & 5 ' (21) 
The variable, y, depends on the energy dissipated to damage the material, the wave front position and the strain rate. The new model includes Mott's original approach (E = 0 , but shows clearly the need to incorporate a second characteristic value (E / 0 . This quantity measures the ratio between energy dissipation rate and total power. Equations ( 20) and ( 21) define damage evolution. The parameter τ may eventually be eliminated for particular (X, τ -curves. Before doing so, the limitations to all possible (X, τ -curves are analyzed.

Allowable damage laws and characteristic lengths

Consistent with the assumption of rigid plastic material, we hypothesize that dissipated power depends solely on the damage variable y. To analyze the impact of this hypothesis, we introduce the reduced time Τ and wave front position χ by:

`= ab = c d (22) 
Equation ( 10) transforms into:

A &e;cab d & ` d′ ` = 0 ec d ` -ab E′ ` χ g represents the derivative of χ with respect to Τ. Hence, invariance of equation ( 10) with respect to ε implies:

h 2 -j + 3l = 1 + l 2 -j + 3l = -j
The second expression, (2 -j + 3l = -j), is due to energy dissipation and thus not present in Mott's original approach.. The new model (with m = -2/3 and n = -1/3) leads to:

`= /; = a + 6 d (23) 
In the d, ` -space, the relation between wave front position and time does no more depend on the strain rate:

o *p + , q = % r 1 - Lg p ] % = % #stt = & where E g = L t (24)
In the d, ` -space, the physical parameter, D (m 2 /s 2 ), corresponding to Mott's initial solution is independent of the strain rate. The new time delay, coherent with equation ( 23), leads to a simpler expression of the stress ` ` = /; ujG ` = p 8 L q : = 0 8 q V q :

(25)

As a consequence of equation ( 24) any possible χ, Τ -curve corresponds to a delayed Mott path. Furthermore, continuity of the dissipated energy γ implies continuity of the wave front position χ Τ . Figure 3 illustrates this condition. If all material parameters (Γ, σ , X R , τ R ), as well as the loading ε ) are fixed, an infinity of solutions is still possible. Among these, Grady has chosen power laws. ) is a function of the wave front position, the latest satisfies:

`= & M F z W a {| } ~Y p I (27) 
Without explicit knowledge of γ g in function of, previous equation may not be integrated. However, the allowed χ, Τ -domain may be bounded. Irreversibility implies γ′ ≥ 0. Hence, Mott's un-delayed solution (γ′ = 0) corresponds to a lower limit of the χ Τ curves (B1 in figure 4). Moreover, for a given time delay at failure Τ S R , inequality ( 26) gives an upper bound to χ Τ . Figure 4 shows the allowable domain in the χ, Τ -space. Both boundaries may be expressed as delayed Mott's waves: 

• € ≡ `= p + M + ` 1 ' d -d 1 € & ≡ `= p + M + ` 1 ' d (28)
ƒ = E `1 = F d q V p Gd p " I (29) 
Equation ( 29) leads to a geometrical interpretation of the failure energy (Figure 5). For both boundaries, the previous yields:

o € 1 : ƒ = ` 1 F d ‡ p " I d -d 1 Gd = 0 € & 1 : ƒ = ` 1 F d ‡ p " I d G d = ` 1 d 1 (30)
Hence, the total energy dissipated to failure the material, Γ has to satisfy the following inequality:

0 ˆΓ ˆσ 8 χ R Τ R - ‰ Š 6 ‹ : (31) 
For a specified value of the failure energy Γ, previous equation involves a lower bound to the time to failure as a function of the corresponding wave front position.

`1 OE p " + M + M + ;p " = p " + M + ` 1 with % & = ;4 (32) 
The first term on the right corresponds to a non-delayed Mott wave, whereas the second measures the time needed to transfer enough energy to failure the material. D & has the dimension of a length. Taking into account the failure energy leads naturally to the introduction of a characteristic length scale % & .

A new lower bound to the fracture time can be established by requiring a positive value for the interface stress and negative value for its derivative with respect to the damage variable.

Ž . ≥ 0 0 0 ≤ 0 (33) 
Remembering equation ( 25), the previous conditions lead to

o q V q ≥ 0 + q V q + ≤ 0 (34) 
Equation ( 34), together with Τ S 0 = 0 and

Τ S Τ R = Τ S R implies ` ` = 8`- p + M : ≥ 8 q V " q " : ` (35) 
Simple algebraic manipulations then lead to

`rq " aq V " q " ] = q q " p " + M ≥ p + M (36) 
Therefore, all allowable χ, Τ -paths fulfilling conditions (33) also satisfy:

q q " ≥ p + p " + (37) 
The corresponding time delay is thus given by:

` = ` 1 8 p p " : & (38) 
Note, that with this particular law the associated damage stress,

= H V H = t 1
t1 , is constant. Equations ( 29) and (38) lead to a new upper bound of the failure energy

ƒ = E `1 = & ; 0 h d 1 `1 - p " 6 M •
Thus, the failure energy satisfies:

0 ˆƒ ˆ& ; 0 h d 1 `1 - p " 6 M • (39) 
For a specified value of ƒ, previous expression gives a lower bound for the failure time (Figure 6): (41)

€ ; 1 : `1 ≥ p " + M + M + &p " (40) 

Different trial wave front expressions

The exact solution of the wave front equation ( 27) is available only if the dissipated power E g can be expressed as a function of the wave front position which is not easy to realize. Hence, we prefer testing particular relations between time and wave front position. Consistent with the supposition of minimum time to failure for given failure energy, bounds (40, 41) will be considered as the optimum to achieve.

Second order relation between the wave front and time

We consider a second order relation between time and wave front position

`= ud + -d & (42) 
a and b designate parameters determined hereafter. Moreover, we assume that, at failure, the wave front is tangent to a delayed Mott wave χ & = D Τ -Τ S R . Hence

u = 2d 1 8 M --: (43) 
The relation between time delay and failure energy may now be written:

ƒ = F rd u + 2-d - &p + M ] Gd p " I
The two constants, a and b are given by:

u = 2 M + p " + and -= M - M + p " 6 (44) 
The time at failure depends on the two material characteristics D, D2 and the failure wave front position:

`1 = M + p " + p " + M (45) 
' 1 coeb = 8 " :

8 + 6 : ' 1 Q" (55) 
The results predicted by 4 th order relation between ` and d are close to the bounds ( 40) and ( 41).

Comparing the different wave paths

Boundary B3 predicts the minimum time to failure as a function of the wave position. ' 1 Q" and d 1 Q" designate respectively the absolute minimum time to failure and the corresponding wave front abscissa. Therefore, all the stress release wave models for perfectly plastic materials should predict failure times in the form:

d 1 Q" =
£ d 1 ≈ ¤ d 1 Q" ' 1 ≈ ¥' 1 Q" (56) 
¤ and ¥ are numerical parameters depending on the particular model. Hereafter, to compare the wave paths predicted by the different models, we introduce the non-dimensional variables d ¦ and `¦:

o d ¦ = p p " O §P `¦ = q q " O §P o d 1 ¦ = p " p " O §P `1¦ = t " q " O §P (57) 
Table 1 gives the wave coordinates at failure for fixed material parameters 

Conclusion

Broadly, stress release wave propagation controls debris size. Mott was among the first to study the fragmentation process. He considered instantaneous through thickness crack propagation. Hence, the wave front position and time are related by a diffusion equation depending on one physical constant.

Based on an ad hoc correction to Mott's approach (progressive drop to zero of the interface stress), some time later, Grady estimated the mean fragment size.

Our present work is based on an energy balance approach. The minimalist assumption of positive energy dissipation related to damage naturally introduces a strong relation between the wave front path and the damage progression.

First, energy conservation for a rod during the process of damage development has been formulated. Then Mott's approach derives naturally as a particular case with no energy dissipation related to damage.

Postulating invariance of the energy balance with respect to the strain rate, defines two characteristic quantities: Mott's diffusion constant D and a new characteristic: length D2 (depending on the failure energy and yield strength).

Moreover, our energy-based approach also states a residual stress associated to a damage variable. The relation between stress and damage variable is independent of the strain rate. Postulating a decrease of the stress during the damage process gives a new lower bound to the time to failure.

Once the general framework of the damage process was laid out, specific wave front paths were tested. A forth order relation, between the wave front position and time, predicts a failure time and position very close to the lower boundary. The time to failure and the wave front position at failure (characteristic debris size) differ by more than 30 percent from previous models. Therefore; this energybased approach not only provides the stress damage variable relation, but on a practical side, is far

  simulated the fragmentation of a uniformly expanding ring within a finite element framework, coupled to linear cohesive elements. They suggest the distribution of fragment masses follows a universal curve, which depends only on the average fragment mass. . Cereceda et al. (2017) used the model suggested by Zhou et al. to assess dynamic fragmentation in glass, concrete and masonry. Unfortunately, all attempts to consider damage were based on ad hoc additions of an internal stress to Mott's original model or finite element analyses. Present work offers a new model by coupling Mott's wave and progressive damage based on minimalist assumptions. Only positive energy dissipation during failure will be assumed.
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 1 Fig.1 (a) Original Mott's model (b) Grady's extension of Mott's model
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 2 Figure 2: Real wave front position ( , Figure 2 is a schematic representation of the real wave front positon. Every point in the (X, τ -space may be reached by a delayed Mott wave:
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 3 Figure 3: Acceptable w, x -curves Equation (24) leads to an explicit relation between the time and wave front position: q p = &p M r 1 -Lg p ] a →

Figure 4 :

 4 Figure 4: Allowed domain in the (w, x)-space Bounding the possible d, ` -curves, naturally leads to a new relation between the total dissipated energy at failure Γ and the (χ R , Τ R coordinates. By relation (15), the total energy dissipated to damage the material is:

  ƒ/ corresponds to the area bounded to the left by the exact solution (OC) and to the right by the delayed Mott's wave passing through the same point C (C'C).
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 5 Figure 5: Geometrical interpretation of the failure energy …

Figure 6 :

 6 Figure 6: Allowed domain in the (',T)-space The smallest possible failure time allowed by the present physics minimizes expression (40). We call it ' 1 Q" and designate by d 1 Q" the corresponding wave front position. *d 1 Q" , ; = MM + "

Figure 8 :

 8 Figure 8: Wave front position in function of time predicted by Grady, 2 nd and 4 th order model.

  The constants % and % & follow from invariability of the energy balance with respect to the remote strain rate.
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We assume now that, for a given failure energy (given D2) the most likely fracture path minimizes the time to failure. The wave front position, χ R -<˜, satisfying this assumption depends on the total energy at failure and the material density:

Hence, the minimum time to failure predicted by the second order model is:

The corresponding values of a and b are:

and

Obviously, solution (44) is not close to the bound (40). Thus, we tried a 4 th order relation between time and wave front position.

Fourth order relation between the wave front and time

We postulate the following relation between time and wave front position

Assuming moreover that ` is tangent to a delayed Mott's wave at failure, implies:

The energy dissipated to failure the material (29) allows to determine parameter a:

The two constants, a and b may be written as function of the failure energy, the wave front position at failure ( d 1 ) and parameters %, % & :

Ergo, wave front position and time to failure are related by the following expression:

This solution comes very close to the lower bound (40). The wave front position minimizing the time to failure is:

The minimum time to failure resulting from the 4 th order model is: Figure 8 illustrates the wave front position for Grady's solution (red), the 2 nd order model and the 4 th order model. The circles mark final failure. Thus, prior to the circle the different models apply, after the circle a delayed Mott's model is used. Clearly, the new model predicts much smaller wave front positions at failure than Grady's model. Moreover, the time to failure is also much smaller. : ≈ 1.68

better at predicting time to failure and in future work will provide a cornerstone to furnish even more accuracy for debris size.