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Abstract. 
The present recommendations have been developed by the Kinetics Committee of the 
International Confederation for Thermal Analysis and Calorimetry (ICTAC). The 
recommendations provide guidance on kinetic analysis of multi-step processes as measured by 
thermal analysis methods such as thermogravimetry (TGA) and differential scanning 
calorimetry (DSC). Ways of detecting the multi-step kinetics are discussed first. Then, four 
different approaches to evaluation of kinetic parameters (the activation energy, the pre-
exponential factor, and the reaction model) for individual steps are considered. The approaches 
considered include multi-step model-fitting as well as distributed reactivity, isoconversional, 
and deconvolution analyses. For each approach practical advice is offered on its effective usage. 
Due attention is also paid to the typical problems encountered and to the ways of resolving 
them. The objective of these recommendations is to help a non-expert with efficiently 
performing multi-step kinetic analysis and interpreting its results. 
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Foreword 

This publication continues the series of the ICTAC Kinetics Committee recommendations 

for improving the quality of kinetic analysis. The first two publications have dealt respectively 
with selecting proper computational techniques [1] and obtaining adequate experimental data 
[2]. The present publication provides recommendations devoted specifically to kinetic analysis 
of multi-step processes. The idea of creating such recommendations was discussed at length in 
a kinetics session at the 16th Congress of ICTAC (Orlando, USA, 2016). During this session 
several approaches to multi-step kinetic analysis were identified. They include multi-step 
model-fitting, distributed reactivity, isoconversional, and deconvolution analyses. The 
development of the present recommendations was led by the chair of the Kinetics Committee, 
Sergey Vyazovkin, who is listed as the first author. Other team members are listed in the 
alphabetical order. The specific contributions were as follows: Multi-step model-fitting 
(Moukhina); Distributed reactivity analysis (Burnham); Isoconversional analysis (Vyazovkin 
and Sbirrazzuoli); Deconvolution analysis (Koga, Perez-Maqueda, and Favergeon). The 
approaches described are considered to be generally independent. Thus, the order of appearance 
of the respective sections does not follow any specific plan. 
The draft document was sent to a number of expert reviewers with a request to provide 
comments. The comments were received from thirteen individuals mentioned in 
Acknowledgements of this document. In response to the reviewers’ comments, revisions were 
made to clarify the existing content rather than to expand it, so that the document remained 
focused on its major objective. The latter was to provide a newcomer to the field of thermal 
analysis kinetics with introductory pragmatic guidance in efficiently applying common 
computational approaches to kinetic analysis of multi-step processes. 
 

1. Introduction 
The methods of thermal analysis such as thermogravimetric analysis (TGA) and 

differential scanning calorimetry (DSC) are used broadly to study the kinetics of processes in 
the condensed (i.e., liquid or solid) phases. The condensed phase processes typically include 
more than a single step. For example, under the action of heat an organic solid can convert to 
gaseous products via competition of decomposition and sublimation, i.e., intra- and inter 
molecular bond breaking, respectively. On the other hand, thermal polymerization can occur as 
a sequence of two steps: diffusion of the monomer followed by its addition to the polymer 



chain. These are just two simple examples of multi-step processes that can give rise to multi-
step kinetics. Yet, the typical approach to kinetic analysis of the condensed phase processes is 
based on the single-step rate equation [1]:  

 (1.1) 

where α is the extent of conversion of the reactant to products, t is the time, T is the absolute 

temperature, k(T) is the Arrhenius rate constant, A is the preexponential factor, E is the 
activation energy, R is the gas constant, and f(α) is the reaction model. A list of common reaction 
models is found elsewhere [1]. A combination of A, E, and f(α) is frequently called the kinetic 
triplet. Note that there is a tendency to limit kinetic analysis to estimating the activation energy 
only. Undoubtedly, in many situations a change in the activation energy can explain a change 
in the reaction rate. Nevertheless, there are just as many situations when the rate changes can 
only be explained by changes in the preexponential factor and/or reaction model [3,4,5]. 
Therefore, kinetic analysis should generally aim at determining the whole kinetic triplet. 
The fact that a condensed phase process is likely to include more than one step does not 
immediately invalidate the application of the single-step approach. Quite commonly multi-step 

kinetics can be accurately approximated as the single-step ones. It happens when the overall 
rate of the multi-step process is either dominated or limited by the rate of one step. Consider 
the two aforementioned examples. The overall rate is determined by the sum of the rates of 
sublimation and decomposition but the former can be much faster than the latter. Then the 
overall rate is dominated by the fastest step, i.e., sublimation. On the other hand, in 
polymerization occurring as two consecutive steps the rate of diffusion can be much slower 
than the rate of the monomer addition. Then the overall rate of polymerization is limited by a 
single step of diffusion.  
How can one recognize multi-step kinetics in TGA and/or DSC data? The simplest and most 
obvious way is by visual inspection of the curves. For a single step process the TGA curve 
obtained at constant rate of heating should be S-shaped (sigmoidal) with a single inflection 
point. Similarly, the DSC curve obtained at constant rate of heating or cooling should be a single 
bellshaped peak with no shoulders. The same is true for the derivate of TGA data commonly 
referred to as DTG, i.e., derivative thermogravimetry. Therefore, if a TGA curve shows more 
than one inflection point, i.e., looks like an overlap of two or more S-shaped curves, the process 
is certainly not single-step. For DTG and DSC curves the appearance of more than one peak or 
a peak with one or more shoulders clearly signals that the process is not single step. As an 
illustration, Figure 1 shows TGA and DSC curves for the thermal decomposition of 
acetylsalicylic acid [6]. The TGA curve is clearly an overlap of two S-shaped segments. The 
DSC curve demonstrates three endothermic peaks, the first of which is melting followed by a 
double peak for thermal decomposition. The results of this type suggest that the process 
comprises at least two steps. Thus, a two-step kinetic model should be used as a starting point 
in analysis of the overall kinetics of such process. It should be noted that the aforementioned 
features of multi-step kinetics are not always obvious, and that the chances of detecting them 
increase with extending the range of experimental conditions. In particular, one has better 
chances to detect these features when using a broader temperature range. This is easier to 
accomplish via nonisothermal measurements, for which one is recommended to use close to 
ten-fold difference between the slowest and fastest heating (or cooling) rates [2].  



 
Fig. 1. TGA (dash line) and DSC (solid line) curves for thermal decomposition of acetylsalicylic acid. Adapted 

with permission from Long et al. [6]. Copyright 2002 Wiley. 
 

Unfortunately, the visual inspection does not always reveal the multi-step nature of a process 
even within a broad temperature range. There are many situations when multi-step processes 
do not exhibit any of the features described above, i.e., give rise to the single-step type of the 
DSC and TGA curves. Therefore, the absence of double peaks, peak shoulders, and overlapped 
S-shaped segments should not be taken as proof of the underlying kinetics being single step. A 
more effective way of recognizing multi-step kinetics is via simple single-step kinetic analysis. 
The idea behind this approach is quite straightforward. The activation energy of a process is 
determined from the temperature dependence of its rate. In particular, it can be determined as 
the isoconversional derivative of the overall rate, i.e., as [1]: 

 (1.2) 
where the subscript α denotes the values related to a given conversion. The application of such 

derivative to a single-step equation (1.1) yields Eα=E. It means that the experimentally 
determined value of the isoconversional activation energy, Eα remains constant regardless of 
the values of conversion and temperature. In theory, the constancy of Eα is the necessary 
condition for treating a process as single-step kinetics. In practice, Eα is never exactly constant. 
Thus the criterion of constancy is replaced by the criterion of insignificant variation. Variation 
in Eα can be considered insignificant when it is smaller than the respective uncertainty. Typical 
uncertainties in evaluating Eα are ± 5-10% of Eα. Then variation in Eα is insignificant if the 
difference between the maximum and minimum value of Eα is less than 10 – 20 % of the average 
Eα value. When applying this criterion, one should keep in mind that the Eα values typically are 
subject to larger fluctuations at α < 0.1 and α > 0.9. Therefore, the constancy (or significant 
variability) are best judged by analyzing the values within the range α=0.1-0.9. It should be 
emphasized that the constancy of Eα does not necessarily mean that the reaction is a single-step 
one. More likely, it is a multi-step reaction whose rate is dominated or limited by one of the 
steps, as explained earlier. 
Normally, the constancy of Eα does not hold when a process involves more than one step. 
Let us consider a process that comprises two competing steps: 



 (1.3) 
The overall rate of this process is: 

 (1.4) 
where the subscript 1 and 2 represents respectively the two individual steps. Applying the 

isoconversional derivative to this rate gives the isoconversional activation energy as follows: 

 (1.5) 
Eq. 1.5 obviously suggests that the resulting activation energy depends on temperature as 

well as on conversion. Depending on the values of α and T, Eα can take on any value between 
E1 and E2, i.e., between the values of the activation energies of the two steps. Therefore, as long 
as E1 and E2 differ significantly, and the rates of the steps are comparable (i.e., there is no rate 

dominating step), the multi-step nature of the process is likely to manifest itself as either 
conversion or temperature dependence of the experimentally determined activation energy. 
The conversion dependence of the experimental activation energy is readily determined by 

an isoconversional method. There is a number of isoconversional methods, and their basic 

overview is given in the previous ICTAC recommendations [1]. Figure 2 illustrates an 

application of one such method to the process of crosslinking polymerization in an epoxy-
anhydride system [7]. Note that visual inspection of the DSC curves does not reveal any obvious 
features of a multi-step process. Nevertheless, the isoconversional activation energy varies 
significantly indicating clearly that the kinetics of this process cannot be described as a single 
step. 

 
Fig. 2. DSC curves for crosslinking polymerization of an epoxy-anhydride system. The numbers by the curves 

are heating rates in °C min-1. The inset shows the conversion dependence of the isoconversional activation  
energy. Adapted with permission from Vyazovkin and Sbirrazzuoli [7]. Copyright 1999 Wiley-VCH. 

 



The temperature dependence of the experimental activation energy can be detected from 

the Arrhenius plot, i.e., lnk(T) vs T-1. When the activation energy varies with temperature, the 
plot is nonlinear. Arrhenius plots are used more commonly in analysis of isothermal data. For 
nonisothermal data, a close analog of the Arrhenius plot is the Kissinger plot. The latter is the 
basis of the Kissinger method [8,9] that affords evaluating the activation energy as: 

 (1.6) 

where β is the heating rate, and the subscript p denotes the temperature related to the position 
of the maximum (or minimum) of a DSC or DTG peak. Figure 3 displays the Kissinger plot for 
the thermal denaturation of collagen [10]. The plot is distinctly nonlinear. The activation energy 
determined for the lower temperature range is markedly greater than the one found at higher 
temperatures. This is a clear indication that the kinetics of the process cannot be reduced to a 
single step. Again, visual inspection of the DSC curves for this process does not reveal any 
signs of it being multi-step [10]. It should be stressed that detecting the nonlinearity of the 
Kissinger plots requires using no less than five different heating rates [10,11,12]. Similar 
requirement applies to the Arrhenius plots for isothermal data. It is very difficult to detect the 
nonlinearity when using fewer than five different temperatures. When using the Kissinger 
method, one should consider comparing the plot of ln (�/Tp2) vs. ��-1 with the plot that replaces 
�/Tp2 with the width of the normalized rate peak at the half-height. If the slops of these plots 
yield significantly different values of the activation energy, this is a sign of a multi-step process 
[13]. 
 

 
Fig. 3. Kissinger plot for the thermal denaturation of collagen. Dash-dot and dash lines represent two 

approximately linear segments that correspond to lower (62.0–64.7°C) and higher (65.5–68.6°C) temperature 
regions of the overall nonlinear plot. The respective values of the activation energy are 379 and 278 kJ mol-1. 

Adapted with permission from Vyazovkin et al. [10]. Copyright 2007 Wiley-VCH. 
 
As a summary, it must be stressed that one should never rely exclusively on visual inspection 
of the DSC or TGA curves to judge whether a process constitutes multi-step kinetics. As 
explained above, multi-step kinetics can give rise to the single-step type of the DSC and TGA 
curves. In this circumstance, one is advised to examine the data by a method capable of 



revealing the multi-step nature of a process. The use of an isoconversional method is preferred 
over that of Kissinger because it is more sensitive in detecting kinetic complexity and equally 
applicable to isothermal and nonisothermal data. It is essential that any method used employs 
multiple heating rates or, more generally, multiple temperature programs. This has been the 
major recommendation of the ICTAC Kinetics Committee [1]. It does remain in force for 
analysis of multi-step kinetics. All the approaches discussed further are based on this 
recommendation. Similarly, one should follow the recommendations [2] on collecting high 
quality kinetic data. The more complex a process under study the higher data quality is needed 
for its successful kinetic analysis. 
Last but not least, multi-step kinetics studies can always benefit from obtaining mechanistic 

information. Microscopic examination can reveal distinct heterogeneity in a solid reactant or 

product that can hint at the occurrence of parallel reaction channels. XRD analysis of the solid 

phase at different stages of the reaction progress can detect intermediate products that indicates 

the presence of consecutive steps. Similar information can be furnished by FTIR or Raman 

spectroscopy of the liquid phase. MS and FTIR analysis of the gas phase products and a change 
in their distribution during the reaction can provide important insights into the identity of the 
reaction steps involved into the overall process. The mechanistic information is of great help in 
both developing and interpreting multi-step kinetic models.  
However, one should be aware of the fundamental difference between a multi-step reaction 
mechanism and a kinetic model that describes it. The mechanisms of even relatively simple 
reactions may involve a dozen or more steps. This does not mean that a kinetic model must 
include all these steps. Furthermore, an attempt to build a model that includes that many steps 
to describe a set of TGA and/or DSC data is nearly guaranteed to fail in estimating reliable 
kinetic parameters of the individual steps. Instead, one should strive building a model that 
includes the fewest number of steps, yet can describe the kinetics accurately in a wide range of 
experimental conditions. Most of the time, multi-step reaction mechanisms can be accurately 
described by a reaction model that includes two or three steps. It is an important task of a kinetic 
study to understand which steps of a multi-step reaction mechanism determine the reaction 
kinetics under specific experimental conditions. 
 

2. Multi-step model-fitting 
2.1 Basics 

For each chemical reaction, the kinetic analysis means evaluation of the kinetic triplet, i.e., 
E, A and f(α). Although there is a single kinetic triplet for a single-step reaction (see eq. 1.1), 
for a multi-step reaction the number of kinetic triplets equals the number of the steps. For multi-
step reactions, kinetic analysis has an additional task of establishing the multi-step kinetic 
model. The latter specifies a connection between the reaction steps and is determined by the 
reaction mechanism. The steps can be independent or can interact with each other. The steps 
can interact in a variety of manners. They can be competing (eq. 1.3) or consecutive, i.e., when 
a reactant forms an intermediate before transforming into the final product. Individual steps can 
appear separately or simultaneously. In either case, the overall reaction rate, i.e., the rate of 
conversion of the initial reactants to final products is the sum of the reaction rates of the 
individual reaction steps. In multi-step kinetic analysis, it is assumed that each reaction step i 
has its own extent of conversion αi, reaction rate dαi/dt, activation energy Ei, pre-exponential 
factor Ai, and reaction model fi(αi) [14]. Each step includes a reactant and a product. The step 
is an independent one if its reactant and product are not involved in other steps of the multi-
step kinetic model. Steps are consecutive if a product of one step is a reactant of another step. 
Steps are competing if they involve the same reactant [15]. A multi-step reaction can contain 
the steps that are connected in different ways. For example, decomposition of 2,2’-
azobisisobutyronitrile (AIBN) [16,17] involves three steps, the step А→В represents 



decomposition in the solid phase, and a competitive channel A→C→D that exhibits melting 
(A→C) followed by decomposition in the liquid phase (C→D). In addition to its own 
conversion and rate, each step is represented by its specific contribution (or weight) wi to the 
overall conversion and rate. For the same multi-step reaction, the values of the weights can be 
different for different types of measurements (e.g., DSC vs TGA). For example, endothermic 
and exothermic steps in a multi-step decomposition [18] have positive wi contributions to the 
mass loss (TGA), whereas their contributions to the heat flow signal (DSC) 
have the opposite signs. Similarly, in Figure 1 the melting step at 150°C would have a 
significant contribution to the total heat flow, but zero contribution to the total mass loss. In 
general, the overall conversion and rate are determined as: 

 (2.1) 

 (2.2)  
These equations are independent of the connections between individual steps in the multi-step 
kinetic model. The total conversion (Eq. 2.1) is determined experimentally as the ratio of either 
partial mass loss (TGA) or a partial heat release (DSC) to the total mass loss (TGA) or to the 
total heat release (DSC). If a step Ri → Pi refers to an individual reaction step for conversion of 
the reactant Ri to the product Pi, its reaction rate depends on the current relative amounts of the 
respective species СRi and СPi, in accord with the following equation: 

 (2.3) 
Here, the relative amounts CR and CP of the reactant R and the product P are dimensionless 
values between 0 and 1. They are defined as the ratio of the current amount of reactant to the 
maximum theoretically possible amount of this reactant during the progress of the whole 
reaction. For a single-step reaction, CP has the same meaning as α, and CR is (1-α). In the 
absence of autocatalysis (i.e., when the product does not react with the reactant) the reaction 
rate of each step depends only on the relative amount of this step reactant. Then the relative 
amount in eq. 2.3 can be replaced with conversions that vary from 0 to 1. For a single-step 
reaction, the sum of CP and CR is always 1. In the case of multi-step reactions, the relative 
amounts of the reactant and product reactants of a selected step can be influenced by other steps 
so that the sum CP+CR could be less than 1. However, in any given sequence of consecutive 
steps, the sum of all relative amounts of all reactants in the sequence is equal to 1. At the 
beginning of a multi-step reaction, the relative amount of the starting reactant in each 
consecutive chain is equal to 1, and the relative amount of all intermediate and final products 
are equal to zero. In a multi-step reaction, the relative amount of a starting reactant is decreased 
by all steps that involve this reactant. Thus, in the case of two competing steps (eq. 1.3), the 
rate of decrease for the relative amount of the reactant А is determined as: 

 (2.4) 
For n competing steps the rate becomes: 

 (2.5) 
The relative amount of each product is then increased as follows 



 (2.6) 
When a multi-step reaction involves the formation of intermediate, its relative amount is 
increased by the steps in which this intermediate is a product, and decreased by the steps in 
which it is a reactant. For example, for the following multi-step kinetic model: 

 (2.7) 
The relative amount of the intermediate product B is calculated as: 

  (2.8) 
In general, the equation for the relative amount change in each reactant contains n steps for its 
increase and m steps for its decrease: 

 (2.9) 

The complete system of equations for a multi-step reaction consists of: 
• Kinetic Equations (2.3) for all individual steps. 
• Rate of relative amount change for each reactant in the multi-step kinetic model, 
Equation (2.9). 
• Balance Equation (2.1) for calculation of the overall conversion or overall conversion 
rate Equation (2.2) for all steps. 

 
In order to solve this system, one has to assume the number of steps, the multi-step kinetic 

model with connections of the steps, and the reaction model f(α) for each step. Mathematical 
solution of this system of differential equations calculates the simulated curve α(t), which can 
be compared with the experimental curve. The unknown parameters in this system are 
optimized to accomplish the best fit to the experiment that produces the following results: 

• r2 (the coefficient of determination) and RSS (the residual sum of squares) to 
characterize the goodness of fit 
• wi, Ei, and Ai for each step 
• other unknown parameters of the reaction model for each step such as reaction order 
(ni), order of autocatalysis (mi), Avrami exponent (pi),  

 
Advantage of the model-fitting method is that it is readily applicable for analysis of strongly 
overlapping steps, independent or competing steps, overlapped exothermic and endothermic 
peaks, reactions where changing of the reaction mechanism happens at different conversion 
values (see Figure 4), crosslinking polymerization with diffusion control due to vitrification as 
well as in the situations when the total effect cannot be measured. 
 



 
Fig. 4. Reaction mechanism changes at the same conversion (a) or at different conversion values (b,c) for 

different heating rates. (a) decomposition of monohydrate of calcium oxalate; (b) last two decomposition steps of 
ammonium paratungstate tetrahydrate, water MS traces from [18]; (c) curing with diffusion control, data from 

[22]. 
 

2.2 Selection of the number of steps 

As mentioned in introduction, visual inspection of experimental curves often indicates that 
the overall reaction contains more than one step, although sometimes it may fail to reveal the 
multistep nature of a process. At any rate, visual inspection is more effective when applied to 
derivative data such as DSC or DTG. Therefore, it is recommended to calculate the first 
derivative curve for TGA data. The presence of several peaks and/or shoulders points to a multi-
step reaction, and the number of them suggests the minimum number of reaction steps in the 
multi-step kinetic model. If some peak or shoulder is visible only on one experimental curve, it 
is necessary to carry out additional runs to determine whether this feature appears on other 
experimental curves under other temperature conditions. Only then it is justified to introduce 



the respective step into the multi-step kinetic model. If it is known that a reaction consists of 
consecutive steps, but the first step is so slow that it limits the rates of other steps, the 
experimental curve is represented by one single peak. Kinetic analysis then demonstrates a 
constant activation energy, and the overall process manifests itself as a single-step reaction. If 
the following consecutive steps are much faster and take place immediately after the slow step, 
without revealing any detectable peaks or shoulders, then the kinetic parameters of these steps 
cannot be found from the respective experiments. The individual chemical reactions, which are 
not detectable as peaks or shoulders, should not be introduced into the model as consecutive or 
independent steps [14]. However, as mentioned in introduction, single peaks without shoulders 
can still appear in the case of multi-step reactions. In this case, one needs to check whether the 
isoconversional activation energy varies strongly and monotonically with conversion. If this is 
the case, and the total mass loss or heat release depends on heating rate (Figure 5), then the 
reaction should be described as two competing reaction steps. It should be mentioned, though, 
that the competing steps may have comparable contributions to the overall reaction rate so that 
the total mass loss or heat release may not demonstrate any significant dependence on the 
heating rate. In this case, discrimination between independent and competitive steps will be 

problematic. 
 

 

Fig. 5. Competing reactions: (a) Total effect of reaction (total mass loss) depends on heating rate for competing 
steps with different final products; (b) activation energy plot for these data [14]. Reproduced from Moukhina 

[14] under the Creative Commons Attribution License. 
 

2.3. Construction of the multi-step kinetic model 

Constructing the multi-step kinetic model should start with including main reaction steps, 
which exhibit the largest contribution to the total effect, i.e., the total mass loss (TGA) or the 
total heat (DSC). Then this rough multi-step kinetic model could be refined by adding smaller, 
less significant steps. Sometimes the reaction mechanism is known so that it is clear which step 
is responsible for which peak. In this case, the multi-step kinetic model is easily defined. 
However, sometimes the individual reaction steps are unknown. Then, the additional 
mechanistic information can be very helpful for constructing a meaningful multi-step kinetic 
model. For example, multi-step decomposition of an individual substance is usually a sequence 
of consecutive steps. If the starting material is a mixture of non-interacting components, and 
the final and intermediate products of each component are totally independent of the other 
components, then the multi-step kinetic model can consist of several independent steps or 
reaction pathways (i.e., sequence of steps). Here, each independent step or pathway corresponds 
to an individual component. If it is unknown which peak corresponds to which component, then 
additional experiments on individual components can help to identify the peak origins. 
Dependence of the total reaction effect (i.e., mass loss or heat release) on the heating rate 
indicates the presence of competing steps [14,15], see Figure 5. 
 
2.4 Selection of the reaction models for individual steps 



Each individual step in the multi-step kinetic model should obey a certain reaction model, 
f(α). Different reaction models give rise to different shapes of their rate peaks [1]. Therefore, if 
the peak is clearly visible, then reaction model can be determined by fitting the experimental 
data, as is done for single-step reactions [1,13,19]. However, for extensively overlapped peaks, 
a step may appear as a shoulder. In this case, the reaction model of the step cannot be determined 
by fitting. Then, independent mechanistic information should be used. For example, 
decomposition reactions are often of nth-order (Fn) or contracting geometry Rn [1] type. 
Reactions with the formation of crystalline products in liquid or solid amorphous phases usually 
follow the Avrami models, An. Cross-linking polymerizations are usually autocatalytic 
reactions, or have parallel pathways of autocatalytic and nth-order reactions [20]. Sometimes 
f(α) is decelerating function, and reaction rate dα/dt=-∞ at α=0; in such cases, it makes sense to 
assume the presence of diffusion [19]. If crosslinking polymerization slows suddenly at 
different conversion α for slow heating rates or isothermal conditions, then this could be 
happening because of vitrification and diffusion control should be taken into account [21,22]. 
Generally, if no information about a given reaction step exists, then the step can, at least 
initially, be represented by the n-th order reaction model Fn. For reactions with acceleration 
[19], autocatalytic reaction models can be selected. For very sharp rate peaks for reactions with 
the formation of crystalline products the Avrami reaction models can be selected. If several 
different reaction models offer a satisfactory fit, then the model with fewer parameters should 
be preferred. 
 
2.5 Comparison of alternative reaction models 

Sometimes the mechanistic information about a multi-step reaction is insufficient to 

construct a well-defined multi-step kinetic model. Then several alternative multi-step kinetic 

models can be constructed. The multi-step kinetic models can differ in the number of steps, 
their connection, and reaction models for the individual steps. As already stated, kinetic 
parameters are evaluated by optimization that minimizes the RSS for the sum over all points 
and all kinetic curves. The goodness of fit by the simulated curves can be described by RSS as 
well as r². It should be stressed that the larger the number of the optimization parameters (e.g., 
the larger number of reaction steps), the better the fit, i.e., the lower RSS and r² closer to 1. 
Nevertheless, one should avoid overfitting, i.e., avoid introducing more steps and parameters 
than necessary. First, it is necessary to make sure that each step in the multi-step kinetic model 
is justified by available mechanistic information. In the absence of the latter, introduction of 
the steps into the model should be justified by experimental evidence such as detection of peaks 
or shoulders or significant variation of the isoconversional activation energy. An important 
criterion for avoiding overfitting is the F-Test [15] that can be performed on the RSS values. 
Introduction of additional kinetic parameters (or reaction steps) normally reduces RSS. 
However, such introduction is justified statistically only if a decrease in RSS is proved to be 
significant by the F-test. Otherwise, additional steps or parameters should not be introduced. 
 

2.6 Modeling errors 

Optimal kinetic parameters are evaluated by minimizing the RSS function, which may have 

several minima for multi-step reactions, and, thus, may yield different sets of the parameters 

depending on the starting parameters. Initial values of activation energy and pre-exponential 
factor could be roughly estimated from the Friedman analysis for the conversion values 
corresponding to each peak or shoulder. The detailed rules for selecting the starting parameters 
can be found in [19]. A simple example of different solutions for different initial kinetic 
parameters is shown in Figure 6, where a multi-peak curve can be equally well fit as the sum 
of positive (upward) peaks or as the sum of positive and negative (downward) peaks. If it is 
known from the mechanistic information that all reaction steps have positive contributions (wi 



> 0) to the overall rate, then the first solution must be kept. However, if the steps have opposing 
contributions, the second solution is correct. 

 
Fig. 6. Multi-step curve can be mathematically presented as the sum (blue curve) of positive peaks(a) or as the 
sum of positive and negative (b) peaks. Researcher should select the correct of these solutions from chemical 

point of view. Measured data (red circles) are the MS ammonia traces from [18]. Adapted with permission from 
Fait et al. [18]. Copyright 2016 Elsevier. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article). 
 
2.7 Checking and interpretation of results 

The optimal kinetic parameters must be critically checked for a meaning in terms of the 
investigated reaction. 

• The contributions (weights) of all steps must be positive wi>0. Exceptions are the 
reactions 
with steps of opposing directions, where some contributions could be negative [23]. A 
solution with a negative contribution must be clearly explained. 
• The sum of all weights must be equal to 1 

 (2.10) 
If this sum is higher/lower than 1, then all contributions should be proportionally 
reduced/increased. 
 

• The activation energy of a chemical reaction is normally positive that points to an 
increase in reaction rate with temperature. Yet, the effective activation energy could be 
sometimes found as a negative value for kinetic processes [24] whose rate increases with 
decreasing temperature as in the case of reversible reactions [25] or non-chemical 
processes like crystallization [26]. The reason for the negative value must be explained. 
• Reaction orders are usually not higher than 3 from a chemical point of view. But some 
kinetic processes can be described by an n-th order reaction with very high values for n. 
A 
solution with n>3 must be either corrected or explained. 



• The Avrami exponent, p, is usually not higher than 4. If a solution contains p>4, then it 
must be explained. The process is probably non-chemical. 

 
2.8 Kinetic predictions 

Kinetic analysis is based on experimental data measured within a limited range of conditions 
such as temperatures and heating rates. The optimal kinetic parameters evaluated for a given 
experimental range can be used for interpolation as well as extrapolation. Interpolation of 
kinetic curves within the experimental range does not typically present a problem. However, 
prediction of the kinetics outside the experimental range must always be done with care. For 
example, the kinetics evaluated experimentally at faster heating rates (5 - 40K/min) may not be 
applicable for slower heating rates or lower temperatures, because the reaction mechanism may 
change [27,28]. One of the reasons can be a phase change such as in the case of AIBN [16]. 
Under nonisothermal conditions (i.e., continuously rising temperature) AIBN decomposes after 
melting, i.e., in the liquid phase. However, under isothermal conditions the decomposition can 
be performed in the solid phase with different kinetic parameters. Another example is 
crosslinking polymerization [21], which, at fast heating proceeds completely above the glass 
transition temperature Tg, i.e., in the liquid state. Nevertheless, on slow heating or under 
isothermal conditions, the process can undergo vitrification so that its later stages take place in 
the glassy state and, thus, demonstrate different kinetics. In general, if it is necessary to make 
predictions for temperatures outside of the experimental range, one must check whether 
changing the temperature range associated with a transition between the phases or occurrence 
of new chemical reactions. If such events are present, the predictions for such temperature range 
can become highly inaccurate. 
If the kinetics evaluated under nonisothermal conditions is intended to be used for isothermal 
predictions, care must be taken to confirm that the evaluated kinetics still holds outside of the 
experimental range [16]. As an option, one can be recommended to perform kinetic evaluations 
for a set of data that combines isothermal and nonisothermal runs [27]. The same is true for the 
temperature, because the kinetic model only works well in the temperature range in which the 
experiment was carried out. 
 
3. Distributed reactivity analysis 
3.1 Basics 

Distributed reactivity analysis is used for complex, heterogeneous materials for which the 

decomposition occurs by multiple, independent, parallel reactions. Fossil organic matter [29,30, 
31,32,33], biomass [34,35,36,37,38], chars from polymer decomposition [39,40,41], sintering 

[42], and desorption from heterogeneous sorption sites [43,44,45,46,47,48] are five applications 
for distributed reactivity models. The reactivity may follow a simple distribution that leads to a 
single curve, i.e., sigmoidal mass-loss curve (TGA) or bell-shaped mass-rate (DTG) or heat-
rate (DSC) curve, or it may be one or more parts of a multi-step reaction having multiple distinct 
curves. Devolatilization of char from polymer decomposition is an example where the primary 
reaction is likely sigmoidal and the secondary reaction eliminating hydrogen and methane from 
the char has distributed reactivity. The fundamental assumption of distributed reactivity models 
is that the individual reactive moieties do not interact with each other, which provides the basis 
for the independent parallel reaction construction [39]. In continuous form, it is given by 
convolving over D(E), the mathematical distribution function of E: 

 (3.1) 

for first-order reactions and 



 (3.2) 

for nth-order reactions. 
The discrete form is a simple summation and easier to understand: 

 (3.3) 

where 

 (3.4) 

and wi are the weighting coefficients for the individual reactions and sum to unity. In this case, 
fi(αi) can easily be any single-step reaction model. The parallel reactions can have the same 
preexponential factor, or the preexponential factor can be some function of the activation 
energy. The function is usually  

  (3.5) 
where a and b are simply constants. This extension from a single preexponential factor is 
usually unnecessary for practical purposes, even for relatively large extrapolations in 
temperature [39]. It may be helpful for theoretical interpretation, but global models such as 
distributed reactivity have so many approximations that any theoretical interpretation is 
qualitative at best. 
 
3.2 Distribution forms 

The reactivity distribution can be either an analytical distribution or an arbitrary discrete 

distribution—both approaches have been used for more than 50 years. Although some have 
tried direct integration of the continuous distribution and various mathematical approximations 
thereto [49], it is far simpler and computationally faster to convert the continuous distribution 
to a closely spaced, discrete distribution and integrate the independent reactions separately [39]. 
Reaction spacing of 4 kJ/mol gives excellent numerical accuracy for the assumption of parallel 
first-order reactions, which is the most common method. However, parallel nth-order reactions 
(n=1.5 or 2.0) can be spaced further apart for the same numerical accuracy with less 
computational time [50]. The discrete energy distribution has arbitrary weighing factors for the 
individual reactions with different activation energies as shown in eq. 3.3. It was first used in a 
forward sense for coal pyrolysis [29]. The first approach to optimize by direct non-linear 
regression [51] was very slow, but an iterative linear-constrained nonlinear regression method 
soon followed [52]. This approach usually uses a common preexponential factor for all reaction 
channels, but some commercial programs allow it to have the compensation form of eq. 3.5. 
This approach is by far the most common one to derive kinetic models for simulating petroleum 
formation in geological time for petroleum exploration. 
A variety of analytical distributions have been used, most often a Gaussian distribution 

[30] but also Weibull [53,54,55], gamma [33,56,57], logistic [58,59], and pseudo-nth-order 

distributions [39]. It might be surprising to call the latter a distributed reactivity model, but it is 

mathematically similar to one limit of the gamma distribution and power-law temporal models, 
which are similar to a distribution of preexponential factors [33,39]. Also important is that this 

construct is fundamentally different from the concentration dependence of bimolecular 
reactions in solutions, which is why it is properly called a pseudo nth-order model. 
The distribution equations are shown in Table 1, and examples of distributions for various 

parameter values are shown in Figure 7. The Gaussian and common logistic distributions have 

the advantage and disadvantage of being a simple shape. There is only one parameter, which 

makes them easy to optimize, but there is no reason to expect that an activation energy 



distribution should be symmetric. This can be rectified by using pseudo-nth-order reactions in 
concert with those distributions, which provides the ability to change the asymmetry. The 
gamma, Weibull, and asymmetric logistic models already contain two parameters that, in effect, 
control the width and asymmetry of the distribution. In fact, the gamma and Weibull 
distributions are mathematically identical for some sets of parameters. But these models are 
also so diverse in the available distribution shapes that convergence is more challenging. 
 

 
The logistic model situation is more complicated, in that logistic functions have been used in 
fundamentally different modeling approaches. Part of the difference is whether the logistic 
function is considered to be a probability distribution function for E as shown in Table 1 or a 

solution to α versus t. For the latter, recall that the logistic function is the solution to the basic 
autocatalytic reaction with E equal for initiation and growth reactions [60]. The logistic model 
can be extended in two ways—in an extended Prout-Tompkins (truncated Šesták-Berggren) 
form, where a growth parameter m is introduced as well as the reaction order n: 

 (3.6) 

The parameter m is zero for an nth-order reaction, and m=n=1 for the regular Prout-Tompkins 

limit. The reaction profile gets narrower at a constant heating rate as m increases, as is typical 
for nucleation-growth reactions. But when m<0, which has no physical meaning, the reaction 
profile is also broader than a first-order reaction, which mimics an activation energy 
distribution. Using both m and n can modify the shape of the reaction profile, hence the implicit 
activation energy distribution, also. A much better way to use the logistic function for 
distributed reactivity is shown in Table 1. In this case, the abscissa of the distribution function 
is activation energy, not time, and the function has been transformed linearly so that the center 
of the distribution is the mean activation energy. The logistic distribution is symmetric, so Cai 
et al. [59] explicitly considered the convolution over a pseudo-nth-order reaction to enable 
control of the reaction profile asymmetry as well as width. 
 



 
Fig. 7. Probability Distribution Functions used for modeling continuous activation energy distributions. The 

Weibull and gamma distributions are quite flexible, and the Gaussian and symmetric logistic models are limited. 
The asymmetric logistic model (not shown) can introduce some skewness to the activation energy distribution. 

 
Alternatively, one can introduce an asymmetry factor directly into the logistic distribution 

to create an asymmetric reactivity distribution. On can apply an asymmetric logistic function 

directly to the α versus time curve [61], but it has no advantage over eq. 3.6 [62]. Even so, the 

generalized equation, which is shown in Table 1 but not in Figure 7, can be used as an 

alternative to convolving nth-order reactions with an energy distribution to achieve an 
asymmetric reactivity distribution. No one has done this yet to our knowledge. 
 
3.3 Optimization methods 

After choosing a distributed reactivity model, optimizing that model requires both a 

mathematical definition of the best fit of the model to the data and a mathematical way of 
achieving it. The first aspect requires some sort of comparison between calculated and measured 

observables. This comparison can be a visual comparison, an estimation from a correlation 

between model parameters and some simple characteristics of the reaction profile, or a full 
mathematical optimization. We like to think that the latter can derive the best fit, but even then, 
there are different ways to define what is best. This definition of best is coded into what is called 

the objective function, and the purpose of the nonlinear regression is to minimize that objective 

function. But even what is deemed objective is subjective. The most common quantity to be 
minimized is the residual sum of squares (RSS) between the calculated and measured reaction 
property as a function of time or temperature. Given that each point has a time and temperature, 
they are equivalent. This leads to the relation 

 (3.7) 
However, that objective function is not uniquely the best. For example, one could minimize the 

difference in both the x and y directions, 

 (3.8) 

where xmax and ymax are normalization factors equal to the maximum values of x and y in the 

experiment. Alternatively, one could have a percentage or some other functional difference 

between calculated and measured values that relates to the character of the data or the 



application. 
For example, 

 (3.9) 

more heavily weights the smaller values near the beginning and end of a nonisothermal rate 
curve. 
In addition, one could minimize the chosen objective function for reaction rates, fractions 
reacted, or both simultaneously (again using normalization factors when rates and fractions 
reacted are minimized simultaneously). Experience suggests that when the reaction-rate 
baseline is known well and the reaction extent approaches complete conversion, simultaneous 
minimization of rates and fractions reacted gives more robust chemical kinetic models, because 
rates and fractions reacted are sensitive to different details of the reaction. 
Next, the collection of experiments being used in the optimization usually have a different 
number of points—should the experiments be weighted equally or inversely related to the 
number of points? This is an important issue, because thermal analysts usually collect data at 
constant time intervals regardless of heating rate. Again, experience suggests that if all 
experiments have hundreds of points, unless there is some reason to suspect any given 
experiment, all experiments should be weighted equally by dividing the residuals by the number 
of data points to prevent undue influence of any experiment that has more points but not truly 
more information. 
The last question on this aspect is if one has multiple observables—two or more of mass, heat, 
evolved gas composition, etc.—how does one construct the proper multicomponent model and 
objective function? However, this task is normally outside the scope of thermal analysis and is 
not considered here. The second aspect is how to minimize the objective function. The more 
complex the function and parameters to be optimized, the more complex the minimization 
surface and the likelihood that one will find a local minimum and not the global minimum. 
Some minimization methods are more robust than others to avoid this problem. The standard 
for nonlinear regression for many years has been the Levenberg-Marquardt algorithm, which is 
a damped least-squares method that interpolates between the Gauss-Newton algorithm and 
method of gradient descent. Very simply, the computer evaluates the error of the supplied 
guesses and migrates towards a minimum that meets a specified goodness of fit. Its success 
depends on the quality of the initial guesses, and it is not a robust method for optimizing many 
parameters simultaneously. There are many other methods with various strengths and 
weaknesses. Genetic algorithms and artificial neural networks can be very efficient for this 
purpose [63]. Recently, Genetic Algorithm, Simulated Annealing, Grid Search, Shuffled 
Complex Evolution, Stochastic Hill Climbing, Particle Swarm Optimization, and a few others 
were evaluated by Purnomo et al. [64] within the context of optimizing biomass pyrolysis 
kinetics. The best method depended on the nature of the objective function and the relative 
importance of computer time and accuracy. The overall best method was said to be Shuffled 
Complex Evolution, but they did not consider distributed reactivity models. 
Reaching a robust solution is enhanced by using a sequential combination of methods. Some 
have found that a sequential combination of methods for the early and late stages of 
optimization works better than using a single optimization method [65]. Another approach is to 
use simple methods, such as isoconversional analysis and Kissinger analysis combined with 
simple correlations to provide better initial parameter values for the nonlinear regression 
[32,52]. Either approach can work. One final issue is that optimization of the discrete E-
distribution model works differently. 
Iterative nonlinear-linear regression separately refines the preexponential factor and the 
respective range of activation energies that span the data space. The linear regression optimizes 
the weighing factors of individual reactions at evenly spaced activation energies for the current 
preexponential factor. Although it seems that many parameters are being optimized, the 



relationship among them makes that easily possible. One subtlety is that differences in the 
reaction space covered by different experiments sometimes leads to spurious weighting on the 
end of the energy distribution. This is mitigated by simultaneous regression of both rates and 
fractions reacted, which is possible when the reaction goes nearly to completion. 
 
3.4 Source-sink and quench-reheat issues 

Many materials needing a distributed reaction model also have what might be considered as 
primary and secondary reactions. In other words, the original material breaks down into a 

combination of volatile and non-volatile products, and the non-volatile products break down by 

substantially different chemical kinetics. The non-volatile products usually fall into the 
category of what one might call char or coke, and the breakdown of char or coke is always 
characterized by distributed reactivity even if the primary reaction is not. Most people approach 
this primary-secondary reaction issue by assuming they are independent, parallel processes. 
This approach often works well, but when the yield of char depends on heating rate or pressure 
or some other variable, which is common, it breaks down. Of course, this can be fixed only by 
incorporating a competitive reaction component to the primary reaction, whereby the ratio of 
volatile to non-volatile products from the primary reaction depends on conditions. This 
construct is more common in chemical reaction engineering than in thermal analysis. The 
situation can become more complicated if one considers that the nature of the 

distributed reactivity of the secondary material depends on the conditions of its formation. 
Furthermore, if both the primary and secondary reactions have distributed reactivity, one must 
postulate or demonstrate how the more labile and refractory components of the primary reaction 

populate the reactivity channels of the secondary reaction. Usually one assumes that each 
reactive component in the primary reactivity distribution contributes equally to the full 
reactivity distribution of the secondary reaction. The pseudo-nth-order reaction approach is not 
suitable for materials generated during the reaction (reaction intermediates). Recall that the 
pseudo nature is based on the fraction reacted of an initial material, and that fraction is 
undefined when it is both generated and consumed in a reaction. Consequently, only a 
distribution of activation energies is appropriate when sequential reactions are considered. 
Distributed reactivity materials have the characteristic that when heated and partially 

reacted, then cooled and reheated, their reaction characteristics will be different than for the 
initial heating. Basically, the more labile material has already been consumed, so higher 
temperatures are needed to achieve the initial reaction rates. This is different than for a first-
order reaction, which is independent of thermal history, and it is opposite to nucleation-growth 
and initiation-propagation reaction systems, where the reactivity upon reheating is greater than 
during the first heating. Pseudo nth-order reactions can model this characteristic if they are 
present at initial time, but activation energy distribution models can model this characteristic 
whether they are initially present or generated by prior reactions. 
 
3.5 Examples 

Two examples are presented to demonstrate some aspects involved with distributed 

reactivity. The first is pyrolysis of a bituminous coal [39], and the other is pyrolysis of 
poly(vinyl chloride) (PVC) [66]. As is typical, both involve a primary pyrolysis step that 
produces a char, followed by secondary pyrolysis of that char. In both cases, pyrolysis of the 
char is characterized by reactivity distributions. The difference between the two cases is that 
the primary step for bituminous coal is also characterized by distributed reactivity while the 
primary step for PVC is characterized by sigmoidal (nucleation-growth or initiation-
propagation) kinetics. 
Table 2 and Figure 8 show the analysis results for bituminous coal. Both 

isoconversional analysis (Friedman) and the shift in Tp versus heating rate (Kissinger) give a 



mean activation energy about 230 kJ/mol. Although not shown, the isoconversional analysis 
found A and E to increase substantially over the course of the reaction. Comparing the reaction 
profile width to that calculated from the Kissinger A and E values suggests a reactivity 
distribution comparable to 3-4% of the mean activation energy, but it is clear by simply looking 
at the reaction profiles that a single symmetric reactivity distribution is not adequate. This is 
why the nth-order reaction fit is better than a Gaussian E-distribution. Two Gaussians are 
needed for an acceptable fit, but the Discrete E–distribution model is significantly better still. 
Simultaneously fitting to reaction rates and fractions reacted to the Discrete E model gives 

an arguably better result, given that the sum of residuals from rates and fractions reacted are 
less than when fitting to only one or the other. In a more general sense, the line describing the 
tradeoff between fitting the rates and fractions reacted (i.e., two distinct objective functions) is 
called the Pareto front [67]. The Pareto front quantifies the notion that the definition of “best 
fit” involves some subjectivity in how one defines the objective function. Table 3 shows 
analysis results for a variety of distributed reactivity models for PVC. The models are visually 
equivalent (comparable to Figure 8), although slightly better fits (lower RSS) are obtained if 
non-unity reaction order is allowed for the initial nucleation-growth step. One should consider, 
of course, whether such an improvement is justified statistically [68], but the full nature of that 
question depends on how the kinetic model will be used. For char pyrolysis, equally good fits 
are obtained using n, σ, or m as the reactivity distribution parameter. The only issue is that the 
negative value of m for the second peak in Table 3 has a dubious physical meaning When 
positive, m is growth dimensionality or autocatalytic strength; it becomes a self-poisoning 
feature when negative. 

 
Fig. 8. Fits of two distributed reaction models to pyrolysis of bituminous coal at heating rates of 5, 10, and 

20°C/min. In this case, the Discrete E-distribution model was fitted simultaneously to rates and fractions reacted.  
The fit of two Gaussians to the data is almost indistinguishable from the Discrete E-distribution model for 

fraction reacted, but small differences are evident for reaction rates. 
 
 



 
 
A characteristic of distributed reactivity situations is that partial heating causes the 

remaining material to be more refractory [69]. This characteristic is modeled in Figure 9 for 
PVC using parameters given in Table 3. The shift in the maximum rate of char devolatilization 

after quench is due to elimination of the more labile components, not conversion of any material 
to more refractory components, even though the latter is possible in reactivity. The pseudo-nth 

order and Gaussian E-distribution models probably describe this shift in the temperature of 
maximum rate more accurately, although there are no systematic studies of this effect for 
polymers. 
 

 

Fig. 9. Reaction trajectories for three PVC reactivity distribution models upon heating at 10°C/min to incomplete 
reaction at 310, 320, and 330°C then reheating through complete reaction. Due to partial reaction of the char 
before quench, the subsequent maximum rate of its devolatilization shifts to higher temperature by an amount 

that depends on the initial heating schedule, as indicated by ΔT. 
 



 

 

4. Isoconversional analysis 
4.1 Basics 

Isoconversional methods permit estimating the activation energy as a function of 
conversion. As explained in introduction, for a single-step process Eα should be practically 

constant, i.e., should not demonstrate any significant variation with α. When variation in Eα 
exceeds 10–20 % of the average Eα, the process should be considered as multi-step. All 
isoconversional methods take their origin in eq. 1.2, which is derived under the assumption of 
the single-step kinetics (eq. 1.1). Although this assumption does not hold strictly for multi-step 

kinetics, it can still be used as a reasonable approximation. More specifically, at constant α and 

within a relatively narrow range of temperatures related to this α, multi-step kinetics can be 

approximated as a single-step one [70]. This approximation permits extending the application 
area of isoconversional methods to analysis of multi-step reactions. It means that an 
experimentally found dependence of Eα on α allows one not only to detect multi-step kinetics. 
It also enables estimating kinetic parameters of individual steps. The principle is simple. For 
example, in eq. 1.5 the left hand side, i.e., the variable Eα can be determined experimentally. 
The right hand side is the variable Eα defined theoretically, i.e., from a multi-step kinetic model. 
Then, the parameters of the latter can be estimated as the values that minimize the deviation 
between the theoretical and experimental Eα dependencies. As seen from eq. 1.5, Eα generally 
depends on both α and T. Therefore, both dependencies should be determined for performing 
minimization and estimating the kinetic parameters. The dependence of Eα on α is determined 
directly by an isoconversional method. Since the parameters of a multi-step model are estimated 
from the Eα values, the accuracy of Eα affects the accuracy of the resulting parameters. Thus, 
one should use the most accurate isoconversional methods. This issue has been addressed in the 
previous recommendations [1] and it concerns primarily the integral methods. The problem is 
that the most popular methods such as those of Ozawa [71] and Flynn-Wall [72,73], Kissinger-
Akahira-Sunose [74], and Starink [75] are rigid [70,76] integral methods, meaning that their 
basic equations arise from rigid integration limits from 0 to a given value of α. This approach 
gives rise to a systematic error in the Eα values, when Eα demonstrates a significant variation 
with α [1,77,78]. Another problem with the rigid integral methods is that they are not applicable 
to the processes occurring on cooling [70,76]. This problem as well as the afore-mentioned 
systematic error is eliminated by using flexible [70,76] integral methods. These are the methods 
that utilize integration over small segments of α [77,79,80,81,82,83,84,85,86,87,88,89]. The 
flexible methods can be applied to the processes that occur on cooling such as crystallization 
of a polymer melt [26], gelation of a polymer solution [90], morphological solid-solid transition 
[91], crystallization of a salt from a solution [92], as well as thermal decomposition [93] and 
crosslinking polymerization [94] taking place during continuous cooling. Equally, one can 
eliminate the systematic error in Eα and treat processes occurring on cooling by employing the 
differential method of Friedman [95] or similar techniques [96]. Therefore, when the Eα 
dependence is intended for estimating the kinetic parameters of a model, it is recommended that 



the Eα values be determined by either a differential or flexible integral method. The accuracy 
of estimated kinetic parameters is usually checked by using them to simulate kinetic curves and 
comparing these curves against the ones actually measured. For model-fitting techniques, the 
simulations are done by using full kinetic triplets. The same approach can be used for 
isoconversional methods [1]. However, for isoconversional methods it is also possible to 
perform such simulations by using the evaluated dependence of Eα on α, without evaluating the 
two other components of the kinetic triplet. The respective equations for isothermal and 
nonisothermal simulations were derived earlier [97,98]. It should be noted that these equations 
were originally designed for the cases when Eα does not vary significantly with α. For accurate 
simulation of processes with a significant variation in Eα integration in the respective equations 
should be performed over small segments of α as explained elsewhere [1,76]. The dependence 
of Eα on T is determined from the experimental dependence of Eα on α. In an isoconversional 
method, the Eα on α dependence is evaluated by using multiple temperature programs such as 
heating or cooling at multiple rates of temperature change. Under these conditions, the same α 

is reached at different temperatures under different temperature programs. 
Taking the average value of these temperatures and substituting it for α in the dependence of 
Eα on α yields the dependence of Eα on T. As already stated, Eα generally depends on both α 

and T, i.e., Eα=E(α,T). Therefore, the parameters of a model are estimated by minimizing the 
deviation between the model and experimental Eα values as a function of two variables, α and 
T. However, there are practically important cases when the model parameters can be determined 
by fitting the Eα vs T dependence alone. In principle, this approach can be applied to any multi-
step process whose isoconversional activation energy can be obtained in the form of an 
algebraic expression (cf., eq. 1.5). In the following sections we consider two specific examples 
that are representative of the two types of fits. These examples are nucleation driven phase 
transitions (fitting Eα vs T) and crosslinking polymerization (fitting Eα vs both α and T). 
 
4.2 Nucleation kinetics 

The temperature dependence of the nucleation rate is generally described well by the 

Turnbull and Fisher model [99]: 

 (4.1) 

where w0 is the preexponential factor, ΔG* is the free energy barrier to nucleation and ED is the 
activation energy of diffusion. This is the model that combines two steps, the formation of a 
new phase nucleus and diffusion of molecules across the phase boundary. The ΔG* value is 
positive but decreases quickly when temperature deviates from its equilibrium value. For 
crystallization, under the assumption of a spherical nucleus, ΔG* decreases with decreasing T 

as follows [76]: 

 (4.2) 
where σ is the surface energy, ΔHm is the melting enthalpy, ΔT = Tm – T is the supercooling, 
i.e., the deviation from the equilibrium melting temperature, Tm, and C is the constant that 
collects all parameters that are practically independent of temperature. Substituting the right 
hand side of eq. 4.2 for ΔG* in eq. 4.1 and then replacing k(T) in eq. 1.1 with w(T) from eq. 4.1, 
followed by taking the isoconversional derivative yields [76]: 

 (4.3) 



This equation describes the theoretical temperature dependence of Eα. The experimental 
dependence is obtained by applying an isoconversional method to the actual data. Fitting the 
theoretical dependence to the experimental one affords estimating the model parameters, ED 
and C. The parameter C can then be inserted into eq. 4.2 to determine the value of ΔG* as a 
function of temperature. Eq. 4.1 can also be adjusted to other phase transitions such as melting 
[100], gelation [101], and solid-solid transition [91]. 
Note that in eq. 4.1 the exponential terms containing ED and ΔG* have opposite 
dependencies on temperature. When temperature increases, the exponential term containing ED 
increases, whereas the exponential term containing ΔG* decreases. As a result, the product of 
these two exponential terms passes through a maximum. For this reason, the temperature 
dependence of the overall nucleation rate (eq. 4.1) also passes through a maximum. When a 
transition occurs on cooling and not far from equilibrium the temperature dependence of its rate 
is determined by the exponential term containing ΔG*. Thus the rate increases with decreasing 
temperature. This is anti-Arrhenian behavior that manifests itself via negative values of the 
isoconversional activation energy. If the same transition occurs far from equilibrium, i.e., at 
much larger supercoolings, the temperature dependence of its rate becomes determined by the 
exponential term containing ED. Then the rate decreases with decreasing temperature, which is 
the regular Arrhenian behavior characterized by positive values of the isoconversional 
activation energy. Crystallization from the glassy state usually occurs at much larger 
supercooling than crystallization from the melted state. This is why the former process normally 
yields positive Eα values and that latter the negative ones. For transitions that occur on heating, 
i.e., by superheating with respect to equilibrium temperature, both terms in eq. 4.1 give rise to 
the Arrhenian behavior. Thus, the rate of such transitions increases with increasing temperature 
so that the Eα values are positive. Examples of such processes are melting [100] or solid-solid 
transitions [12]. A detailed discussion of these phenomena and respective Eα vs T dependencies 
is provided elsewhere [76]. 
 

4.3 Crystallization kinetics of polymers 

Nowadays, the experimentally derived dependencies of Eα on T are commonly used for 
estimating of the Hoffman-Lauritzen parameters for crystallization of polymers [3,102]. The 
Hoffman–Lauritzen theory [103,104] describes the temperature dependence of the growth rate 
G measured microscopically by eq. 4.4: 

 (4.4) 
where G0 is the pre-exponential factor, U* is the activation energy of molecular diffusion across 
the interfacial boundary between the melt and crystals, Kg corresponds to the energy barrier for 
the formation of critical size nucleus, ∆T=Tm-T is the supercooling, Tm is the equilibrium 
melting temperature (typically evaluated by the Hoffman–Weeks procedure), f=2T/(Tm+T) is 
the correction factor, T∞ is a temperature where motion associated with viscous flow ceases that 
is taken as 30 K below the glass transition temperature Tg, i.e. T∞ = Tg -30 K. Adjusting eq. 4.4 
to the volumetric crystallization rate measured by DSC followed by taking the isoconversional 
derivative gives rise to the theoretical temperature dependence of the effective activation energy 
[105]: 

 (4.5) 

The experimental dependence of Eα on T is obtained from the dependence of Eα on α determined 
by applying an isoconversional method to the actual DSC data. As explained earlier, the 
procedure involves replacing each value of α with the mean temperature, ��

��� related to this α. 



The procedure is illustrated in Figure 10. It should be noted that the Hoffman-Lauritzen theory 
takes its origin in the Turnbull-Fisher model and, thus, shares common traits with the latter. 
First, the rate G passes through a maximum at a characteristic temperature, Tmax. Second, the 
values of Eα estimated on cooling from the melted state are negative, whereas the ones estimated 
on heating from the glassy state are positive. The change in the sign of Eα is seen clearly (Figure 
10) for the melt and glass crystallization of poly(ethylene 2,5-furandicarboxylate). A general 
discussion of the phenomenon is given elsewhere [106]. 

 
Fig. 10. Eα vs. T dependencies for the glass and melt crystallization of poly(ethylene 2,5-furandicarboxylate) 

(circles). The Eα vs T dependence is determined by replacing α with the average value of T. For example, for α = 
0.6 is replaced with ��

���=0.6. For the glass crystallization, it is calculated as the average of the three values of T 

0.6 determined respectively from the α vs T curves obtained respectively at the three heating rates: 0.5, 1, and 1.5 
K min-1 (blue curves). For the melt crystallization, T =0.6 is determined by averaging the three values of T 0.6 
and obtained respectively from the α vs T curves measured at the three cooling rates: -0.5, -1, and -1.5 K min-1 
(red curves). Adapted with permission from Codou et al. [108] Copyright 2014 Wiley-VCH. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article). 
 
Once the experimental dependence of Eα vs T is determined, the parameters U* and Kg are 

evaluated by a nonlinear fitting of eq. 4.5 as presented in Figure 11. In this approach both 

parameters are adjustable. Note that eq. 4.4 can be reduced to a linear form [107] assuming that 
U*= 6.3 kJ mol-1, which is sometimes treated as the universal value. However, one should be 

warned against such practice because when treated as adjustable parameter, the values of U* 
are known to deviate by more than 100% from 6.3 kJ mol-1. 
 

 
Fig. 11. Fitting Eα vs T dependencies for glass (solid symbols) and melt (open symbols) crystallization data for 
poly(butylene succinate) (circles) and poly (butylene succinate) graphene oxide system (triangles). Inset shows 

the temperature dependence of G/G0 computed using the Hoffman– Lauritzen parameters. Adapted with 
permission from Bosq et al. [109]. Copyright 2017 ACS. 

 



When fitting eq. 4.5 to the Eα vs T data one should be watchful of breakpoints. For example, 
a breakpoint is seen at 170°C for the melt crystallization data presented in Figure 10. A common 
source of this is a change in the crystallization mechanism. According to the Hofman-Lauritzen 
theory, with increasing the supercooling the mechanism can switch successively from regime I 
to regime II and regime III. The first change (I to II) results in 2 times decrease of the Kg value, 
whereas the second change (II to III) causes Kg to increase 2 times. When a breakpoint occurs, 
the segments of the Eα vs T before and after the breakpoint should be fitted separately to 
determine U* and Kg for the respective regimes of crystallization. The regime III occurs at very 
large supercoolings that are typically accomplished on heating from the glassy state. A 
transition from regime I to II is commonly encountered on cooling of the melts. The breakpoint 
at 170°C seen in Figure 10. is an example of such transition, which is confirmed independently 
by X-ray methods [108]. An overview of other examples is provided elsewhere [102]. When 
the melt and glass crystallization occur respectively in regimes I and III, the Kg value does not 
change so that the melt and glass crystallization data can be fitted together by one eq. 4.5. Figure 
11 illustrates this type of fits for crystallization of poly(butylene succinate) systems [109]. 
Doing so has an advantage of improving the precision and accuracy of the Kg and U* values 
[106]. Overall, the values of Kg and U* determined from the Eα vs T dependence agree well with 
the values obtained by the direct application of eq. 4.4 to the microscopy measurements [102,3]. 
Being fundamental parameters of crystallization, the values of Kg and U* are of importance 

by themselves. In addition, they can be used to determine another important parameter, Tmax, 
which is the temperature of the maximum crystal growth rate. To determine the absolute value 
of the maximum rate according to eq. 4.4 one needs to know the value of the pre-exponential 
factor G0 in addition to Kg and U*. However, because G0 is a constant, the plot of G/G0 vs T has 
the same position of the maximum as the plot of G vs T. The former is readily obtained by 
substituting Kg and U* into eq. 4.4 [108,109,110,111]. Plots constructed in such way are 
displayed in inset of Figure 11. The Tmax values determined from the values of Kg and U* 

generally are in good accordance with the Tmax values measured experimentally [108] and thus 
can be used for estimating such values. This is especially of importance in the case of fast 
crystallizing polymers such as polytetrafluoroethylene, for which the Tmax region may not be 
accessible even when using very fast cooling rates [110]. 
It should be noted that the preexponential factor (G0) in eq. 4.4 cannot be determined via 

isoconversional analysis of DSC data. The reason is that G0 is measured in units of the linear 
rate, i.e., m s-1 which is impossible to determine without knowing the surface area of the 
growing crystalline phase. For this very reason, the knowledge of Kg and U* is insufficient to 
simulate the growth rate, G. However, these parameters can be used successfully to simulate 
the overall rate of crystallization dα/dt or the heat flow. The respective numerical procedure is 
explained in detail elsewhere [112]. 
 
4.4 Kinetics of crosslinking polymerization 

As far as analyzing the experimental values of Eα as a function of two variables, α and T, 
the most practically important application involves the kinetics of crosslinking polymerization 

(i.e., curing). The process is usually described well by the autocatalytic model of Kamal [113]: 

 (4.6) 

where k1(T) and k2(T) represent the rate constants for the regular and autocatalyzed reactions, 
and n and m are the orders of reaction and autocatalysis. Taking the isoconversional derivative 
of eq. 4.6 gives the theoretical dependence for the isoconversional activation energy [21]: 

 (4.7) 



There are two problems with fitting eq. 4.7 to the experimental dependence of Eα on T and 

α. First, eq. 4.7 does not contain the parameter n, which has to be determined separately. 
Second, the parameters A1 and A2 enter the numerator and denominator as linear multipliers that 
makes it impossible to estimate reliably both parameters from fitting eq. 4.7. Note that using 
some numerical minimization procedure for fitting eq. 4.7 may converge at some values of A1 

and A2. This does not mean that these are the true values that represent the global minimum. It 
is seen from eq. 4.7 that multiplying the resulting values by the same factor (e.g., 10) would not 
change the value of Eα. Therefore, the fitting procedure may converge at practically any values 
of A1 and A2 as long as their ratio remains the same. A solution to this problem is to rearrange 
eq. 4.7 to the following form [114]: 

 (4.8) 

where γ=A1/A2. Fitting the experimental Eα data to eq. 4.8 yields the values of γ, m, E1 and E2. 
An example of such fitting is presented in Figure 12 for crosslinking polymerization of bis(4- 
cyanatophenyl) sulfide [115]. 
 

 
Fig. 12. Fitting isoconversional values of Eα (circles) for crosslinking polymerization of bis(4-cyanatophenyl) 
sulfide to eq. 4.8 (solid line) that yields the parameters E1, E2, γ, and m. Inset shows the results of fitting of the 
rate data (circles) to eq. 4.6 (solid line) to determine the parameters A1, A2, and n. Adapted from Galukhin et al. 

[115]. Copyright 2019 Wiley-VCH. 
 
If the purpose of kinetic analysis is only to identify the activation energies of the regular 
and autocatalytic steps, fitting of eq. 4.8 is sufficient. If all parameters of the model (4.6) are 
needed, they can be determined from fitting the rate data, i.e., dα/dt. In this circumstance, the 
parameters determined from fitting eq. 4.8 can be plugged into eq. 4.6. In principle, this can 
reduce the number of the fit parameters in eq. 4.6 from 6 (E1, E2, A1, A2, n, m) to 2 (A1 and n) 
that simplifies significantly the procedure of numerical minimization. However, this approach 
may be too restrictive to accomplish an accurate fit of the rate data. Then the accuracy of the fit 
can be improved by increasing the number of the fit parameters to 3 (A1, A2, n) or 4 (A1, A2, n, 
m). At any rate, it is recommended to use the E1 and E2 values obtained from fitting eq. 4.8 and 
keep them invariable while fitting eq. 4.6. This approach eliminates a major problem during 
numerical minimization. Because of the mutual correlation of the A and E values, their 
simultaneous variation can result in convergence at a local rather than the global minimum that 
renders the resulting values incorrect. Figure 12 shows an example of fitting eq. 4.6 to the rate 
data [115] to determine the parameters A1, A2, n, m. 



The Kamal model holds when the crosslinking process occurs in the kinetic regime. 
Oftentimes, crosslinking polymerization changes from kinetic to diffusion regime at later stages 

of the process. This situation is detected as a change in Eα to either unusually small (< ~40 kJ 

mol-1) or large (> ~100 kJ mol-1) values at higher values of α. This transition is commonly 

associated with vitrification that can be detected by the techniques of rheometry [116] or 
temperature modulated DSC [116,117,118,119]. The transition or the mixed regime is 
described by a combination of the Rabinowitch [120] and Stolin et al. [121] models that yields 
[21] the effective rate constant for the process: 

 (4.9) 

Substitution of kef into eq. 1.1 followed by taking the isoconversional derivative leads to the 

isoconversional activation energy [21]: 

 (4.10) 
where the subscript D denotes the parameters of the diffusion step. The diffusion rate constant 
in eq. 4.9 takes the following form [21]: 

 (4.11) 
where D0 is the preexponential factor and B is the constant that accounts for changing the 

conditions of diffusion due to the progress of crosslinking. 
With account of eq. 4.11, eq. 4.10 transforms into eq. 4.12  

  (4.12)  
where γ=A/D0. Fitting eq. 4.12 to experimental values of Eα yields E, ED, B, and the ratio of the 
A and D0 values [114]. Just as the A1 and A2 values in eq. 4.7, the A and D0 values cannot be 
determined separately from fitting eq. 4.12. If needed, these values can be determined 
individually from fitting the rate data. This can be accomplished by using eq. 1.1 with 
k(T)=kef(T) and f(α)=αm(1-α)n. For accurate determination of the parameters of the diffusion 
step one should use the data related to the later stages of the process, i.e., the data that 
correspond to higher values of α. Subsequently, in the presence of the diffusion regime the 
parameters of the Kamal model (i.e., of the kinetic regime) are best determined from the earlier 
stages of the process (lower values of α). 
Insights into selecting the respective intervals of α are offered elsewhere [122]. If the data do 
not reveal the occurrence of the diffusion regime, the Kamal model is applied to the whole 
range of α. 

Note that the aforementioned approach to the treatment of the crosslinking kinetics can be 

implemented in other variants. For example, the diffusion rate constant (eq. 4.11) can be used 
[22] in the form of the Williams-Landel-Ferry equation: 

 (4.13) 
where Tg(α) is the glass transition temperature as function of the reaction progress, and C1 and 
C2 are parameters whose typical values are about 40 and 50K correspondently. Also, the effect 
of diffusion can be introduced via the diffusion factor, DF(α,T) as follows: 

 (4.14) 
where (�� ��)��� is the kinetically controlled rate, which can be expressed by the Kamal model 



(eq. 4.6). The diffusion factor can be presented by different equations that can be identified via 
measurements by regular and temperature modulated DSC [117,118,119,123]. It should also be 

noted that although the Kamal model is used most commonly, one can alternatively derive more 

specific models for describing the kinetics of crosslinking polymerization [124]. 
 

5. Deconvolution analysis 
5.1 Basics 

As explained in introduction, multi-step kinetics commonly manifest themselves in the 

form of overlapped rate peaks as measured by DSC or DTG. In the present context 
“deconvolution” means resolution of the overlapped rate peaks into individual rate peaks that 
can be expected to represent individual reaction steps. This can be accomplished by two 
approaches: mathematical deconvolution analysis (MDA) and kinetic deconvolution analysis 
(KDA). These approaches are explained below. 
 
5.2 Mathematical deconvolution analysis 

Reactions studied by thermal analysis are in many cases heterogeneous processes defined 

by the reaction geometry and kinetics of nucleation and interfacial reaction [125,126,127,128]. 
Similar issues may apply to the reactions in viscous liquid [129,130]. It is generally difficult to 

formulate rigorous kinetic equations for multi-step reactions whose steps defined by interplay 
of physical and geometrical factors because of the heterogeneous distributions of the reactive 
sites and the reaction interfaces in each reaction step [128]. One possible approach to such 
multi-step reactions is to set a kinetic relation between the individual reaction steps through the 
kinetic analysis based on the overall rate equation that considers the contributions, ci, and 
kinetic models, fi(αi), [66,131] as a series of independent reaction steps (see section 2). The 
respective rate is as follows: 

 (5.1) 

Mathematically, the contributions ci have the same meaning as the weights wi used in 

sections 2 and 3. In eq. 5.1, fi(αi) represents physico-geometrical reaction mechanism of an 

individual reaction step. However, fi(αi) should be interpreted as an empirical function that 

describes the overall rate behavior for the reactions with the significant mutual dependence 

between the individual reaction steps. Thus, an empirical fi(αi) model which has large flexibility 

to fit different types of physico-geometrical rate behavior is preferable for analytical purposes. 
One such empirical model is that by Šesták and Berggren, SB(m, n, p) [132]. 

 (5.2) 

Alternatively, a truncated Šesták–Berggren model with the first two terms multiplied by the 
model specific parameter q, i.e., f(α) = qαm(1 – α)n, is equally applicable [133,134,135]. 
In kinetic analysis based on eq. 5.1 the kinetic parameters of all reaction steps should be 

determined simultaneously through multiple nonlinear least squares analysis using an 
optimization algorithm. This procedure can be called kinetic deconvolution analysis (KDA). 
However, the reliability of the kinetic parameters determined by the nonlinear least squares 
analysis can be problematic because of the possible occurrence of local minima encountered 
during optimization. In addition, the estimated kinetic parameters can exhibit mutual 
correlation, e.g., a linear correlation between E and ln A values, also known as the kinetic 
compensation effect [136,137,138,139,140,141]. The occurrence of such effect can be expected 
for the parameters of the individual steps of the overlapped multi-step process. Thus, nearly 
perfect fits of the overall rate (Eq. 5.1) may be achieved by multiple combinations of different 
sets of the kinetic parameters for the individual steps. A practical method of avoiding this 
unwanted situation and, thus, for evaluating the kinetic parameters that possess physico-



chemical significance is to have reliable initial values for the process of numerical optimization. 
An alternative approach to separating overlapped rate peaks can be called mathematical 
deconvolution analysis (MDA). Its idea is to fit an overlapped peak by means of several 
mathematical functions F(t) that have peak shapes. Then the overall rate can be expressed by 
the sum of the mathematical peak functions [131,142,143,144,145,146]: 

 (5.3) 

where Fi(t) is the mathematical peak function, and N is the total number of peaks. Ideally, each 

peak should represent an individual reaction step. This procedure is usually applied to the 
overall rate peaks recorded under nonisothermal conditions. Application of MDA to isothermal 
data is also possible as long as the overall rate peaks show the signs of overlapping. Because 
the rate peaks of single-step reactions generally exhibit asymmetric shapes, the mathematical 
functions employed should also have asymmetric peak shapes [131,143,144,145,146,147]. For 
example, the Weibull and Frazer–Suzuki functions, which are shown in eqs. 5.4 and 5.5, 
respectively, have been successfully used for the MDA.  

 (5.4) 

  (5.5) 
where a0 is the amplitude, a1 is the center, a2 is the width, and a3 is the shape parameters. Note 
that the choice of these mathematical functions is based on the shape analysis of the single-step 

reactions and assumes that the overlapped reaction steps are mutually independent. Because the 

individual steps may follow different fi(αi) models that give rise different kinds of the peak 

asymmetry, the choice of the mathematical functions for the individual steps should be made 
with care. Appropriate F(t)-functions should be selected for each reaction step with reference 
to the supplementary information about the process as well as the results of the subsequent 
kinetic analysis for the separated peaks. Although the selection of the functions is heuristic, it 
determines the kinetic relevance of MDA because eq. 5.3 is not a rate equation, but a 
mathematical approximation that describes the shape of the overall rate peak [128,131,145]. It 
is particularly difficult to carry out MDA successfully when the contributions of the individual 
reaction steps to the overall rate have the opposite signs. 
Figure 13 shows an example of MDA followed by kinetic analysis of the separated peaks 

for the thermal dehydrochlorination of polyvinyl chloride (PVC) that consist of two overlapping 

process [66,145]. When a multistep process is adequately separated by MDA with significant 
relevance to the actual reaction mechanism, the ci values are calculated as the ratio of the areas 
of an individual and overall peaks (Figure 13(a)). If the ci values are known a priori or expected 
from the reaction mechanism, the estimated ci values can serve as a guide to assess the 
adequateness of MDA. Depending on the nature of the overlapped process, the ci values may 
change when changing the measurement conditions, e.g., the heating rate or a temperature 
program in general. If the estimated ci values are practically invariant for a series of the overall 
rate peaks measured under different conditions, MDA is likely to yield a series of individual 
rate peaks that respectively represent individual reaction steps. Then, each separated rate peak 



is analyzed under the assumption of the single-step kinetics by using the techniques overviewed 
in the previous recommendations of the ICTAC kinetics committee [1]. First, for each separated 
i-th peak an isoconversional method should be applied to evaluate Eα,i values at different αi. If 
a separated peak really represents an individual reaction step, the resulting Eα,i values should be 
practically independent of αi. Finding that Eα,i is nearly constant for all separated peaks, 
supports both adequateness of MDA and validity of the single-step assumption for all individual 
reactions. After that a variety of techniques [1] such as master plot analysis can be used to 
determine fi(αi) and Ai [148,149]. Figure 13(b) clearly shows that the isoconversional values of 
Eα determined for the overall process varies strongly with α, as expected for a multi-step 
process. Nevertheless, the Eα,i values obtained for the separated reactions remain practically 
constant in the respective αi ranges. Moreover, Eα,i values for the first and second processes are 
coincident with the Eα values obtained for the overall reaction for the small and large overall α 

values, respectively. The dehydrochlorination process could be fitted by a nucleation and 
growth kinetic model (indicating that the decomposition starts in reactive sites of the PVC 
molecule) followed by a diffusion controlled kinetic model, which was supported by the results 
of microscopic observations [66]. The kinetic curves simulated by using the resulting kinetic 
parameters reproduce not only the linear heating experiments used for the analysis but also 
experimental curves obtained under other conditions, such as isothermal heating (Figure 13(c)). 
This validates the results of the kinetic analysis and accomplishes one of the major objectives 
of kinetic analysis that is the ability of making predictions of the reaction kinetics. 
In more complex cases, MDA may result in variations of ci and Eα,i values depending on 

reaction conditions and αi, respectively. The variations may be caused by problematic MDA 
(e.g., inappropriate selection of the mathematical peak functions) or by the complex nature of 
the separated reaction steps. Even if a constant Eα,i value was found for a reaction step, the 
master plot analysis would not necessarily yield fi(αi) that represents the actual physico-
geometrical mechanism of the reaction step, i.e., the mechanism that forms the foundation of 
the corresponding f(α) model. This is because MDA disregards any mutual dependence between 
the individual reaction steps. When the individual reaction steps are really independent of each 
other, it is possible to use the estimated fi(αi) functions for physico-geometrical interpretation. 
However, for a multi-step process with the mutually dependent reaction steps the fi(αi) functions 
estimated for the separated rate peaks should be treated as empirical functions representing the 
overall kinetic behavior. 



 
Fig. 13. Mathematical deconvolution analysis (MDA) and subsequent isoconversional analysis for the thermal 
dehydrochlorination of polyvinyl chloride (PVC): (a) a typical result of MDA (β = 5 K min-1) performed using 

the Frazer–Suzuki function, (b) Eα values as a function of the reaction fraction, as determined by Friedman 
method, for the overall process and for the separated first and second processes, and (c) an isothermal 

experimental curve at 543 K and a curve simulated using the kinetic parameters resulted of the kinetic analysis. 
Adopted from Perejon et al. [145] (DOI: https://doi.org/10.1021/jp110895z), with permission. Copyright 2011 

American Chemical Society. 
 
 
5.3 Kinetic deconvolution analysis 

Successful kinetic analysis based on MDA is not always possible because the mathematical 
peak functions may not be adequate for separation of the individual reaction steps. In this 
situation, the results of kinetics analysis of the individual steps can provide kinetic parameters 
to be used as the initial values for more careful KDA based on eq. 5.1. More reliable initial 
values for KDA are obtained when MDA results in adequate separation. Optimization of the 
kinetic parameters through KDA reformulates the kinetic description based on eq. 5.1. The 
kinetic parameters determined by KDA may be practically the same as those estimated by MDA 
if the results of the latter are accurate. Otherwise, KDA can improve a problematic kinetic 
description obtained in preliminary analysis. Considering that KDA makes use of fi(αi) in the 
form of the empirical SB(m,n,p) model (eq. 5.2) to separate the overall rate peak into the rate 
peaks for the individual steps, the latter can be analyzed further by the techniques developed 
for single-step kinetics [1]. In particular, one can apply the master plots method to see if the 
kinetics for the individual steps follow the f(α) models that have a physico-geometrical 
meaning. If this is the case, the analysis can provide some mechanistic insights. 
KDA is applicable to kinetic data recorded under any temperature programs [150,151,152,153] 
as shown in Figure 14 for the two-step thermal decomposition of Mg(OH)2 under linear 
nonisothermal, isothermal, and constant transformation rate conditions [152]. When the 



contributions and kinetic parameters of each reaction step are invariant with respect to different 
temperature programs, the kinetic curves measured under different conditions can be 
simultaneously subjected to KDA. On the other hand, possible changes in the kinetic parameters 
obtained under different reaction conditions can be identified by applying KDA to the 
respective curves separately. When the chemical reaction in each reaction step and a 
relationship between the steps has been revealed by the supplementary techniques, the 
individual reactions making opposing contributions (i.e, mass loss versus mass gain or 
exothermic versus endothermic) to the overall rate process can also be analyzed by KDA. This 
has been recently demonstrated for the thermal decomposition and subsequent oxidation or 
carbonation processes [153,154,155]. In some cases of partially overlapping reactions, the 
overall kinetic data measured by different techniques (e.g., TGA and DSC) may give rise to 
respectively different kinetic curves even though the measurements are made simultaneously. 
In such cases different techniques can exhibit different relationships between, say, two 
individual steps. For example, both steps are characterized by mass-losses but one being 
exothermic and another endothermic. Under such circumstances, the overall rate curves 
measured by different techniques are represented by different rate equations [156,157]. When 
the reaction kinetics of such multi-step process is tracked by using simultaneous TGA–DSC, 
the ci values for the respective kinetic equations are calculated using the initial and final part of 
the kinetic data. 

 (5.6) 

Then, the kinetic curves for each reaction step are obtained as follows without any preliminary 
kinetic analyses and assumptions [156,157]. 

  (5.7) 

 (5.8) 
 
 



 
Fig. 14. Typical results of KDA for the thermal decomposition of Mg(OH)2 under various heating conditions: (a) 

linear nonisothermal, (b) isothermal, and (c) constant transformation rate modes. (Adopted from Iwasaki et al. 
[152] (DOI: https://doi.org/10.1021/acs.jpcc.9b09656), with permission. Copyright 2020 American Chemical 

Society. 
 
Thus, MDA as a preliminary kinetic approach can be skipped. Followed by the kinetic analysis 
of the separated rate peaks, the kinetic features of the individual steps can be revealed separately 
by KDA for the mass and enthalpy changes as shown in Figure 15 for the thermolysis of 
ammonium dinitramide [156]. 

 
Fig. 15. Typical results of KDA for the thermolysis of ammonium dinitramide comprising two-step mass-loss 

process accompanied by exothermic and endothermic effects (β = 5 K min-1): (a) kinetic data from DSC and (b) 



kinetic data from DTG. Adapted from Muravyev et al. [156] (DOI: https://doi.org/10.1039/c6cp08218a; CC BY-
NC 3.0). Published by the PCCP Owner Societies. 

 
KDA is a simple kinetic evaluation based on eq. 5.1. It can be applied to many different 
types of partially overlapped multi-step processes, just as MDA can. Yet, the physico-chemical 
and physico-geometrical significance of the kinetic results depends on the type of a multi-step 
process. For a multi-step process composed of independent reaction steps one can expect an 
exact kinetic solution. However, when the individual reactions become mutually dependent 
such as for consecutive or competing reactions, the results of KDA or MDA become semi-
empirical and provide only an approximate formal solution. Even though, the results can still 
be used for simulating the overall reaction under reaction conditions comparable to those used 
in kinetic analyses. The kinetic results can be analyzed further for revealing the physico-
chemical and physico-geometrical features of complex heterogeneous processes, when enough 
supplementary experimental evidence is available. A successful example of such analysis is 
seen for the isothermal process that involves consecutive surface (SR) and phase-boundary 
controlled reaction (PBR) as originally formulated by Mampel [158]. Recently, the kinetic 
model has been reconstructed by Favergeon et al. [159,160] as nucleation and anisotropic 
growth model, and the differential kinetic equations for this type of consecutive reactions have 
been derived by Ogasawara and Koga [161] to allow for simplifying kinetic evaluations. For 
example, the consecutive first-order SR and three dimensional PBR model at a constant 
temperature is described by [161]: 

 (5.9) 
where kSR and kPBR(n) are the rate constants for SR and PBR, respectively. After optimizing the 
kSR and kPBR(n) values for each isothermal kinetic curve at different temperatures, the kinetic 
parameters of SR and PBR are determined individually from the temperature dependence of the 
respective rate constants [152,161,162,163]. A universal kinetic description of SR and PBR 
process over a range of different temperatures and partial pressures of evolved gas is a current 
accomplishment of the kinetic approach [164,165]. However, kinetic modeling for more 
complex consecutive or competing reactions in the heterogeneous systems is a crucial future 
task. 
 
5.4 Additional remarks on the deconvolution analysis 

(1) Kinetic analysis of overlapping multi-step reactions is quite challenging because of the 
reaction diversity, i.e., a multitude of situations, in which various physico-chemical and 
physico-geometrical features of the sample and reaction can contribute the kinetic complexity 
in addition to independent, consecutive, or competitive reaction steps. 



(2) Detailed characterization of the sample from compositional, morphological, 
crystallographic, and spectroscopic standpoints is necessary for adequate understanding of 
multi-step reactions, because sometimes the sample properties are a direct cause of the multi-
step kinetic behavior as seen for composite materials and samples with broad particle size 
distribution [166].  
(3) Measurements under a wide variety of temperature programs (nonisothermal, isothermal, 
rate controlled) and atmospheric conditions are required for understanding the origins of the 
multi-step reaction behavior. Simultaneous measurements that combine different thermal 
analysis methods or other techniques can be the key for successful kinetic evaluations via MDA 
and KDA. Combining the experimental kinetic data obtained from different measurements 
always provides valuable information for elucidating the kinetics of multi-step reactions 
[156,167] While relevant to any multi-step kinetic analysis, these remarks are especially 
important when MDA and KDA are used as an empirical kinetic procedure. 
 
6. Conclusions. 
The present recommendations have discussed four different approaches that can be used to 

tackle multi-step kinetics efficiently. Computationally, none of these approaches is as simple 
as the approaches used for analysis of single-step kinetics. The latter can commonly be reduced 
to linear regression that normally is not associated with computational difficulties. The multi-
step kinetics are analyzed by nonlinear regression that requires the use of numerical methods 
of multiparameter optimization. There are many software packages that perform such 
optimization to fit multi-parameter models to experimental data. They can be used to implement 
any of the approaches discussed in this paper. However, one should always judge the obtained 
kinetic parameters critically. There are no algorithms of numerical optimization that always 
produce a correct solution for any type of a model and the data of any quality. The necessary 
condition of a correct solution is its uniqueness. It should be verified by making sure that the 
final optimized values of the kinetic parameters remain the same when using significantly 
different initial values as a starting point of optimization. This secures that optimization 
converges to the global rather than a local minimum. Closely related is the issue of the number 
of kinetics parameters that need to be optimized. The smaller this number the better are the 
chances for optimization to find the global minimum and, thus, to yield a unique solution. Thus, 
one should be advised to aim at constructing kinetic models with fewer reaction steps. The need 
to introduce additional reaction steps into a model should be justified by physical rather than 
purely statistical reasons. The optimization procedures do rely on statistical parameters to 
accomplish the best goodness of fit. Nevertheless, the numerical values of these parameters 
(e.g., RSS or r2) cannot be used as the metrics for evaluating the meaningfulness of a kinetic 
model and its parameters. Although a meaningful model must necessarily fit the data, a model 
that fits is not necessarily meaningful. Note that perfect fits can be accomplished by spline 
interpolation that has no kinetic meaning whatsoever. The fact that a multi-step model provides 
a statistically adequate description of a process does not mean that this model is unique. It is 
not unusual when one finds another multi-step model that describes the same process equally 
well. In the statistical sense, equally well means that, for example, the RSS values for two 
models do not differ significantly based on the F-test. In this situation, distinguishing between 
the models may be problematic. If the models are represented by mathematical functions that 
differ significantly (e.g., exponential and power law), the models may likely be distinguished 
by comparing the accuracy of predictions made outside the range of experimental conditions 
used for establishing these models. Alternatively, one may distinguish between the models by 
utilizing additional analytical techniques capable of furnishing mechanistic insights. Yet, it 
should be kept in mind that alternative models are not always mutually exclusive. 



For instance, the situation may arise when the crystallization kinetics of a polymer is equally 
well described by the Turnbull-Fisher and Hoffman-Lauritzen models. These models are not 
mutually exclusive as they both are physically meaningful representations of crystallization 
kinetics. 
Last but not least, it must be recognized that if the purpose of multi-step kinetic analysis is 

obtaining insights into a process, the necessary attribute of a model is meaningfulness. To put 
it simply, the model must make sense in the context of a process being analyzed. Otherwise, 
neither model nor its parameters can lend themselves to a physically meaningful interpretation. 
The interpretability is accomplished via experimental evidence and theoretical understanding 
that can link a model to the process in question. On the other hand, kinetic analysis can pursue 
purely technical goals such as making kinetic predictions. In this case, the sufficient attribute 
of a model is numerical robustness that is easier accomplished in models with fewer parameters. 
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GLOSSARY 

Autocatalytic reactions as well as autoaccelerating. Reactions whose rate under isothermal 
conditions passes through a maximum. Consequentially, the integral curves α vs t have 
sigmoidal shape so that the respective reactions and kinetics are also referred to as sigmoidal. 
They are commonly described by the Avrami or truncated Šesták-Berggren (extended Prout-
Tompkins) model. 

Coefficient of determination (r2) is square of the Pearson’s correlation coefficient, r. 



Convolution is a mathematical operation of combining two functions into one via the 

convolution integral. Convolution is distinctly different from the addition of two functions. For 

example, convolution of two Gaussian peak functions does not yield a double peak, but another 

Gaussian peak function. 

Decelerating reactions. Reactions whose rate under isothermal conditions continuously 

decreases. They are commonly described by the reaction-order or diffusion models. 

Deconvolution is a mathematical operation of separating of a convolved function into 
individual functions. It is commonly accomplished by the Fourier transform. Representative 
examples are: in signal analysis, separation of noisy signals into noise and signal; in atomic 
spectroscopy, separation of the true spectral peak from the effects of the Doppler and pressure 
broadening; in calorimetry, separation of the sample heat flow from the instrument response 
function. Although not strictly correct, the term is now commonly used for curve resolution or 
curve separation for overlapped multiple peaks observed in spectroscopy or in thermal analysis 
kinetics. 

Effective activation energy as well as effective rate constant or other effective kinetic 

parameters. “Effective” is used to emphasize that this is not merely theoretical but the actual, 
i.e., acting in reality value. In this meaning, “Effective” is synonymous with “Global”, 
“Overall”, “Apparent”, “Experimental”. 

Extent of conversion, degree of conversion, conversion, extent of reaction. Commonly 

denoted by α and defined as the ratio of the partial to total change of a physical property. For 

example, the ratio of the partial mass loss at given temperature to the total mass loss at the final 
temperature. 
Kinetic curve, kinetic data. Terms commonly used to describe dependencies of α or dα/dt on 

time or temperature. 

Kinetic parameters. In addition to the activation energy and preexponential factor, this terms 

usually includes parameters of the reaction models, e.g., the exponents in the Avrami, reaction 
order, and Šesták-Berggren models. 

Multi-step kinetic model (e.g., double-step kinetic model), model containing more than one 

kinetic step. In such model, each step has its individual reaction model (i.e., f(α)) and the steps 

have specific connections to each other, e.g., parallel or consecutive. 

Multi-step kinetics, kinetics whose overall rate is determined by the rates of more than one 
step. 

Reaction model or kinetic model, a function that represents the conversion dependence of the 

rate, i.e., f(α) (or its integral analog, g(α)) 

Reaction order model, nth-order reaction. Reactions or models that are represented by the 

kinetic model f(α)=(1-α)n. 

Reaction profile. Same as kinetic curve. 

Residual sum of squares (RSS). RSS is a quantity used in the method of least squares to 

represent the minimum of squared deviations between an experimental dependence and its 

theoretical model. RSS is a statistical quantity similar to the variance and, thus, can be analyzed 

by the F- and χ2- tests. 

Single-step kinetics, kinetics whose overall rate is determined by the rate of one step. 
 


