D. A. Young, Decomposition of Solids, Pergamon: Oxford, vol.1, 1966.

M. E. Brown, D. Dollimore, and A. K. Galwey, Reactions in the Solid State, vol.22, 1980.

A. K. Galwey and M. E. Brown, Thermal Decomposition of Ionic Solids, 1999.

A. K. Galwey, Structure and Order in Thermal Dehydrations of Crystalline Solids, Thermochim. Acta, vol.355, pp.181-238, 2000.

N. Koga and H. Tanaka, A Physico-Geometric Approach to the Kinetics of Solid-State Reactions As Exemplified by the Thermal Dehydration and Decomposition of Inorganic Solids, Thermochim. Acta, vol.388, pp.41-61, 2002.

N. Koga, Ozawa's Kinetic Method for Analyzing Thermoanalytical Curves, J. Therm. Anal. Calorim, vol.113, pp.1527-1541, 2013.

N. Koga, J. ?esták, and P. Simon, Some Fundamental and Historical Aspects of Phenomenological Kinetics in the Solid State Studied by Thermal Analysis. In Thermal analysis of Micro, Nano-and Non-Crystalline Materials, ?esták, pp.1-28, 2013.

N. Koga, Physico-Geometric Approach to the Kinetics of Overlapping Solid-State Reactions, Handbook of Thermal Analysis and Calorimetry, vol.6, pp.213-251, 2018.

M. Brown, R. M. Flynn, and J. H. Flynn, Report on the ICTAC-Kinetics-Committee, vol.256, pp.477-483, 1992.

V. B. Okhotnikov, B. I. Yakobson, and N. Z. Lyakhov, Kinetics of Thermal Dehydration of Li2SO4·H2O. React, Kinet. Catal. Lett, vol.23, pp.125-130, 1983.

V. B. Okhotnikov and N. Z. Lyakhov, Some New Data Concerning the Interface Chemistry of Dehydration Reactions, Thermochim. Acta, vol.92, pp.681-683, 1985.

Y. A. Gaponov, B. I. Kidyarov, N. A. Kirdyashkina, N. Z. Lyakhov, and V. B. Okhotnikov, Comparative Study of Single-Crystal Dehydration of LiCOOH·H2O and Li2SO4·H2O, J Therm Anal, vol.33, pp.547-551, 1988.

N. A. Kirdyashkina and V. B. Okhotnikov, Kinetic Studies of Isothermal Dehydration of Compressed Li2SO4·H2O Powders. React, Kinet. Catal. Lett, vol.36, pp.417-422, 1988.

H. Tanaka, Kinetics and Mechanism of Thermal Dehydration of Lithium Sulfate Monohydrate by Means of TG and DSC, Thermochim. Acta, vol.52, pp.195-199, 1982.

N. Koga and H. Tanaka, Kinetics and Mechanisms of The Thermal Dehydration of Dilithium Sulfate Monohydrate, J. Phys. Chem, vol.93, pp.7793-7798, 1989.

A. K. Galwey, N. Koga, and H. Tanaka, A Kinetic and Microscopic Investigation of the Thermal Dehydration of Lithium Sulphate Monohydrate, J. Chem. Soc. Faraday Trans, vol.86, p.531, 1990.

H. Tanaka and N. Koga, Self-Cooling Effect on the Kinetics of Nonisothermal Dehydration of Lithium Sulfate Monohydrate, J Therm Anal, vol.36, pp.2601-2610, 1990.

J. Huang and P. K. Gallagher, Influence of Water Vapor on the Thermal Dehydration of Li2SO4·H2O, Thermochim. Acta, vol.192, pp.35-45, 1991.

N. Koga and H. Tanaka, Conventional Kinetic Analysis of the Thermogravimetric Curves for the Thermal Decomposition of a Solid, Thermochim. Acta, vol.183, pp.125-136, 1991.

M. E. Brown, A. K. Galwey, and A. L. Po, Reliability of Kinetic Measurements for the Thermal Dehydration of Lithium Sulphate Monohydrate: Part 1. Isothermal Measurements of Pressure of Evolved Water Vapour, Thermochim. Acta, vol.203, pp.221-240, 1992.

M. E. Brown, A. K. Galwey, and A. L. Po, Reliability of Kinetic Measurements for the Thermal Dehydration of Lithium Sulphate Monohydrate, Thermochim. Acta, vol.220, pp.131-150, 1993.

H. Tanaka, N. Koga, and J. ?esták, Thermoanalytical Kinetics for Solid State Reactions as Exemplified by the Thermal Dehydration of Li2SO4·H2O, Thermochim. Acta, vol.203, pp.203-220, 1992.

M. Epple and H. Cammenga, The Dehydration of Lithium Sulphate Monohydrate Investigated with DSC, TG and Temperature-Resolved X-Ray Diffractometry -A Comparison between Three Methods, Solid State Ionics, pp.307-311, 1993.

N. Koga and H. Tanaka, Effect of Sample Mass on the Kinetics of Thermal Decomposition of a Solid. II. Isothermal Dehydration of Li2SO4·H2O, J Therm Anal, vol.40, pp.1173-1179, 1993.

Y. Masud, H. Takeuchi, and A. Yahata, Kinetics of the Isothermal Dehydration of Li2SO4·H2O in Vacuo, Thermochim. Acta, vol.228, pp.191-196, 1993.

F. Rouquerol, Y. Laureiro, and J. Rouquerol, Influence of Water Vapour Pressure on the Thermal Dehydration of Lithium Sulphate Monohydrate, Solid State Ionics, pp.363-366, 1993.

N. Koga and H. Tanaka, A Kinetic Compensation Effect Established for the Thermal Decomposition of a Solid, J Therm Anal, vol.37, pp.347-363, 1991.

N. Koga and J. ?esták, Kinetic Compensation Effect as a Mathematical Consequence of the Exponential Rate Constant, Thermochim. Acta, vol.182, pp.201-208, 1991.

N. Koga and J. ?esták, Further Aspects of the Kinetic Compensation Effect, J Therm Anal, vol.37, pp.1103-1108, 1991.

N. Koga, A Review of the Mutual Dependence of Arrhenius Parameters Evaluated by the Thermoanalytical Study of Solid-State Reactions: The Kinetic Compensation Effect, Thermochim. Acta, vol.244, pp.1-20, 1994.

A. K. Galwey and M. Mortimer, Compensation Effects and Compensation Defects in Kinetic and Mechanistic Interpretations of Heterogeneous Chemical Reactions, Int. J. Chem. Kinet, vol.38, pp.464-473, 2006.

P. J. Barrie, The Mathematical Origins of the Kinetic Compensation Effect: 1. The Effect of Random Experimental Errors, Phys. Chem. Chem. Phys, vol.14, pp.318-326, 2012.

P. J. Barrie, The Mathematical Origins of the Kinetic Compensation Effect: 2. The Effect of Systematic Errors, Phys. Chem. Chem. Phys, vol.14, pp.327-336, 2012.

D. Xu, M. Chai, Z. Dong, M. M. Rahman, X. Yu et al., Kinetic Compensation Effect in Logistic Distributed Activation Energy Model for Lignocellulosic Biomass Pyrolysis, Bioresour. Technol, vol.265, pp.139-145, 2018.

N. A. Simakova, N. Z. Lyakhov, and N. A. Rudina, Thermal Dehydration of Lithium Sulfate Monohydrate. The Reaction Reversibility and the Solid Product Morphology, Thermochim. Acta, vol.256, pp.381-389, 1995.

H. Tanaka, N. Koga, and A. K. Galwey, Thermal Dehydration of Crystalline Hydrates: Microscopic Studies and Introductory Experiments to the Kinetics of Solid-State Reactions, Journal of Chemical Education, vol.72, pp.251-256, 1995.

W. A. Johnson and K. F. Mehl, Reaction Kinetics in Processes of Nucleation and Growth, Trans. Am. Inst. Min. Metall. Eng, vol.135, pp.416-458, 1939.

M. Avrami, Kinetics of Phase Change. I. General theory, J. Chem. Phys, vol.7, pp.1103-1112, 1939.

M. Avrami, Kinetics of Phase Change. II. Transformation-Time Relations for Random Distribution of Nuclei, J. Chem. Phys, vol.8, pp.212-223, 1940.

M. Avrami, Kinetics of Phase Change. III. Granulation, Phase Change, and Microstructure, J. Chem. Phys, vol.9, pp.177-184, 1941.

F. Valdivieso, V. Bouineau, M. Pijolat, and M. Soustelle, Kinetic Study of the Dehydration of Lithium Sulphate Monohydrate, Solid State Ionics, vol.101, pp.1299-1303, 1997.
URL : https://hal.archives-ouvertes.fr/emse-00610250

L. Favergeon, M. Pijolat, F. Valdivieso, and C. Helbert, Experimental Study and Monte-Carlo Simulation of the Nucleation and Growth Processes during the Dehydration of Li2SO4·H2O Single Crystals, Phys. Chem. Chem. Phys, vol.7, pp.3723-3727, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00128100

L. Favergeon, M. Pijolat, and C. Helbert, A Mechanism of Nucleation during Thermal Decomposition of Solids, J. Mater. Sci, vol.43, pp.4675-4683, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00409726

K. L. Mampel, Time Conversion Formulas for Heterogeneous Reactions at the Phase Boundaries of Solid Bodies, I: The Development of the Mathematical Method and the Derivation of Area Conversion Formulas, Z. Phys. Chem. Abt. A, vol.187, pp.43-57, 1940.

L. Favergeon, M. Pijolat, and M. Soustelle, Surface Nucleation and Anisotropic Growth Models for Solid-State Reactions, Thermochim. Acta, vol.654, pp.18-27, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01523651

H. Ogasawara and N. Koga, Kinetic Modeling for Thermal Dehydration of Ferrous Oxalate Dihydrate Polymorphs: A Combined Model for Induction Period-Surface Reaction-Phase Boundary Reaction, J. Phys. Chem. A, vol.118, pp.2401-2412, 2014.

S. Lan, H. Zondag, A. Van-steenhoven, and C. Rindt, Kinetic Study of the Dehydration Reaction of Lithium Sulfate Monohydrate Crystals Using Microscopy and Modeling, Thermochim. Acta, vol.621, pp.44-55, 2015.

S. Lan, H. Zondag, A. Van-steenhoven, and C. Rindt, An Experimentally Validated Numerical Model of Interface Advance of the Lithium Sulfate Monohydrate Dehydration Reaction, J. Therm. Anal. Calorim, vol.124, pp.1109-1118, 2016.

Y. Seto, H. Sato, and Y. Masuda, Effect of Water Vapor Pressure on Thermal Dehydration of Lithium Sulfate Monohydrate, Thermochim. Acta, vol.388, pp.21-25, 2002.

B. Topley and M. L. Smith, Function of Water Vapour in the Dissociation of a Salt Hydrate, Nature, vol.128, pp.302-302, 1931.

B. Topley and M. L. Smith, Kinetics of salt-hydrate dissociations: MnC2O4·2H2O = MnC2O4 + 2H2O, J. Chem. Soc, vol.69, pp.321-324, 1935.

M. Volmer and G. Seydel, Über die Entwässerungsgeschwindigkeit des Manganooxalat-Dihydrats, Z. Phys. Chem, vol.179, pp.153-171, 1937.

L. Favergeon and M. Pijolat, Influence of Water Vapor Pressure on the Induction Period during Li2SO4·H2O Single Crystals Dehydration, Thermochim. Acta, vol.521, pp.155-160, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00603689

B. V. L'vov, Mechanism of Thermal Dehydration of Li2SO4·H2O, Thermochim. Acta, vol.315, pp.145-157, 1998.

B. V. L'vov, Thermal Decomposition of Solids and Melts, vol.7, 2007.

T. Liavitskaya and S. Vyazovkin, Discovering the Kinetics of Thermal Decomposition during Continuous Cooling, Phys. Chem. Chem. Phys, vol.18, pp.32021-32030, 2016.

T. Liavitskaya and S. Vyazovkin, Delving into the Kinetics of Reversible Thermal Decomposition of Solids Measured on Heating and Cooling, J. Phys. Chem. C, vol.121, pp.15392-15401, 2017.

N. Koga, L. Favergeon, and S. Kodani, Impact of Atmospheric Water Vapor on the Thermal Decomposition of Calcium Hydroxide: A Universal Kinetic Approach to a Physico-Geometrical Consecutive Reaction in Solid-Gas Systems under Different Partial Pressures of Product Gas, Phys. Chem. Chem. Phys, vol.21, pp.11615-11632, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02289915

M. Fukuda, L. Favergeon, and N. Koga, Universal Kinetic Description for Thermal Decomposition of Copper(II) Hydroxide over Different Water Vapor Pressures, J. Phys. Chem. C, vol.123, pp.20903-20915, 2019.
URL : https://hal.archives-ouvertes.fr/emse-02363324

O. T. Toft-s?rensen and J. Rouquerol, Sample Controlled Thermal Analysis; Kluwer: Dordrecht, 2003.

J. M. Criado, L. A. Perez-maqueda, and N. Koga, Sample Controlled Thermal Analysis (SCTA) as a Promising Tool for Kinetic Characterization of Solid-State Reaction and Controlled Material Synthesis, Thermal Physics and Thermal Analysis, pp.11-43, 2017.

T. Arii and A. Kishi, The Effect of Humidity on Thermal Process of Zinc Acetate, Thermochim. Acta, vol.400, pp.175-185, 2003.

N. Koga and T. Kimizu, Thermal Decomposition of Indium(III) Hydroxide Prepared by the Microwave-Assisted Hydrothermal Method, J. Am. Ceram. Soc, vol.91, pp.4052-4058, 2008.

T. Kimura and N. Koga, Thermal Dehydration of Monohydrocalcite: Overall Kinetics and Physico-Geometrical Mechanisms, J. Phys. Chem. A, vol.115, pp.10491-10501, 2011.

M. Fukuda and N. Koga, Kinetics and Mechanisms of the Thermal Decomposition of Copper(II) Hydroxide: A Consecutive Process Comprising Induction Period, Surface Reaction, and Phase Boundary-Controlled Reaction, J. Phys. Chem. C, vol.122, pp.12869-12879, 2018.

L. D. Hansen, D. J. Eatough, E. A. Lewis, R. G. Bergstrom, D. Degraft-johnson et al., Shelf-Life Prediction from Induction Period Calorimetric Measurements on Materials Undergoing Autocatalytic Decomposition, Can. J. Chem, vol.68, pp.2111-2114, 1990.

P. ?imon, Induction Periods, J. Therm. Anal. Calorim, vol.84, pp.263-270, 2006.

S. Kitabayashi, M. Nakano, K. Nishikawa, and N. Koga, Model Experiment of Thermal Runaway Reactions Using the Aluminum-Hydrochloric Acid Reaction, Journal of Chemical Education, vol.93, pp.1261-1266, 2016.

W. E. Garner, The Kinetics of Endothermic Solid Reactions, Chemistry of the Solid State, pp.213-231, 1955.

B. Delmon, Introduction a la Cinetique Heterogene; Editions Technip, 1969.

P. Barret and C. Heterogene, , 1973.

F. C. Tompkins, Decomposition Reactions, Treates on Solid State Chemistry, vol.4, pp.193-231, 1976.

F. A. Kröger, Imperfection Chemistry of Crystalline Solids, The chemistry of Imperfect Crystals, vol.2, 1974.

T. R. Ingraham and P. Marier, Kinetic Studies on the Thermal Decomposition of Calcium Carbonate, Can. J. Chem. Eng, vol.41, pp.170-173, 1963.

J. Zawadzki and S. Bretsznajder, Some Remarks on the Mechanism of Reactions of the Type: Solid = Solid + Gas, Trans. Faraday Soc, vol.34, pp.951-959, 1938.

A. F. Benton and L. C. Drake, Kinetics of Reaction and Adsorption in the System Silver-Oxygen, J. Am. Chem. Soc, vol.56, pp.255-263, 1934.

P. Barret, Expression Théorique en Fonction de la Pression de la Loi de Vitesse de Croissance d'une Couche non Protectrice Formée par Décomposition Thermique d'un Solide, C. R. Acad. Sci, vol.266, pp.856-859, 1968.

A. W. Searcy and D. Beruto, Kinetics of Endothermic Decomposition Reactions. 2. Effects of The Solid and Gaseous Products, J. Phys. Chem, vol.82, pp.163-167, 1978.

M. Reading, D. Dollimore, and R. Whitehead, The Measurement of Meaningful Kinetic Parameters for Solid State Decomposition Reactions, J Therm Anal, vol.37, pp.2165-2188, 1991.

J. Criado, M. González, J. Málek, and A. Ortega, The Effect of The CO2 Pressure on the Thermal Decomposition Kinetics of Calcium Carbonate, Thermochim. Acta, vol.254, pp.121-127, 1995.

V. L. Stanford, T. Liavitskaya, and S. Vyazovkin, Effect of Inert Gas Pressure on Reversible Solid-State Decomposition, J. Phys. Chem. C, vol.123, pp.21059-21065, 2019.

S. Vyazovkin, Kinetic Effects of Pressure on Decomposition of Solids, Int. Rev. Phys. Chem, vol.39, pp.35-66, 2020.

H. L. Friedman, Kinetics of Thermal Degradation of Cha-Forming Plastics from Thermogravimetry, Application to a Phenolic Plastic, J. Polym. Sci., Part C, vol.6, pp.183-195, 1964.

T. Ozawa, Kinetic Analysis of Derivative Curves in Thermal Analysis, J Therm Anal, vol.2, pp.301-324, 1970.

T. Ozawa, Applicability of Friedman Plot, J Therm Anal, vol.31, pp.547-551, 1986.

J. Málek, The Kinetic Analysis of Non-Isothermal Data, Thermochim. Acta, pp.257-269, 0200.

N. Koga, Kinetic Analysis of Thermoanalytical Data by Extrapolating to Infinite Temperature, Thermochim. Acta, vol.258, pp.145-159, 1995.

F. J. Gotor, J. M. Criado, J. Málek, and N. Koga, Kinetic Analysis of Solid-State Reactions: The Universality of Master Plots for Analyzing Isothermal and Nonisothermal Experiments, J. Phys. Chem. A, vol.104, pp.10777-10782, 2000.

J. M. Criado, L. A. Perez-maqueda, F. J. Gotor, J. Málek, and N. Koga, A Unified Theory for The Kinetic Analysis of Solid State Reactions under Any Thermal Pathway, J. Therm. Anal. Calorim, vol.72, pp.901-906, 2003.

T. Ozawa, A New Method of Analyzing Thermogravimetric Data, Bull. Chem. Soc. Jpn, vol.38, pp.1881-1886, 1965.

T. Ozawa, Non-Isothermal Kinetics and Generalized Time, Thermochim. Acta, vol.100, pp.109-118, 1986.

H. Yoshioka, K. Amita, and G. Hashizume, The Nucleation-Two Dimensional Interface Growth Equation for the Thermal Decomposition of Mg(OH)2, Netsu Sokutei, vol.11, pp.115-118, 1984.

Y. Masuda, K. Iwata, R. Ito, and Y. Ito, Kinetics of the Thermal Dehydration of Magnesium Oxalate Dihydrate in a Flowing Atmosphere of Dry Nitrogen, J. Phys. Chem, vol.91, pp.6543-6547, 1987.

J. P. Viricelle, M. Pijolat, and M. Soustelle, Transformation of Cerium(iii) Hydroxycarbonate into Ceria Part 1 .-Nucleation and Growth Rates of Ceria, J. Chem. Soc. Faraday Trans, vol.91, pp.4431-4435, 1995.
URL : https://hal.archives-ouvertes.fr/emse-00610339

V. Bouineau, M. Pijolat, and M. Soustelle, Characterisation of the Chemical Reactivity of a CaCO3 Powder for Its Decomposition, J. Europ. Ceram. Soc, vol.18, pp.1319-1324, 1998.
URL : https://hal.archives-ouvertes.fr/emse-00610084

S. Kitabayashi and N. Koga, Physico-Geometrical Mechanism and Overall Kinetics of Thermally Induced Oxidative Decomposition of Tin(II) Oxalate in Air: Formation Process of Microstructural Tin(IV) Oxide, J. Phys. Chem. C, vol.118, pp.17847-17861, 2014.

S. Iwasaki, S. Kodani, and N. Koga, Physico-Geometrical Kinetic Modeling of the Thermal Decomposition of Magnesium Hydroxide, J. Phys. Chem. C, vol.124, pp.2458-2471, 2020.

R. Ozao and M. Ochiai, Fractal Reaction in Solids -Reaction Functions Reconsidered, J. Ceram. Soc. Jpn, vol.101, pp.263-267, 1993.

N. Koga and H. Tanaka, Accommodation of the Actual Solid-State Process in the Kinetic-Model Function .1. Significance of the Nonintegral Kinetic Exponents, J Therm Anal, vol.41, pp.455-469, 1994.

N. Koga and J. Málek, Accommodation of the Actual Solid-State Process in the Kinetic Model Function. 2. Applicability of the Empirical Kinetic Model Function to Diffusion-Controlled Reactions, Thermochim. Acta, vol.283, pp.69-80, 1996.