Effects of micro-knurling and femtosecond laser micro texturing on aluminum long-term surface wettability - Mines Saint-Étienne Access content directly
Journal Articles Applied Surface Science Year : 2019

Effects of micro-knurling and femtosecond laser micro texturing on aluminum long-term surface wettability

Abstract

A comparison of the long-term evolution of a femtosecond laser and the mechanical knurling texturing of aluminum surfaces is performed. Both the femtosecond laser and knurling textured surfaces present similar topographical parameters in the micrometer range. To compare both texturing approaches, long-term physico-chemical characterizations are performed. These characterizations consist of wettability measurements and XPS analyses as a function of time following the texturing operations. The evolution of the wetting properties over time for the femtosecond laser textured surface is explained through chemical modifications of the extreme surface. High-resolution XPS spectra highlight a C-C/C-O bond ratio evolution over time. This time evolution of the chemical bonds of the extreme surface is corroborated with the static contact angle evolution. On the contrary, the mechanically knurled surfaces present a steady state after texturing: neither the evolution of the wetting properties nor the chemical composition of the extreme surface is measured.
Fichier principal
Vignette du fichier
S0169433219303575.pdf (1.99 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

emse-02890893 , version 1 (22-10-2021)

Licence

Attribution - NonCommercial

Identifiers

Cite

Synthia Divin-Mariotti, Pierrick Amieux, Alina Pascale-Hamri, Virginie Auger, Guillaume Kermouche, et al.. Effects of micro-knurling and femtosecond laser micro texturing on aluminum long-term surface wettability. Applied Surface Science, 2019, 479, pp.344-350. ⟨10.1016/j.apsusc.2019.02.025⟩. ⟨emse-02890893⟩
128 View
118 Download

Altmetric

Share

Gmail Facebook X LinkedIn More