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ABSTRACT 

Better understanding of damage under high strain rate deformation is critical; whether assessing the 
impact of new weapon systems, calculating safety issues, or even modelling modern high speed 
machining. Mott waves, one of the keystones needed to predict bomb debris size, are reexamined. Mott 
assumed instantaneous through thickness crack propagation and stress relaxation waves unloading the 
material surrounding the crack. But, following experimental evidence, crack extension velocity actually 
has limits. A new energy balance based framework, considering damage development during stress 
release waves propagation is presented. Exact boundaries for the time and wave position at failure are 
established. Particular wave paths close to these boundaries are analyzed. This work will be the basis 
to predict more accurately fragment size distributions having industrial as well as military applications. 
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1. Introduction 

At the onset of World War II, fragmentation studies of expanding cylinders, were being used to 

predict the debris distribution for conventional warheads. In 1943, Mott and Linfoot extended Lienau’s 
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purely mathematical line break-up model (Lienau, 1936) to develop the initial theory of dynamic plate 

fragmentation (Mott and Linfoot, 1943). Soon after, Mott made a conceptual breakthrough by deciding to 

consider the cylinder as a stack of steel rings. With this brilliant hypothesis and the introduction of 

several probability distributions of initial defects, he was able to successfully predict fragment mass 

scattering (Mott 1943, 1944, 1947). Right from the beginning, Mott considered stress relaxation waves, 

which are now named in his honor. Mott waves are one of the foundations needed to predict bomb 

debris size because once unloaded, the parts of shell casings no longer fracture. 

Unfortunately, given the computational limits of the 1940s, Mott was required to simplify crack 

propagation through thickness as instantaneous. That implied that the load carrying capacity of the 

corresponding section drops to zero, which Mott knew was an oversimplification. 

In quasi-static deformation (small strain rates), ductility increases fracture energy and as 

consequence slows down crack propagation (Freund (1985), Tvergaard and Needleman (1984), Zhang 

and Ravi-Chandar (2006, 2008), Gao (2005), Levy (2010)). Thus, the first step was to experimentally 

demonstrate the existence of ductile failure even at very high strain rates. Based on his theoretical and 

experimental work on expanding tubes, Taylor demonstrated that, before breaking, the mean strain is 

around 60% (Taylor, 1963). Ductile failure requires lots of energy (Nemat-Nasser et al. (1983)) and 

consequently leads to slow crack propagation. Ergo, yielding and strain hardening influence 

fragmentation and Mott’s model had to be enhanced. To the best of our knowledge, Grady who has 

published numerous papers and books in this field, was the very first to deal with non-instantaneous 

crack propagation (Grady, 1982). Hence, he was able to predict the mean mass of the fragments but not 

their mass distribution (Grady 1982, 2006).  

Zhou et al. (2005) analyzed the fragmentation process in a one-dimensional bar taking into 

account elastic wave interaction and considering a cohesive crack opening process. They applied the 

model to a prototypical ceramic bar. For very high strain rates, Zou et al predict an average fragment 

size about 5 times smaller than the Grady. Levy et al. (2010) simulated the fragmentation of a uniformly 

expanding ring within a finite element framework, coupled to linear cohesive elements. They suggest the 

distribution of fragment masses follows a universal curve, which depends only on the average fragment 

mass. . Cereceda et al. (2017) used the model suggested by Zhou et al. to assess dynamic 

fragmentation in glass, concrete and masonry.  

Unfortunately, all attempts to consider damage were based on ad hoc additions of an internal 

stress to Mott’s original model or finite element analyses. Present work offers a new model by coupling 

Mott’s wave and progressive damage based on minimalist assumptions. Only positive energy 

dissipation during failure will be assumed.  
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2.  Mott’s model and Grady’s extension 

Mott investigated the dynamics of an infinite plastic rod. Prior to crack nucleation, the rod 

undergoes a homogeneous, time dependent, uniaxial strain rate, ε����x, t� = ε����t� = ∂v ∂x⁄ . The 

uniaxial velocity v�x, t� depends linearly on the x coordinate. The velocity v, constant over time at any 

material location X, is a convenient Lagrangian variable given by: 

 ��, �� = �������� =  ��� (1) 

ε�  is the initial straining rate. 

Mott considered crack nucleation, at t = τ, leading to instantaneous through thickness 

propagation separating the rod in two: a stress partially released and a loaded part (Fig. 1a). The 

moving interface between these two parts is called a Mott wave. These waves prevent further damage 

nucleation because of the stress partially released volume they produce. The material beyond section B 

undergoes uniform expansion. The material between the crack (0) and the moving interface B is partially 

unloaded. Mott modelled the material as perfectly plastic after through thickness crack propagation: 

 ��� ≥ �� = ���� = �� (2) 

Beyond B the material is submitted to σ�. The stress increases linearly between sections A and B. 

Newton’s second law of motion and mass conservation imply the following equation for the velocity 

  � ��� �� � = ��  (3) 

The wave front position X" is given by  

 �# = √% �   % = & ��  '�  (4) 

With this simple model, combined with adequate assumptions concerning damage nucleation, Mott 

estimated the fragment distribution of steel warheads by hand. The lack of computers forced Mott to 

oversimplify the physical problem. The most significant limitation is the assumption of instantaneous 

through thickness crack propagation. 
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Fig.1 (a) Original Mott’s model (b) Grady’s extension of Mott’s model  

Grady has offered an extension of Mott’s model, including delayed crack opening, based on the 

remaining load carrying capacity σ� φ (Fig. 1b). As before, unloading waves are still considered as 

propagating from section A to section B. At section B, the rod is submitted to the stress σ� and in 

section A, the stress is reduced to σ� φ.  Between sections A and B, postulating the strain remains 

constant. Newton’s second law, mass conservation and equation (4) give the wave front velocity: 

 
�*�+,�' = ��  -�.� (5) 

Identical velocities at sections A and B, give a simple relation between the wave front velocity v and the 

new internal damage variable y: 

  = �0��  (6) 

All the mass is assumed to be between y and x. The remaining load carrying capacity of all the volume 

delimited by the initial defect (crack in section A) and the wave front (B) is thus described by a single 

variable y and the associated function φ. For a linear damage function, Grady predicts the time and 

wave position at failure as: 

 �1 = 23& 4+�56 7896:  �1 = 8 ;4 '� +:896:
 (7) 

Where Γ is the fragmentation energy  

Grady made major contributions to dynamic failure. His work leads to deeper insight of the synergy 

between damage growth (through thickness crack development) and stress release wave propagation. 

Unfortunately, equations (5) and (6) lead to simple solutions only for a very limited choice of damage 

potentials. Moreover, the ad hoc introduction of a non-zero interface stress should be justified. In 

contrast, our comprehensive energy based approach, presented in the next section assumes positivity 

energy dissipation during through-thickness failure development.  
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3.  Energy balance based extension of Mott’s Model 

3.1.  Energy balance 

Similarly, to Mott and Grady, we consider a rod, submitted to homogeneous strain rate  ε�  , 

experiencing damage nucleation at t = t< �τ = 0�. In the material ahead of the stress relaxation front, 

the dissipated power per unit volume is given by σ> ε�  . If X stands for the wave front position at time τ , 
an energy balance applied to the material [0, X�τ�] between the times 0 and τ leads to: 

 A ��&  B6C + �0 ���� = �&  A ��& �; + E��� + �0 ��  F � G�HI  (8) 

The two terms on the left side of the equation, correspond respectively to the initial kinetic energy and 

the external work rate. The terms on the right side relate respectively to the final kinetic energy, the 

energy dissipated to damage the material and the energy dissipated by plastic deformation. Integration 

by parts leads to the following expression for the wave front position X 

 �0 ��  F ���� G�HI = E��� + �;  A ��& �;��� (9) 

Recently, Vocialta et al. (2015) considered possible friction between debris by a cohesive zone based 

f.e. analysis. In present approach, friction affect the energy dissipated to damage the material. 

3.2.  Wave front delay compared to Mott’s solution 

Deriving equation (9) with respect to the time and rearranging the different terms leads to 

  A ��& �&����� = �0 �� ���� − E���� (10) γ�  designates the power dissipated in the damaging process. Consistent with the assumption of a 

perfectly plastic material, we assume the dissipated energy depends only on the wave front position. 

Hence, previous equation leads to a simple relation between the wave front position and the dissipation: 

 
�L�B = �0 ��  8� �H�B − & B+MNOPP:  where    %#Q�� = &�5 '�  (11) 

After complete failure�τ ≥ τR�, the energy dissipated in the damaging process remains constant (γ� = 0). 

So, equation (10) simplifies to Mott’s equation. 

 
�*B+,�H = %#Q��       (12) 

The solution to equation (12) corresponds to a delayed Mott wave: 

 

 �& = %#Q���� − ��1 � (13) 

Where τSR   represents the wave front compared to Mott’s solution (with zero energy dissipation) at 

failure. 
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Figure 2: Real wave front position (�, �� 

Figure 2 is a schematic representation of the real wave front positon. Every point in the 

(X, τ� −space may be reached by a delayed Mott wave:  

 �& = %#Q��[� − �����]    TU   ����� = � − B+MNOPP (14) 

Combining the last expression with equation (11) puts forward a simple relation between the increase in 

dissipated energy and time delay 

 
�L�B = �0 �� � 8�HV�B : (15) 

Therefore, the delay τS�X� depends on the current wave front position X. Hence, the wave front 

position (10) may be expressed as a function of the energy dissipation rate, the yield strength and the 

remote strain rate: 

 
�*B+,�H = %#Q�� W  1 − L� �H� �5 '� B�H�Y (16) 

Combining the two previous equations provides a relation between the derivative of  τS and the power 

dissipated to damage the material (γ� ) 
 

�HV�H = L� �H� �5 '� B�H� (17) 

 σ> ε�X�τ�dτS is the energy used to damage the material during the time G�. As X > 0 and γ� ≥ 0 , the 

derivative of the time delay is always positive, and τS increases from 0 to its maximum τSR . 

3.3.  Stress and damage variable 

The interface (y) between the localized damage zone and the rigid material governs damage 

evolution. Its velocity, y� , describes damage progression, whereas y corresponds to its accumulation. 

Assuming rigid plastic behavior leads to: 

 .� = � � �, . = F � � ����G�HI  (18) 

The stress σ associated to y than naturally follows from the dissipated power:  

 E���� = ����.� = ����� � ���� (19) 
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Hence, σ is related to the variation of the time delay: 

 ���� = �' � B�H� �L�H = �� �HV�H  (20) 

The stress depends on the remote strain rate, the wave front position and the energy dissipation rate. 

Equations (9) and (18) lead to a simple expression of the damage variable y. 

 . =  F ���� G�HI = L�H� '�  �� + �;    '�  B6�H� ��   

 .��� = L�H� '�  �� + &' �;MNOPP  ����;  %#Q�� = &�5 '�  (21) 

The variable, y, depends on the energy dissipated to damage the material, the wave front position and 

the strain rate. The new model includes Mott’s original approach (E� = 0�, but shows clearly the need to 

incorporate a second characteristic value (E�/ �0 ���� . This quantity measures the ratio between 

energy dissipation rate and total power. Equations (20) and (21) define damage evolution. The 

parameter τ may eventually be eliminated for particular (X, τ� −curves. Before doing so, the limitations 

to all possible (X, τ� −curves are analyzed.  

3.4.  Allowable damage laws and characteristic lengths 

Consistent with the assumption of rigid plastic material, we hypothesize that dissipated power 

depends solely on the damage variable y.  

 
\L\'� ]0 = 0 (22) 

To analyze the impact of this hypothesis, we introduce the reduced time Τ and wave front position  χ by: 

 ` = � ���ab�     � = ��c d (22) 

Equation (10) transforms into: 

  A ���&e;cab� d&�`�d′�`� = �0 ������ec� d�`� − �����ab�E′�`� χg represents the derivative of χ with respect to Τ. Hence, invariance of equation (10) with respect to ε�  
implies: 

 h2 − j + 3l = 1 + l2 − j + 3l = −j       
The second expression, (2 − j + 3l = −j), is due to energy dissipation and thus not present in 

Mott’s original approach.. The new model (with m = −2/3 and  n = −1/3) leads to: 

 ` = � ����/;�     � = ���a+6�d  (23) 

In the �d, `�-space, the relation between wave front position and time does no more depend on the 

strain rate: 
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 o�*p+,�q = % r  1 − Lg ��p]       % = %#stt�� = &��         where Eg = �L�t (24) 

In the �d, `� −space, the physical parameter, D (m2/s2), corresponding to Mott’s initial solution is 

independent of the strain rate. The new time delay, coherent with equation (23), leads to a simpler 

expression of the stress 

 �̀�`� = � � �/;�����   ujG  ��`� = �p 8�L�q: =  �0 8�qV�q : (25) 

As a consequence of equation (24) any possible �χ, Τ�-curve corresponds to a delayed Mott 

path. Furthermore, continuity of the dissipated energy γ implies continuity of the wave front position χ�Τ�. Figure 3 illustrates this condition. If all material parameters (Γ, σ�, XR, τR), as well as the loading �ε�) are fixed, an infinity of solutions is still possible. Among these, Grady has chosen power laws.  

 

Figure 3: Acceptable �w, x�-curves 

Equation (24) leads to an explicit relation between the time and wave front position: 

 
�q�p = &pM r  1 − Lg�� p]a�  →    �q�p ≥ &pM  (26) 

If the reduced dissipated power ( γ′ �� d⁄ ) is a function of the wave front position, the latest satisfies: 

 ` = &M F �zW  �a {|}� ~YpI  (27) 

Without explicit knowledge of γg��� in function of, previous equation may not be integrated. However, 

the allowed �χ, Τ�- domain may be bounded. Irreversibility implies γ′ ≥ 0. Hence, Mott’s un-delayed 

solution (γ′ = 0) corresponds to a lower limit of the χ�Τ� curves (B1 in figure 4). Moreover, for a given 

time delay at failure �ΤSR�, inequality (26) gives an upper bound to χ�Τ�. Figure 4 shows the allowable 

domain in the �χ, Τ�-space. Both boundaries may be expressed as delayed Mott’s waves: 

 ��� ≡ ` = p+M + �̀1�� d − d1�         �& ≡ ` = p+M + �̀1��d �           (28) 
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Figure 4: Allowed domain in the (w, x)-space 

Bounding the possible �d, `�-curves, naturally leads to a new relation between the total 

dissipated energy at failure Γ and the (χR, ΤR� coordinates. By relation (15), the total energy dissipated 

to damage the material is:  

 � = E� 1̀� = ��   F  d �qV�p  Gd p�I  (29) 

Equation (29) leads to a geometrical interpretation of the failure energy (Figure 5). �/��  corresponds 

to the area bounded to the left by the exact solution (OC) and to the right by the delayed Mott’s wave 

passing through the same point C (C’C). 

 

Figure 5: Geometrical interpretation of the failure energy � 

For both boundaries, the previous yields:  

 o��1: � = ��� � �̀1  F  d  � p�I � d −  d1� Gd = 0                             �&1: � = ��� � �̀1  F  d  � p�I � d � G d = ��� � �̀1d1           (30) 

Hence, the total energy dissipated to failure the material, Γ has to satisfy the following inequality: 

 0 � Γ � σ�   8 χRΤR −  ��6� : (31) 

For a specified value of the failure energy Γ, previous equation involves a lower bound to the time to 

failure as a function of the corresponding wave front position. 

 1̀ � p�+M + M+;p� = p�+M + �̀1   with  %& = ;4�� (32) 
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The first term on the right corresponds to a non-delayed Mott wave, whereas the second measures the 

time needed to transfer enough energy to failure the material. D& has the dimension of a length. Taking 

into account the failure energy leads naturally to the introduction of a characteristic length scale   %&.  

A new lower bound to the fracture time can be established by requiring a positive value for the 

interface stress and negative value for its derivative with respect to the damage variable.  

 ���.� ≥ 0���0��0 ≤ 0 (33) 

Remembering equation (25), the previous conditions lead to  

 o �qV�q ≥ 0�+qV�q+ ≤ 0 (34) 

Equation (34), together with ΤS�0� = 0 and ΤS�ΤR� = ΤSR implies 

 �̀�`� = 8` −  p+M : ≥ 8qV�q� : ` (35) 

Simple algebraic manipulations then lead to 

 ` rq�aqV�q� ] = qq� p�+M ≥  p+M  (36) 

Therefore, all allowable �χ, Τ� −paths fulfilling conditions (33) also satisfy:  

 
qq� ≥  p+p�+  (37) 

The corresponding time delay is thus given by: 

 �̀ =  �̀1 8 pp�:&
 (38) 

Note, that with this particular law the associated damage stress, ��� = �� �HV�H = �� t� 1t1  , is constant. 

Equations (29) and (38) lead to a new upper bound of the failure energy  

 � = E� 1̀� = &; �0    h d1 1̀ − p�6M � 

Thus, the failure energy satisfies:  

 0 � � � &; �0    h d1 1̀ − p�6M � (39) 

For a specified value of �, previous expression gives a lower bound for the failure time (Figure 6): 

 �;1: 1̀ ≥ p�+M + M+&p� (40) 
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Figure 6: Allowed domain in the (�,T)-space 

The smallest possible failure time allowed by the present physics minimizes expression (40). We 

call it �1Q�� and designate by d1Q��
the corresponding wave front position. 

 *d1Q��,; = MM+�     �1Q�� = ;��+/6� 8M++M :��/;� ≅ 1.2 8M++M :��/;�
 (41) 

3.6.  Different trial wave front expressions 

The exact solution of the wave front equation (27) is available only if the dissipated power Eg can 

be expressed as a function of the wave front position which is not easy to realize. Hence, we prefer 

testing particular relations between time and wave front position. Consistent with the supposition of 

minimum time to failure for given failure energy, bounds (40, 41) will be considered as the optimum to 

achieve.  

3.6.1. Second order relation between the wave front and time 

We consider a second order relation between time and wave front position 

 ` = ud + �d& (42) 

a and b designate parameters determined hereafter. Moreover, we assume that, at failure, the wave 

front is tangent to a delayed Mott wave χ& = D�Τ − ΤSR�. Hence 

 u = 2d1 8�M − �: (43) 

The relation between time delay and failure energy may now be written: 

 � = ��   F rd�u + 2�d� − &p+M ]  Gdp�I   

The two constants, a and b are given by: 

 u = 2 M+p�+  and � = �M − M+p�6  (44) 

The time at failure depends on the two material characteristics D, D2 and the failure wave front position: 

 1̀ = M+p�  + p�+M  (45) 
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We assume now that, for a given failure energy (given D2) the most likely fracture path minimizes the 

time to failure. The wave front position, χR�<�, satisfying this assumption depends on the total energy at 

failure and the material density: 

 

                   r�q��p�]�p����� = 0 → d1c�b = 8MM+& :�96� = 2896:d1Q��  

Hence, the minimum time to failure predicted by the second order model is: 

 

                   
1̀c�b = ;M+p���� = 28+6:�1Q�� ≈ 1.9 8M++M :896:

 (46) 

The corresponding values of a and b are: 

 uc�b = 2 r�M+M+ ]��/;�    and  �c�b = a�M  (47) 

Obviously, solution (44) is not close to the bound (40). Thus, we tried a 4th order relation between time 

and wave front position.  

3.6.2. Fourth order relation between the wave front and time 

We postulate the following relation between time and wave front position 

 `��� = ud& + �d�     �TU  d ≤ d1 (48) 

Assuming moreover that `���  is tangent to a delayed Mott’s wave at failure, implies: 

 � = �&p�+  8�M − u: (49) 

The energy dissipated to failure the material (29) allows to determine parameter a: 

 � = E� 1̀� = ��   F  d �qV�p  Gd = p�I ��   r ��   d1;  8u − �M:] (50) 

The two constants, a and b may be written as function of the failure energy, the wave front position at 

failure ( d1) and parameters %, %&: 

 u = �M +  M+�p�6        and � = a M+¡p�¢  (51) 

Ergo, wave front position and time to failure are related by the following expression: 

 1̀ = p�+M +  M+¡p� (52) 

This solution comes very close to the lower bound (40). The wave front position minimizing the time to 

failure is: 

 �1c�b = 8 MM+�C :��/;� = 8 �:896: d1Q��   (53) 

The minimum time to failure resulting from the 4th order model is:  
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 �1c�b = 8 �:8+6: �1Q��
 (55) 

The results predicted by 4th order relation between ` and d are close to the bounds (40) and (41).  

3.6.3. Comparing the different wave paths 

Boundary B3 predicts the minimum time to failure as a function of the wave position. �1Q��
 and d1Q��

 designate respectively the absolute minimum time to failure and the corresponding wave front 

abscissa.  

 d1Q�� =  8MM+� :��/;�   and �1Q�� = ;��+/6� 8M++M :��/;� 
The constants % and %& follow from invariability of the energy balance with respect to the remote strain 

rate. 

 % = &�5    and  %& =  ;4�5 

Therefore, all the stress release wave models for perfectly plastic materials should predict failure times in the 

form:  

   £d1 ≈ ¤ d1Q���1 ≈ ¥�1Q��  (56) ¤ and ¥ are numerical parameters depending on the particular model. Hereafter, to compare the wave 

paths predicted by the different models, we introduce the non-dimensional variables d¦ and `¦: 

 od¦ = pp�O§P`¦ = qq�O§P       od1¦ = p�p�O§P
1̀¦ = t�q�O§P  (57) 

 

Table 1 gives the wave coordinates at failure for fixed material parameters. The first column 

corresponds to the particular model. The second column gives the relation between the time to failure 

and the wave front position at failure. All the coordinates were normalized by the values corresponding 

to the absolute minimum time at failure corresponding to the minimum of boundary B3. The last two 

columns show the minimum time at failure for each particular model. Evidently, the absolute minimum 

corresponds to (1,1) on boundary B3. Figure 7, depicts the same results graphically. The 4th order model 

gives results very close to the lower boundary B3.  

 

 

Model 1̀¦�d1¦� Minimum 1̀¦ 

1̀¦ d1¦ 
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Table 1: Normalized time to failure vs normalized wave front abscissa at failure. Minimum time to failure 

for each model. 

 

Figure 7: Normalized time to failure vs normalized wave front abscissa at failure for the different 

models. 

Figure 8 illustrates the wave front position for Grady’s solution (red), the 2nd order model and 

the 4th order model. The circles mark final failure. Thus, prior to the circle the different models apply, 

after the circle a delayed Mott’s model is used. Clearly, the new model predicts much smaller wave front 

positions at failure than Grady’s model. Moreover, the time to failure is also much smaller.  

 

B3 1̀¦ = 13 W�d1¦�& + 2d1¦Y 
1 1 

2nd order 1̀¦ = 13 W�d1¦�& + 4d1¦Y �2�8&;: ≈ 1.6 �2�8�;: ≈ 1.3 

4th order 1̀¦ = 13 W�d1¦�& + 52d1¦Y 25478&;: ≈ 1.16 25478�;: ≈ 1.08 

Grady 1̀¦ = 13 �2 + �d1¦�;��d1¦�&�d1¦�; − 1  �2�8&;: ≈ 1.6 
43 �2�8�;: ≈ 1.68 



15 

 

Figure 8: Wave front position in function of time predicted by Grady, 2nd and 4th order model. 

4. Conclusion 

Broadly, stress release wave propagation controls debris size. Mott was among the first to study 

the fragmentation process. He considered instantaneous through thickness crack propagation. Hence, 

the wave front position and time are related by a diffusion equation depending on one physical constant. 

Based on an ad hoc correction to Mott’s approach (progressive drop to zero of the interface stress), 

some time later, Grady estimated the mean fragment size.  

Our present work is based on an energy balance approach. The minimalist assumption of 

positive energy dissipation related to damage naturally introduces a strong relation between the wave 

front path and the damage progression.  

First, energy conservation for a rod during the process of damage development has been 

formulated. Then Mott’s approach derives naturally as a particular case with no energy dissipation 

related to damage.  

Postulating invariance of the energy balance with respect to the strain rate, defines two 

characteristic quantities: Mott’s diffusion constant D and a new characteristic: length D2 (depending on 

the failure energy and yield strength).  

Moreover, our energy-based approach also states a residual stress associated to a damage 

variable. The relation between stress and damage variable is independent of the strain rate. Postulating 

a decrease of the stress during the damage process gives a new lower bound to the time to failure.  

Once the general framework of the damage process was laid out, specific wave front paths 

were tested. A forth order relation, between the wave front position and time, predicts a failure time and 

position very close to the lower boundary. The time to failure and the wave front position at failure 

(characteristic debris size) differ by more than 30 percent from previous models. Therefore; this energy-

based approach  not only provides the stress damage variable relation, but on a practical side, is far 
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better at predicting time to failure and in future work will provide a cornerstone to furnish even more 

accuracy for debris size. 
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