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Abstract: Today’s fast-growing demands at the global level for mobile applications (apps) cause
customers to call for the customization of their apps to fit their individualized needs and business
realms. Customization is a challenge for apps-development companies when they want to satisfy
their numerous users in a crowded competitive market. Moreover, pursuing customization involves
additional challenges when ramping up app development projects in order to meet demands at a
larger scale. To address this challenge, we proposed a framework to systematize and support mobile
apps’ development consistently with a customer-driven approach and modular design philosophy.
From a practical point of view, the proposed framework integrates quality function deployment
(QFD), axiomatic design (AD) principles, and practices from the ITIL (Information Technology
Infrastructure Library) framework. The framework supports a systematic process for translating
customer needs into design parameters as well as supporting prioritization of ITIL practices for
further development. The effectiveness of the framework was explored in practice through a case
study about an app supporting relief in the 2020 COVID-19 pandemic, as well as a survey among
potential users. The assessment of the framework indicated an average score ranging between 3.58
and 3.92 in a five-point Likert scale for all of the items used in the survey.

Keywords: quality function deployment; design projects; ITIL v4 foundation; customer-centric;
mobile apps’ development; pandemic

1. Introduction

Mobile apps receive much attention at a global level due to their various features and opportunities
that can be offered for individuals and businesses. This type of software comes into sight in almost
all spheres of our digital life such as entertainment, health and fitness, travel and hospitality,
e-commerce and retail, and education and learning. This has led to the emergence of a new research
field in software engineering that aims at developing various approaches and methodologies to help
app development companies achieve their goals. These development companies provide mobile apps
for specific vertical or horizontal markets. The vertical markets offer apps that typically target a group
of users. By contrast, the horizontal markets include apps aiming at a large number of users with
different levels of knowledge and skills, e.g., for web browsers. In both kinds of markets, development
companies seek out methods and technologies to meet customers’ demands in the short term with low
budget and effort.
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Offering differentiated functionalities to different users can be considered as a success in the
mobile app market [1]. According to a study undertaken by Sitecore and Vanson Bourne with the
contribution of more than 4500 customers and marketing decision makers from 11 countries, around a
third of respondents said they expect their mobile apps to be more “personalized” (customized) [2].
Generally, developers tend to standardize as many components of their apps as feasible to enhance
them for reusability, maintainability, reliability, and reduced development costs. However, with a
lower customization level, standardization is likely to lead to a lower customer satisfaction level.
Consequently, a trade-off should be identified in order to balance “standardization” vs. “customization”.

Mass customization (MC) is a well-known concept that allows meeting individual customers’ needs
with near mass-production efficiency [3]. In contrast to the one-size-fits-all approach, customization aims
at providing distinctive experiences for users regarding their specific expectations. Early and diverse
users’ involvement is required to create a good user experience [4]. In this regard, a great emphasis has
been laid on user-centered design approaches as well as on agile software development processes.

Schnall et al. [5] have used an information systems research (ISR) framework as a user-centered
model that allows end-user feedback and expert opinion to be considered in an app development
process. Furthermore, Lopes et al. [6] have deployed user-centered techniques for apps’ development
to apply personas and scenarios tools for customers’ requirements’ elicitation as well as interaction
models for identifying and locating usability issues in the app design phase.

Several customized agile practices have been introduced for mobile app development such as
(1) “Mobile-D” [7], (2) Mobile Application Software development—based on Agile Methodology [8],
and (3) Hybrid Methodology Design Process [9].

Increasing use of user-centered and agile approaches have created new challenges associated with
time and effort estimation for large app-developer companies [4]. To meet both, evolving and diverse
customer needs and company needs in terms of profitability, standardization, and customization
should be balanced in a way that allows achieving economies of scale and economies of scope. This is
quite consistent with the app developer’s needs to reduce effort and shorten lead time, and also
improve customer satisfaction. Hence, MC is gaining great interest in software development [10–12].

The current research was concerned with two challenges, namely: (1) How to balance customization
(customer driven) and standardization (for efficiency and efficacy), and (2) how to ramp up
customer-centric design (addressing large base of customers and generating economies of scale).
To contribute toward meeting these challenges, the current paper aimed to reinforce customer-centric
modular app development through capturing the benefits of coupling Quality Function Deployment
(QFD), independence axiom from axiomatic design, and ITIL v4 SVS (Information Technology
Infrastructure Library, version 4, Service Value System) practices. A Design Science Research (DSR)
approach was adopted to address this problem and is described in Section 2.

In line with the research methodology, challenges and solution approaches for app development
are identified in Sections 3 and 4, respectively. Three propositions were derived and are listed in
Section 4, laying the foundation for the proposed framework. The propositions are as follows: (1) QFD
provides an appropriate framework for developing customer-centric solutions through systematizing
the progressive translation of customer needs into technical solutions, (2) independence axiom from
the Axiomatic Design (AD) theory supports the improvement of system design toward modular
architecture, and (3) ITIL v4 SVS provides a standard and flexible framework, supporting the design
and management of value-driven systems of products and services. More specifically, practices are
flexible and can be customized to different contexts.

Subsequently, the proposed framework is outlined in Section 5, which aimed at supporting
user-centered modular mobile apps’ development. This framework allows capturing the benefits
of coupling QFD, independence axiom from axiomatic design, and ITIL v4 SVS practices to
reinforce customer-centric modular app development. Section 6 presents an illustrative case study.
Concluding remarks are summarized in Section 7.
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2. Research Methodology

A DSR approach was adapted for developing the research work presented in this paper.
DSR supports a synthesis-evaluation process of possible solutions to a given problem [13]. Accordingly,
a Design Science Research Process (DSRP) model was selected to operationalize DSR in the context of
the current research. The DSRP model was developed consistently with DSR theory and based on
existing research, particularly in the Information Systems (IS) domain [14].

Figure 1 shows the DSRP steps. It is noteworthy that, in comparison to the work of Pfeffers et al. [14],
the “communication” step was omitted as it refers basically to the scholarly and professional publication
and it has no direct impact on the currently presented research development.

Problem identification and motivation and the objectives of a solution are developed in Sections 3
and 4 focusing, respectively, on the main challenges for developing mobile apps as well as potential
and well-tested solution approaches. Section 5 supports design and development by outlining a
framework coupling the ITIL v4 Service Value System and QFD. Section 6 reports on a case study
highlighting practicality and improvement perspectives, which supports both demonstration and
evaluation. Section 7 supports particularly the evaluation based on an assessment of the proposed
framework by academics and practitioners.
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3. Mobile Apps’ Ramp Up: Development Challenges

Software development projects are challenged by changing customer requirements and market
conditions. Therefore, time to market and time to volume became major concerns for companies
regardless of their specializations. These factors add to the complexity of the shift from design to a
stable operation phase generally known as “ramp up” [15–17]. Ramp up, as a value-creation phase
located between development and stable production/operation, is critical for the successful introduction
of products or services into the market. The proper management of ramp up projects is likely to ensure
a timely introduction into the market at reasonable costs and with a satisfactory quality of the proposed
solution [18,19]. Yet, meeting these objectives is challenged by the increasing complexity emerging
from customers’ requests for service and product customization. Consequently, the development
process complexity and time need to be reduced in different ways. Particularly, successful development
practices and processes need to be “standardized” and “expanded” in a way to benefit newly launched
projects from past experiences.

Mobile apps are confronted with the challenge of balancing standardization vs. customization,
which is heightened by the high process complexity. For instance, in terms of technical development,
apps are classified into three different categories:

(1) Native apps developed for a specific operating system,
(2) Mobile web apps that refer to web applications running in mobile devices, and
(3) Hybrid apps, which evolved as a mixture of both native and mobile web apps.
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Across these categories, customers are always looking for highly customized apps that meet
their own expectations. Furthermore, cost, time, and quality are the primary focus of app
development companies.

Although there are fundamental similarities between app and desktop software developments,
there are still many differences between their features and challenges [20]. For example, it has been
pointed out that a prominent challenge for developing native apps is to consider multiple mobile
platforms [21]. The variety of mobile operating systems or platforms on different devices leads often to
one app working on specific mobile devices [22]. This is owed to differences in user interfaces (UI),
user eXperience (UX), human–computer interaction (HCI) standards, and supported development
frameworks or tools, among different mobile platforms [21]. Also, frequent updating of operating
systems can result in higher costs of maintenance, tests, pushing out updates, etc. Conversely, users seek
high performance of functionalities regardless of the operating system (OS) or platform that they use.
Subsequently, choosing the right type of mobile app for development is a crucial action to deal with
this challenge.

In software development, requirements are usually classified as functional and nonfunctional
requirements. Nonfunctional requirements are concerned with the identification of intended system
behavior, while functional requirements focus on “what” the software does [23]. Meeting these
requirements is closely related to consistent quality management and control efforts. Despite being
time consuming and costly, software testing is an essential process that helps to detect failures in system
quality and acceptability. Different levels of testing criteria have been identified and applied such as
acceptance testing, system testing, integration testing, module testing, and unit testing [24]. Due to
app development peculiarities, such as device availability and mobile network operators, more types
of quality and performance tests are needed, such as interrupt testing, location testing, and outdated
software testing. Moreover, in today’s fast-growing demands for mobile apps, users expect quick and
frequent app releases with new features, with no defects. However, testing can show only the presence
of failures rather than their absence. This implies that the development process of mobile apps should
be logically structured in order to limit failure.

4. Solution Approaches for Mass Customizing Apps

Based on the discussion in the previous section, moving toward a combination of “from-the-shelf”
and “tailor-made” items is likely to mitigate complexity and improve efficiency. Furthermore,
standardizing development processes and expanding best practices are likely to systematize the
development process and foster service and products’ ramp up. This section deals specifically with an
integrated mass-customization (MC) and ITIL approach as a relevant solution for customer-centric
modular design of apps (see Figure 2).
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MC in software development focuses on efficiency to build a wide variety of software modules or
products by managing their communities and differences. Software MC is seen as a gainful strategic
model for expanding new market segments and responding to customer demands. MC concepts’
adoption in software development can be witnessed in various research works throughout the last few
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years, e.g., [10–12] Kang and Namkung [12] have studied the relationship between “personalization”
and “perceived benefit” for food-service mobile app.

Common strategies derived from software MC adopted to app development include the
following [11]:

• Pure app standardization—development based on a one-size-fits-all principle.
• Segmented app, where multiple clusters of users are served using multiple app variants (derived

app versions for customer-specific requirements).
• Customized app standardization—option of selecting the user’s own set of components and

functionality in the range of available components.
• Tailored app customization—modification of a standard design for a particular group of users.
• Pure app customization—from scratch development and implementation are realized as per

user specification.

Identification of requirements is a key step to meet customer needs through an MC approach.
To this end, QFD has been deployed as one of the well-known tools for capturing customer needs
usually not formally represented and translating them into functional requirements [25]. QFD has
been reported in many studies in software development to provide a full understanding of customer
heterogeneous needs and transform them into engineering characteristics [26]. Unlike classical QFD
that generally addresses physical characteristics, software QFD focuses on behavioral characteristics.
Moreover, the production result is valued not for what it is, but for what it does [26]. Subsequently,
the following proposition was established.

Proposition 1. QFD provides an appropriate framework for developing customer-centric solutions through
systematizing the progressive translation of customer needs into technical solutions.

To consistently develop reusable components and enhance standardization while meeting customer
requirements, “modularity” proves to be one of the most promising approaches. The International
Organization for Standardization (ISO) and the International Electro-technical Commission (ISO/IEC
25010), define modularity as a degree to which a system or computer program is composed of discrete
components such that a change to one component has minimal impact on other components [27].
Modularity as a means to decrease complexity is characterized by two basic general features,
“cohesion” and “coupling” [28]. Higher cohesion indicates lower complexity, while, contrarily,
high coupling refers to higher complexity. Proactively implementing modularity during app
development requires methodological guidance. Principles of axiomatic design, called “axioms”,
exhibit a potential for this challenge. Axiomatic design is a systematic model providing a general design
framework spanning the following engineering sequence: (1) Customer needs (CNs), (2) functional
requirements (FRs), (3) design parameters (DPs), and (4) process variables (PVs) [29]. The expected
output of the software design is to satisfy FRs and functional constraints (Cs) [30]. Axiomatic design
relies on two axioms, (1) independence, referring to maintaining FRs, and (2) information, referring to
minimizing information content in the design. A design in which each DP covers a single FR is seen to
be perfectly fulfilling the “independence” axiom. The following proposition can then be derived.

Proposition 2. Independence axiom from the axiomatic design theory supports the improvement of system
design toward modular architecture.

While approaches and theories such as QFD and axiomatic design have the potential to support
requirements of engineering and design of customer-centric modular solutions, “ramping up” the
development projects of these solutions still requires standard and flexible frameworks [15]. In the field
of Information Technology (IT) service domain, a major well-known framework is ITIL [31]. While ITIL
applies to IT services in the first place, the business context led to an increasing reinforcement of
the role of value and digital transformation in managing products and services. This is particularly
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obvious in the fourth edition of ITIL bringing service management practices in a broader context of
customer experience and value streams [31]. In this sense, value co-creation with customers, partners,
and suppliers is one of the key concepts addressed by the ITIL framework. Accordingly, the four
dimensions that should be holistically considered for proper management of products and services
are (1) reorganization and people, (2) information and technology, (3) partners and suppliers, and (4)
value stream and processes. How these dimensions interact and how value is created are covered
by the ITIL v4 Service Value System (SVS) (see Figure 3). ITIL guiding principles represent a set of
recommendations for promoting collaboration and cooperation. Governance represents the means of
how the organization is directed. Practices refer to organizational resources supporting the achievement
of the objectives. These are sets of generic and adaptable recommendations, which may apply to
different organizations regardless of their sizes and sectors. The service value chain is at the core
of the ITIL v4 SVS and represents interconnected activities to deliver a valuable product or service.
These activities are triggered by an opportunity or a demand to create “value”. Not less importantly,
continual improvement supports increased performance and that stakeholders’ expectations are met.
Based on the aforementioned characteristics of ITIL v4 SVS, the following proposition can be inferred.

Systems 2020, 8, x FOR PEER REVIEW 6 of 17 

 

broader context of customer experience and value streams [31]. In this sense, value co-creation with 
customers, partners, and suppliers is one of the key concepts addressed by the ITIL framework. 
Accordingly, the four dimensions that should be holistically considered for proper management of 
products and services are (1) reorganization and people, (2) information and technology, (3) partners 
and suppliers, and (4) value stream and processes. How these dimensions interact and how value is 
created are covered by the ITIL v4 Service Value System (SVS) (see Figure 3). ITIL guiding principles 
represent a set of recommendations for promoting collaboration and cooperation. Governance 
represents the means of how the organization is directed. Practices refer to organizational resources 
supporting the achievement of the objectives. These are sets of generic and adaptable 
recommendations, which may apply to different organizations regardless of their sizes and sectors. 
The service value chain is at the core of the ITIL v4 SVS and represents interconnected activities to 
deliver a valuable product or service. These activities are triggered by an opportunity or a demand 
to create “value”. Not less importantly, continual improvement supports increased performance and 
that stakeholders’ expectations are met. Based on the aforementioned characteristics of ITIL v4 SVS, 
the following proposition can be inferred. 

 

Figure 3. ITIL v4 Service Value System (SVS) [30]. 

Proposition 3. ITIL v4 SVS provides a standard and flexible framework, supporting the design and 
management of value-driven systems of products and services. More specifically, practices are flexible and can 
be customized to different contexts. 

5. Customer-Driven Modular App Development 

This section elaborates on a framework capturing the benefits of coupling QFD, independence 
axiom from axiomatic design, and ITIL v4 SVS practices to reinforce customer-centric modular app 
development. The framework supports requirements’ elicitation, solution space development, and 
solution space evaluation (see Figure 4). 

 
Figure 4. A framework for customer-centric modular design projects. 

Figure 3. ITIL v4 Service Value System (SVS) [30].

Proposition 3. ITIL v4 SVS provides a standard and flexible framework, supporting the design and management
of value-driven systems of products and services. More specifically, practices are flexible and can be customized
to different contexts.

5. Customer-Driven Modular App Development

This section elaborates on a framework capturing the benefits of coupling QFD, independence
axiom from axiomatic design, and ITIL v4 SVS practices to reinforce customer-centric modular
app development. The framework supports requirements’ elicitation, solution space development,
and solution space evaluation (see Figure 4).
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House of Quality as a backbone of QFD helps to direct the design process toward customer
needs. House of Quality (HoQ) is a comprehensive visualization tool in the form of a matrix used to
translate customers’ needs into functional requirements and, subsequently, into design parameters,
thus supporting process plans and production requirements [32]. Figure 5 shows a typical matrix
of a House of Quality. The example illustrated in this figure involves m customer needs (CNi) and
n functional requirements (FRj) derived from these customer needs. The relationships within the
matrix range from “Weak” to “Strong”. These are translated using a rating scale such as 1–3–9 or 1–5–9.
The roof of the matrix represents correlations among FRj.
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Independence axiom is checked when deriving functional requirements and then design
requirements, using House of Quality, to ensure a modular design as much as feasible. After design
requirements are identified, practices from ITIL are identified and prioritized to guide subsequent
development steps.

Prerequisite for proceeding with the design is gathering and processing customers’ needs.
User requirements are often inconsistent and incomplete. Therefore, requirements’ elicitation plays a
major role in integrating the voice of customer (VOC) in the design process, through customer needs.
To this end, several data sources (e.g., expert judgment, commercial databases) and collection methods
(e.g., brainstorming, interviews, focus groups, surveys) can be used complementarily. In addition
to data gathering, requirements need to be analyzed and prioritized to mitigate the complexity of
a mobile app development process. Analysis and prioritization rely on similar techniques as data
gathering such as expert judgment and multi-criteria decision making.

Based on the identified customer needs, the framework further supports building a “solution
space” to meet these needs. It relies on an iterative development process allowing for progressively
defining functional requirements and design parameters of the mobile app.

The process is as follows. A set of FRs is identified and which supports the achievement of CNs
resulting from requirements’ elicitation. For each module in FRs, at least one corresponding DP is
needed. Second, the House of Quality is used to evaluate the relationships between FRs and DPs,
the importance of DPs, and the position of the solution in regard to competition. This represents one
iteration, as shown in Figure 5. Further iterations result from breaking down DPs and FRs consistently
with the axiomatic design zigzagging principle. According to this principle, FR is broken down into
sub-FRs, and then the corresponding DP is broken down into sub-DPs corresponding to newly defined
sub-FRs. This process leads to building tree structures of FRs and DPs (see Figure 6). Different types
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of relations can be established between nodes such as mandatory, optional (OR), alternative (XOR),
require, and exclude [33].
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The Zigzagging between nodes allows for ensuring independence axiom is met as far as feasible
(consistently with axiomatic design approach) and supports the modular design of the mobile app.
Furthermore, it supports a controllable design process, as it reveals the relationships that exist between
FRs, DPs (mapping), parent and children FR nodes, and parent and children DP nodes.

The subsequent step consists of customizing the ITIL v4 SVS practices to the development project
context. This step is iterative and is supported by House of Quality, allowing to derive the relationships
between DPs and ITIL v4 SVS practices to ultimately prioritize these latter for subsequent development
steps. The basic idea of this mapping between DPs and ITIL v4 SVS practices is to make sure that the
value stream activities of the mobile app are efficiently and effectively conducted to keep delivering
high value to the end customer and all stakeholders. Once ITIL v4 SVS practices are prioritized,
proper technical solutions are needed to implement them in the context of the developing company.
The ITIL v4 SVS practices related to service management and technical management in ITIL are listed
in Table 4 [31].

Considering these practices during the design of the mobile app enables the company to proactively
deal with potential risks and opportunities that may occur during the development and operation
phases, hence, ensuring a better customer focus.

6. Case Study and Discussion: COVID-19 Tracking App

To briefly illustrate the proposed framework, it was chosen to focus on an example of urgent
needs requiring an agile development process. The current COVID-19 pandemic outbreak is perfectly
consistent with these requirements. High contagion and morbidity rates add to the complexity of
tracking this pandemic outbreak. Depending on target users’ professions, risk exposure, and whether
they are infected, they may have different expectations from such a mobile app. Customers could
include healthcare personnel, confined adults, or researchers in healthcare management systems.
Data about customer needs was collected using surveys. The main questions were what potential
customers expect from the mobile app for informing and helping people during the pandemic. A total
of four respondents representing six different customer profiles answered the survey. Survey results
were processed by the authors to filter and prioritize CNs (see Table 1). The importance ωi of a given
customer need i was derived from the occurrence number of i within the total number of expressed
customers’ needs N (see Equation (1)). The respondents formulated their own needs by answering
open-ended questions included in the survey. After collecting all answers, the needs were analyzed
and reformulated (e.g., combining similar ones), resulting in eight CNs. The new versions of the CNs
were checked with respondents to make sure they still reflect their needs.

ωi =
oi /N × 100% (1)

Unsurprisingly, the overarching customer need was directly related to the question asked and
consisted of tracking the number of infections in the users’ neighborhood. However, several other
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needs arose, such as open businesses and help offers. The survey uncovered also other expectations
from potential customers regarding updates on new developments.

After CNs were identified and analyzed, a set of comprehensive FRs were derived using House of
Quality while trying to be consistent with the independence axiom as much as “feasible”. Figure 6
shows FRs mapping to CNs as well as the correlations among FRs. Full-textual descriptions of FRs are
shown in Table 2. The identification of FRs was relatively straightforward since they were derived
from CNs, so there was no need to apply creativity methods. In Figure 7, for example, there is a strong
relationship between FR1 and CN1 since collecting infection and healing numbers is a prerequisite for
allowing to track the number of infections. On the contrary, FR9 and CN2, for example, were only
weakly related because visualizing charts and diagrams is not necessary for meeting customer needs in
terms of alerts and news. Furthermore, FR1 had a strong positive interaction with FR3 and FR4 since
these functions all relate to data collection. In terms of correlation, a negative correlation was identified
between FR5 and FR10, as collecting detailed data about user symptoms (FR5) hinders limiting user
inputs (FR10).

Table 1. Customer needs (CNs).

Code Overview Importance (%)

CN1 Allow tracking number of infections in my neighborhood. 31%
CN3 Overview of open businesses and help-offers in my neighborhood. 15%
CN6 Newsflash about new developments (treatments, vaccines, etc.). 12%
CN8 Should be simple to use. 12%
CN4 Self-assessment for COVID-19 symptoms, arrange testing if necessary. 8%
CN5 Prognosis is based on the current numbers of infections (e.g., illustrate the curve). 8%
CN2 Overview and flash alerts about current governmental regulations and news. 7%
CN7 Healing statistics. 7%
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Applying the independence axiom resulted in strong relationships across the diagonal of the
House of Quality matrix. However, a one-to-one mapping, reflecting perfect independency, was not
achieved for any of the relationships between CNs and FRs. In particular, a second area characterized
with several strong, moderate, and weak relationships can be seen on the right side of the House
of Quality (see Figure 7). This was owed to FRs (e.g., from FR 7 to FR10) being common to several
CNs. This indicated a relatively high coupling among FRs and CNs and, thus, difficulties to ensure
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consistency with independence axiom. These FRs support rather back-office requirements enabling
customer services. This was supported also by the strong correlations particularly between FR7 and
FR1, FR3, and FR4. Generally, this reflected a relatively high commonality among the solution space,
as a limited set of FRs can be used for several CNs. Interestingly, this supports the idea of economies of
scale rather than low modularity (because of the decoupled matrix).

The importance of a given functional requirement j referred to by ϕ j is calculated according
to Equation (2), such that the importance ωi is the importance of a given customer need i, hi j is the
coefficient of the mapping matrix representing the strength of the relationships between customer need
i and functional requirement j, and N and F are, respectively, the total number of expressed CNs and
the total number of FRs.

ϕi =
∑N

i=1 ωihi j

/∑F
j=1

∑N
i=1 ωihi j

(2)

It can be clearly seen that visualization (FR9) and filtering data according to user location
(FR7) are the most important FRs to be carefully considered in subsequent steps. On the opposite,
government regulation updates (FR2), collecting data about symptoms (FR5), and displaying news and
updates (FR8) are seen to have very low importance. This is partly explained by the low importance of
the corresponding CNs (cf. Table 1). Practical implications of this situation include decisions such
as planning for separate DPs to meet these FRs to include such services only if customers request it,
thus ensuring meeting individual customer requirements at lower costs. Other implications involve
decisions such as removing these FRs if their realization involves high potential costs that impede
economies of scales.

Table 2. Functional requirements (FRs).

Code Overview Importance

FR9 Visualize charts and diagrams 25%
FR7 Filter data according to user location 20%
FR1 Collect infection and healing number per city in a given country 16%

FR10 Limit user input 14%
FR6 Collect data about OMS and government updates 6%
FR3 Collect data about stores opening time 5%
FR4 Collect data about available persons per city for help 5%
FR2 Collect government regulation updates 3%
FR5 Collect user data about symptoms and display results 3%
FR8 Display news and updates 3%

The subsequent step consists of identifying design parameters (DPs) with the objective to remain
consistent with the independence axiom as much as possible. This step was performed by the authors
with the help of a subject matter expert. Figure 8, depicting a House of Quality, shows the assessment
of the relationships among DPs and FRs as well as the correlations among DPs. For example, DP2 has
a moderate relation with FR1 as integrating maps can be useful for collecting infection and healing
information but are not necessary if the geographical location is not needed. However, maps’ integration
is required to ensure FR7, for example, about filtering data according to user location. The identification
of DPs results in different interaction forms among them. For instance, a strong positive interaction
occurs between DP3 and DP5 as user graphical interface and online forms are mutually impacted.
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While it can be seen that there are strong relationships across the matrix diagonal, the independence
axiom is not fully respected since one DP is generally related to more than one FR (e.g., DP5 and
FR7 to FR10). Thus, the proposed solution can be improved further, based on discussions involving
subject matter experts. The upper side of the House of Quality shows the correlations among the DPs,
which uncover another important aspect to address in order to ease subsequent development steps.
In fact, frequent strong (positive or negative) correlations could lead to higher design complexity; thus,
it is needed to limit these relationships as much as feasible, or at least to consider them when moving
forward with the app development.

The importance δk of a given design parameter k is calculated according to Equation (3), such that
ϕ j is the importance of a functional requirement j, h′ jk is the coefficient of the mapping matrix
representing the strength of the relationships between functional requirement j and design parameter
k, and F and D are, respectively, the total number of FRs and the total number of identified DPs.

δk =
∑F

j=1 ϕ jh′i j
/∑D

k=1
∑F

j ϕ jh′ jk
(3)

The resulting relative importance of each of the DPs is shown in Table 3. The coupled effect of the
importance of CNs, FRs resulted in the user interface (UI) design being the most important aspect to
consider. “Maps’ integration” and “search engine” should also be carefully addressed.

Table 3. Design parameters (DPs).

Code Overview Importance

DP5 User-Interface design 35%
DP2 Maps integration 20%
DP1 Search engine 15%
DP6 On-boarding process 8%
DP9 Calculator 7%
DP7 Links and booking systems 6%
DP4 Push notifications 4%
DP8 Splash screen 3%
DP3 Forms 2%
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Despite several decoupled matrices, the example still shows how the method supports the
improvement of the design through centric and modular perspectives. It also uncovers potential
improvement areas toward a modular design.

To enlighten decision makers with the most valuable service management practices for subsequent
development steps, a mapping of the DPs to the ITIL v4 SVS practices was realized using the House of
Quality (see Figure 9). For example, SP17 is strongly linked to DP3 and DP5, since testing and validation,
as an ITIL practice, are required to make sure forms and user interface design are appropriate and
there are no failures. It can also be seen that SP1, referring to service availability, has a strong positive
correlation with most of the other practices, which means that SP1 should be carefully addressed
and proper resources should be allotted to it. While all practices are generally relevant to DPs,
service validation and testing are seen to have paramount importance for the development of the
COVID-19 mobile app. Looking at the DPs, it can be seen that the user interface (UI) design is impacted
by most of the ITIL v4 SVS practices. These observed trends are confirmed by the relative importance
of each of the practices, as shown in Table 4.
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The prioritization of the ITIL v4 SVS practices supports the subsequent planning activities of
the mobile app development. Special attention should be given to the highly ranked practices.
For example, service validation and testing (SP17), how to translate this into practice, would depend on
the development company context and whether it pursues process standardization and best practices’
adoption such as the ones provided by ITIL v4 SVS.

For example, for newly developed applications in contexts with no past experience with ITIL
v4 SVS, it might be suitable to select only a few numbers of easily manageable practices. However,
regardless of the situation of the company, the process to adopt and implement these practices should
be progressively consistent with the continual improvement principle from the ITIL v4 framework.
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Table 4. ITIL v4 SVS practices.

Code Overview Importance

SP17 Service validation and testing 12%
SP10 Service catalog management 10%
SP16 Service request management 10%
SP4 Change enablement 9%
SP8 Problem management 9%

SP11 Service configuration management 9%
SP13 Service design 8%
SP2 Business analysis 5%
SP7 Monitoring and event management 5%

SP14 Service desk 5%
SP1 Availability management 4%
SP3 Capacity and performance management 4%
SP5 Incident management 4%
SP9 Release management 3%
SP6 IT asset management 1%

SP12 Service continuity management 1%
SP15 Service level management 1%

To conduct a proof of concept, the development of a prototype for illustration purposes was
conducted. The developer in charge of this activity was not involved in the initial steps of the method.
This allowed us to check both the clarity and comprehensiveness of the DPs.

Figure 10 shows one of the GUIs (Graphical User Interfaces) from the ongoing prototype.
The development of this mock-up went through several iterations and each of them involved a
“back-and-forth” between technical development, DPs and FRs: implementing functions progressively,
getting feedback, taking further (improvement) decisions, etc. As such, the proposed framework was
consistent with agile development.
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7. Assessment of the Proposed “Customer-Centric Modular Design Projects” Framework

The proposed framework supported and systematized customer-centric modular design through
coupling QFD and modular design, as well as adopting ITIL v4 practices for service management.
The illustrative example showed the applicability of the framework to develop a mobile app for
pandemic relief in the context of COVID-19. A questionnaire was designed to assess the usability of the
framework by potential users and its effectiveness with regards to its objectives. These latter form the
questionnaire items: (1) The framework supports a customer-centric design, (2) the framework supports
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a modular design, (3) the framework is effective for mobile app development, (4) the framework
provides insights into subsequent development steps through ITIL practices, and (5) the framework
supports ramping up customer modular design (see Figure 11). The questionnaire included an
overview of the framework, as shown in Figure 4, and a short illustrative example with comments
on the steps, including three figures representing the House of Quality matrices and three tables
summarizing the results.

The questionnaire was implemented online and spread among more than 300 potential users
of the framework. The questions relied on a five-level Likert scale indicating the respondent’s
level of agreement: 1 = strongly disagree, 2 = disagree, 3 = neither agree nor disagree, 4 = agree,
and 5 = strongly agree. After two reminders within a one-month period, a total of thirty-six valid
replies were collected. The respondents were in the fields of business analysis, software development,
requirements’ engineering, and industrial and system engineering. The number of responses was
assumed to be acceptable for this study as it allowed us to perform descriptive statistics and
collect general insights into the framework. The results of the survey are summarized in Figure 11,
representing the scores of the five items (i.e., an average of the scores assigned by respondents).

In general, the framework proved to meet the objectives for which it was designed as the scores of
all five items were in the range 3.58–3.92. An agreement was observed about the fact that the framework
supported customer-centric design. This is witnessed by the high score of the item amounting to 3.92
and the relatively low standard deviation (0.99). The survey supported the idea that the framework is
effective for ramping up modular design (average score of 3.70) and customer-centric design (average
score of 3.64). The coupling with ITIL practices was also perceived positively by the respondents in the
sense that provided insights into subsequent development steps, thus helping to prioritize the tasks
and structuring the subsequent process.
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Both the illustrative example and survey suggest that the proposed framework can be a relevant
support tool toward the general objective of ramping up the customer-centric modular design of a
mobile app. The coupling of QFD and ITIL supports a structured process to systematize a mobile app
development and system development at large.

The illustration from the pandemic context shows the ease of use of the method to quickly move
from requirements to technical solutions’ identification and refinement. In this sense, this paper
extends the literature (e.g., [34]) in system and software development through unleashing the potential
of coupling QFD and ITIL v4 SVS practices to systematize the development process considering a
customer-centric perspective. Furthermore, the results are in line with previous research, for example,
with regards to the key role of a user interface in sectors such as the apparel industry [35,36]. As such,
the current case study witnesses the validity of these results in apps’ development for pandemic relief.
Furthermore, in terms of required functions, the results from the current case study are in line with the
research published in [37] regarding limiting user input in the app to get results.
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8. Conclusions

The shift to more and more individual solutions is also affecting software development,
especially the design of mobile apps. It has been shown that the required customization to satisfy their
diverse users in a competitive market is a challenge for the app providers. It creates specific problems
for development projects in order to meet demands at a larger scale. Due to the rising complexity,
customer-driven projects and operations’ management need to be supported by effective tools to
operationalize enterprise-wide strategies.

Such an approach has been developed in this paper, employing QFD and axiomatic design to deal
with the complexity using a modular architecture. It provides a step forward in this area by establishing
a framework to smoothly translate customer requirements into design parameters consistently with a
modular design principle. The framework was exemplarily validated in a case study on a COVID-19
tracking app. The framework needs, however, to be intensively tested in collaborative development
projects for further improvement. Joint application design (JAD) exhibits a high potential to proceed
with such tests and improvements. These improvements can benefit from recent research works
(e.g., [38]). Ongoing research involves the validation of the method at a larger scale. This effort is
being conducted within the VARIETY project (VARIETY and Complexity Management in the Era of
Industry 4.0).
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